URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [common/] [current/] [cdl/] [interrupts.cdl] - Rev 786
Compare with Previous | Blame | View Log
# ====================================================================
#
# interrupts.cdl
#
# HAL interrupt configuration data
#
# ====================================================================
## ####ECOSGPLCOPYRIGHTBEGIN####
## -------------------------------------------
## This file is part of eCos, the Embedded Configurable Operating System.
## Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
##
## eCos is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free
## Software Foundation; either version 2 or (at your option) any later
## version.
##
## eCos is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with eCos; if not, write to the Free Software Foundation, Inc.,
## 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
##
## As a special exception, if other files instantiate templates or use
## macros or inline functions from this file, or you compile this file
## and link it with other works to produce a work based on this file,
## this file does not by itself cause the resulting work to be covered by
## the GNU General Public License. However the source code for this file
## must still be made available in accordance with section (3) of the GNU
## General Public License v2.
##
## This exception does not invalidate any other reasons why a work based
## on this file might be covered by the GNU General Public License.
## -------------------------------------------
## ####ECOSGPLCOPYRIGHTEND####
# ====================================================================
######DESCRIPTIONBEGIN####
#
# Author(s): jskov
# Original data: nickg,jskov,jlarmour
# Contributors:
# Date: 1999-07-02
#
#####DESCRIPTIONEND####
#
# ====================================================================
cdl_option CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK {
display "Use separate stack for interrupts"
default_value 1
description "
When an interrupt occurs this interrupt can be handled either
on the current stack or on a separate stack maintained by the
HAL. Using a separate stack requires a small number of extra
instructions in the interrupt handling code, but it has the
advantage that it is no longer necessary to allow extra space
in every thread stack for the interrupt handlers. The amount
of extra space required depends on the interrupt handlers
that are being used."
}
# NOTE: various parts of the system such as device drivers should
# impose lower bounds on this. The actual lower bound depends on a
# platform-specific value for startup overheads, and the minimum
# sizes specified by the various device drivers. If interrupts are
# not handled on a separate stack then only the startup overheads
# are significant. If nested interrupts are disabled then the
# lower bound is the maximum of the individual sizes, otherwise
# it is the sum of these sizes. It is not currently possible to
# express a relationship like this.
cdl_option CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE {
display "Interrupt stack size"
flavor data
default_value { CYGPKG_KERNEL ? 4096 : 32768 }
legal_values 128 to 1048576
description "
This configuration option specifies the stack size in bytes
for the interrupt stack. Typically this should be a multiple
of 16, but the exact requirements will vary from architecture
to architecture. The interrupt stack serves two separate
purposes. It is used as the stack during system
initialization. In addition, if the interrupt system is
configured to use a separate stack then all interrupts will
be processed on this stack. The exact memory requirements
will vary from application to application, and will depend
heavily on whether or not other interrupt-related options,
for example nested interrupts, are enabled. On most targets,
in a configuration with no kernel this stack will also be
the stack used to invoke the application, and must obviously
be appropriately large in that case."
}
cdl_option CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING {
display "Allow nested interrupts"
default_value 0
description "
When an interrupt occurs the HAL interrupt handling code can
either leave interrupts disabled for the duration of the
interrupt handling code, or by doing some extra work it can
reenable interrupts before invoking the interrupt handler and
thus allow nested interrupts to happen. If all the interrupt
handlers being used are small and do not involve any loops
then it is usually better to disallow nested interrupts.
However if any of the interrupt handlers are more complicated
than nested interrupts will usually be required."
}
cdl_option CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT {
display "Save minimum context on interrupt"
default_value 1
description "
The HAL interrupt handling code can exploit the calling conventions
defined for a given architecture to reduce the amount of state
that has to be saved. Generally this improves performance and
reduces code size. However it can make source-level debugging
more difficult."
}
cdl_option CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN {
display "Chain all interrupts together"
default_value 0
description "
Interrupts can be attached to vectors either singly, or be
chained together. The latter is necessary if there is no way
of discovering which device has interrupted without
inspecting the device itself. It can also reduce the amount
of RAM needed for interrupt decoding tables and code."
}
cdl_option CYGIMP_HAL_COMMON_INTERRUPTS_IGNORE_SPURIOUS {
display "Ignore spurious \[fleeting\] interrupts"
default_value 0
description "
On some hardware, interrupt sources may not be de-bounced or
de-glitched. Rather than try to handle these interrupts (no
handling may be possible), this option allows the HAL to simply
ignore them. In most cases, if the interrupt is real it will
reoccur in a detectable form."
}