OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [frv/] [mb93091/] [current/] [src/] [mb93091_misc.c] - Rev 786

Compare with Previous | Blame | View Log

//==========================================================================
//
//      mb93091_misc.c
//
//      HAL misc board support code for Fujitsu MB93091 ( FR-V 400/500 )
//
//==========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####                                            
// -------------------------------------------                              
// This file is part of eCos, the Embedded Configurable Operating System.   
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under    
// the terms of the GNU General Public License as published by the Free     
// Software Foundation; either version 2 or (at your option) any later      
// version.                                                                 
//
// eCos is distributed in the hope that it will be useful, but WITHOUT      
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
// for more details.                                                        
//
// You should have received a copy of the GNU General Public License        
// along with eCos; if not, write to the Free Software Foundation, Inc.,    
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
//
// As a special exception, if other files instantiate templates or use      
// macros or inline functions from this file, or you compile this file      
// and link it with other works to produce a work based on this file,       
// this file does not by itself cause the resulting work to be covered by   
// the GNU General Public License. However the source code for this file    
// must still be made available in accordance with section (3) of the GNU   
// General Public License v2.                                               
//
// This exception does not invalidate any other reasons why a work based    
// on this file might be covered by the GNU General Public License.         
// -------------------------------------------                              
// ####ECOSGPLCOPYRIGHTEND####                                              
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):    gthomas
// Contributors: gthomas
// Date:         2001-09-07
// Purpose:      HAL board support
// Description:  Implementations of HAL board interfaces
//
//####DESCRIPTIONEND####
//
//========================================================================*/
 
#include <pkgconf/hal.h>
#include <pkgconf/system.h>
#include CYGBLD_HAL_PLATFORM_H
 
#include <cyg/infra/cyg_type.h>         // base types
#include <cyg/infra/cyg_trac.h>         // tracing macros
#include <cyg/infra/cyg_ass.h>          // assertion macros
#include <cyg/infra/diag.h>             // diag_printf() and friends
 
#include <cyg/hal/hal_io.h>             // IO macros
#include <cyg/hal/hal_arch.h>           // Register state info
#include <cyg/hal/hal_diag.h>
#include <cyg/hal/hal_intr.h>           // Interrupt names
#include <cyg/hal/hal_cache.h>
#include <cyg/hal/mb93091.h>             // Hardware definitions
#include <cyg/hal/hal_if.h>             // calling interface API
 
 
static cyg_uint32 _period;
 
void hal_clock_initialize(cyg_uint32 period)
{
    _period = period;
    // Set timer #1 to run in terminal count mode for period
    HAL_WRITE_UINT8(_FRVGEN_TCTR, _FRVGEN_TCTR_SEL1|_FRVGEN_TCTR_RLOHI|_FRVGEN_TCTR_MODE0);
    HAL_WRITE_UINT8(_FRVGEN_TCSR1, period & 0xFF);
    HAL_WRITE_UINT8(_FRVGEN_TCSR1, period >> 8);
    // Configure interrupt
    HAL_INTERRUPT_CONFIGURE(CYGNUM_HAL_INTERRUPT_TIMER1, 1, 1);  // Interrupt when TOUT1 is high
}
 
void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period)
{
    cyg_int16 offset;
    cyg_uint8 _val;
 
    // Latch & read counter from timer #1
    HAL_WRITE_UINT8(_FRVGEN_TCTR, _FRVGEN_TCTR_LATCH|_FRVGEN_TCTR_RLOHI|_FRVGEN_TCTR_SEL1);
    HAL_READ_UINT8(_FRVGEN_TCSR1, _val);
    offset = _val;
    HAL_READ_UINT8(_FRVGEN_TCSR1, _val);
    offset |= _val << 8;    // This will be the number of clocks beyond 0
    period += offset;
    // Reinitialize with adjusted count
    // Set timer #1 to run in terminal count mode for period
    HAL_WRITE_UINT8(_FRVGEN_TCTR, _FRVGEN_TCTR_SEL1|_FRVGEN_TCTR_RLOHI|_FRVGEN_TCTR_MODE0);
    HAL_WRITE_UINT8(_FRVGEN_TCSR1, period & 0xFF);
    HAL_WRITE_UINT8(_FRVGEN_TCSR1, period >> 8);
}
 
// Read the current value of the clock, returning the number of hardware "ticks"
// that have occurred (i.e. how far away the current value is from the start)
 
void hal_clock_read(cyg_uint32 *pvalue)
{
    cyg_int16 offset;
    cyg_uint8 _val;
 
    // Latch & read counter from timer #1
    HAL_WRITE_UINT8(_FRVGEN_TCTR, _FRVGEN_TCTR_LATCH|_FRVGEN_TCTR_RLOHI|_FRVGEN_TCTR_SEL1);
    HAL_READ_UINT8(_FRVGEN_TCSR1, _val);
    offset = _val;
    HAL_READ_UINT8(_FRVGEN_TCSR1, _val);
    offset |= _val << 8;
 
    // 'offset' is the current timer value
    *pvalue = _period - offset;
}
 
// Delay for some number of useconds.
// Assumptions:
//   Use timer #2
//   Min granularity is 10us
#define _MIN_DELAY 10
 
void hal_delay_us(int us)
{
    cyg_uint8 stat;
    int timeout;
 
    while (us >= _MIN_DELAY) {
	us -= _MIN_DELAY;
        // Set timer #2 to run in terminal count mode for _MIN_DELAY us
        HAL_WRITE_UINT8(_FRVGEN_TCTR, _FRVGEN_TCTR_SEL2|_FRVGEN_TCTR_RLOHI|_FRVGEN_TCTR_MODE0);
        HAL_WRITE_UINT8(_FRVGEN_TCSR2, _MIN_DELAY & 0xFF);
        HAL_WRITE_UINT8(_FRVGEN_TCSR2, _MIN_DELAY >> 8);
        timeout = 100000;
        // Wait for TOUT to indicate terminal count reached
        do {
            HAL_WRITE_UINT8(_FRVGEN_TCTR, _FRVGEN_TCTR_RB|_FRVGEN_TCTR_RB_NCOUNT|_FRVGEN_TCTR_RB_CTR2);
            HAL_READ_UINT8(_FRVGEN_TCSR2, stat);
            if (--timeout == 0) break;
        } while ((stat & _FRVGEN_TCxSR_TOUT) == 0);
    }
}
 
//
// Early stage hardware initialization
//   Some initialization has already been done before we get here.  For now
// just set up the interrupt environment and the LEDs
 
 
//
// LED control
//
static int sendlcdcmd(cyg_uint32 cmd)
{
	volatile cyg_uint32 *USERLCD = (void *)_MB93091_MB_LCD;
	int c = 10000;
 
	*USERLCD = LCD_CMD_READ_BUSY;
	*USERLCD = LCD_RW;
	while (!((*USERLCD) & 0x80)) {
		if (--c) {
			return 1;
		}
	}
 
	*USERLCD = cmd;
	*USERLCD = cmd &~LCD_E;
	hal_delay_us(100);
	return 0;
}
 
static void sendlcdstring(char *str)
{
	while(*str)
		sendlcdcmd(LCD_DATA_WRITE(*(str++)));
 
}
 
 
static void setlcd(char *model)
{
	sendlcdcmd(LCD_CMD_FUNCSET(1,1,0));
	hal_delay_us(4100);
	sendlcdcmd(LCD_CMD_FUNCSET(1,1,0));
	hal_delay_us(100);
	sendlcdcmd(LCD_CMD_FUNCSET(1,1,0));
 
	sendlcdcmd(LCD_CMD_ON(0,0));
 
	sendlcdcmd(LCD_CMD_CLEAR);
	hal_delay_us(1640);
 
	sendlcdcmd(LCD_CMD_HOME);
	sendlcdcmd(LCD_CMD_SET_DD_ADDR(0));
 
	sendlcdstring("RedBoot");
	if (model) {
		sendlcdstring(" on");
		sendlcdcmd(LCD_CMD_SET_DD_ADDR(64));
		sendlcdstring("Fujitsu MB93");
		sendlcdstring(model);
	}
 
}
 
 
cyg_bool _mb93091_has_vdk = 1;
 
long _system_clock;  // Calculated clock frequency
char HAL_PLATFORM_CPU[]  = "Fujitsu FRxxx\0";
char HAL_PLATFORM_BOARD[] = "MB93xxx evaluation board\0";
char HAL_PLATFORM_EXTRA[] = "\0PSR xx)";
 
void hal_hardware_init(void)
{
    cyg_uint32 clk, clkc, psr, u32;
    char *model;
    int cb_nr = 0;
    cyg_uint16 tmp;
 
    // Set up interrupt controller
    HAL_WRITE_UINT16(_FRVGEN_IRC_MASK, 0xFFFE);  // All masked
    HAL_WRITE_UINT16(_FRVGEN_IRC_RC, 0xFFFE);    // All cleared
    HAL_WRITE_UINT16(_FRVGEN_IRC_IRL, 0x10);     // Clear IRL (interrupt request latch)    
 
    // Onboard FPGA interrupts
    HAL_WRITE_UINT16(_MB93091_FPGA_CONTROL, _MB93091_FPGA_CONTROL_IRQ);  // Enable IRQ registers
    HAL_WRITE_UINT16(_MB93091_FPGA_IRQ_MASK,      // Set up for LAN, PCI INTx
                     0x7FFE & 
                     ~(_MB93091_FPGA_IRQ_INTA |
                       _MB93091_FPGA_IRQ_INTB |
                       _MB93091_FPGA_IRQ_INTC |
                       _MB93091_FPGA_IRQ_INTD)
        );
 
    HAL_WRITE_UINT16(_MB93091_FPGA_IRQ_LEVELS,    // Set up for LAN, PCI INTx
                     0x7FFE & 
                     ~(_MB93091_FPGA_IRQ_LAN |
                       _MB93091_FPGA_IRQ_INTA |
                       _MB93091_FPGA_IRQ_INTB |
                       _MB93091_FPGA_IRQ_INTC |
                       _MB93091_FPGA_IRQ_INTD)
        );
 
    HAL_INTERRUPT_CONFIGURE(CYGNUM_HAL_INTERRUPT_LAN, 1, 0);  // Level, low
 
 
    asm("movsg psr,%0" : "=r"(psr));
 
    switch(psr >> 24) {
    case 0x20:/* FR401 */
	    model = "401";
	    cb_nr = 10;
	    break;
 
    case 0x21:/* FR401A */
	    model = "401A";
	    cb_nr = 11;
	    break;
 
    case 0x22:/* FR403 */
	    model = "403";
	    cb_nr = 30;
	    break;
 
    case 0x40:/* FR405 */
	    model = "405";
	    /* Turn on the IRQ control bit if it's off. */
	    HAL_READ_UINT16(_MB93091_FPGA_VDKID, tmp);
	    cb_nr = (tmp == 0x46) ? 70 : 60;
	    break;
 
    case 0x50:/* FR451 */
	    model = "451";
            cb_nr = 451;
 
	    break;
 
    case 0x12:/* FR501A */
	    model = "501A";
	    break;
 
    case 0x11:/* FR501 */
	    model = "501";
	    break;
 
    case 0x31:/* FR555 */
	    model = "555";
	    cb_nr = 41;
	    break;
 
    default:
	    model = NULL;
	    diag_sprintf(HAL_PLATFORM_EXTRA, "(PSR %02x)", psr >> 24);
	    break;
    }
    if (model) {
	    diag_sprintf(HAL_PLATFORM_CPU, "Fujitsu FR%s", model);
	    diag_sprintf(HAL_PLATFORM_BOARD, "MB93%s evaluation board", model);
    }
    if (cb_nr) {
	    diag_sprintf(HAL_PLATFORM_EXTRA, "(CB%d)", cb_nr);
    }
    if (cb_nr == 70 || cb_nr == 451) {
	    HAL_READ_UINT16(_MB93091_FPGA_CLKRS, tmp);
	    if (tmp & 0x1000)
		_system_clock = 60000000;
	    else
		_system_clock = ((tmp & 0xf00) * 100 / 0x100 +
				 (tmp & 0xf0) * 10 / 0x10 +
				 (tmp & 0xf)) * 100000;
 
	    /* Check for motherboard. */
	    HAL_READ_UINT16(_MB93091_FPGA_GPHL, tmp);
	    if (tmp & 0x100)
		_mb93091_has_vdk = 0;
 
	    /* Turn on CS6# for onboard DM9000 NIC */
	    HAL_READ_UINT32(_FRV400_LBUS_GCR, u32);
	    u32 |= (1 << 6);
	    HAL_WRITE_UINT32(_FRV400_LBUS_GCR, u32);
    }
 
    // Set up system clock if it wasn't already detected 
    // This will break if a board is standalone but hasn't had its
    // _system_clock set by the above.
    if (!_system_clock && _mb93091_has_vdk) {
	    // First, read the motherboard clock switches to see the frequency
	    // it's generating. AV9110_CLKOUT/MHz = 12.5 * <N> / 24. 
	    HAL_READ_UINT32(_MB93091_MB_CLKSW, clk);
	    _system_clock = (((clk&0xFF) * 125U * 100000U) / 24U);
 
	    // The FR401 doubles the clock signal. The FR555 _can_ do, according to
	    // the setting of the 2XCLK jumper. Since we can't actually _read_ the 
	    // current setting of 2XCLK, assume it's still set to the default, which
	    // is to double the clock also.
	    if ((psr & 0xff000000) == 0x20000000 ||
		(psr & 0xff000000) == 0x31000000)
		    _system_clock <<= 1;
    }
    if (!_system_clock)
	    _system_clock = 60000000;	    /* Guess */
 
    // If the chip is configured to halve CLKIN, adjust for that.
    HAL_READ_UINT32(_FRVGEN_CLK_CTRL, clkc);
    if (clkc & _FRVGEN_CLK_CTRL_P0)
	    _system_clock >>= 1;
 
    // Set scalers to achieve 1us resolution in timer
    HAL_WRITE_UINT8(_FRVGEN_TPRV, _system_clock / (1000*1000));
    HAL_WRITE_UINT8(_FRVGEN_TCKSL0, 0x80);
    HAL_WRITE_UINT8(_FRVGEN_TCKSL1, 0x80);
    HAL_WRITE_UINT8(_FRVGEN_TCKSL2, 0x80);
 
    // Set LCD welcome string.
    if (_mb93091_has_vdk)
	    setlcd(model);
 
    // Make sure UART clock prescaler is at power-on reset setting.
    HAL_WRITE_UINT32(_FRVGEN_UCPSR, 0);
    HAL_WRITE_UINT32(_FRVGEN_UCPVR, 0);
 
    hal_if_init();
 
    // Initialize real-time clock (for delays, etc, even if kernel doesn't use it)
    hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD);
 
#ifdef CYGPKG_IO_PCI
    if (_mb93091_has_vdk)
	    _mb93091_pci_init();
#endif
}
 
 
// Is DM9000 present?
int cyg_hal_dm9000_present(void) {
    return (!strcmp(HAL_PLATFORM_EXTRA, "(CB70)") ||
	    !strcmp(HAL_PLATFORM_CPU, "Fujitsu FR451"));
}
 
//
// Interrupt control
//
 
void hal_interrupt_mask(int vector)
{
    cyg_uint16 _mask;
 
    switch (vector) {
    case CYGNUM_HAL_INTERRUPT_LAN:
        HAL_READ_UINT16(_MB93091_FPGA_IRQ_MASK, _mask);
        _mask |= _MB93091_FPGA_IRQ_LAN;
        HAL_WRITE_UINT16(_MB93091_FPGA_IRQ_MASK, _mask);
        break;
    }
    HAL_READ_UINT16(_FRVGEN_IRC_MASK, _mask);
    _mask |= (1<<(vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1));
    HAL_WRITE_UINT16(_FRVGEN_IRC_MASK, _mask);
}
 
void hal_interrupt_unmask(int vector)
{
    cyg_uint16 _mask;
 
    switch (vector) {
    case CYGNUM_HAL_INTERRUPT_LAN:
        HAL_READ_UINT16(_MB93091_FPGA_IRQ_MASK, _mask);
        _mask &= ~_MB93091_FPGA_IRQ_LAN;
        HAL_WRITE_UINT16(_MB93091_FPGA_IRQ_MASK, _mask);
        break;
    }
    HAL_READ_UINT16(_FRVGEN_IRC_MASK, _mask);
    _mask &= ~(1<<(vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1));
    HAL_WRITE_UINT16(_FRVGEN_IRC_MASK, _mask);
}
 
void hal_interrupt_acknowledge(int vector)
{
    cyg_uint16 _mask;
 
    switch (vector) {
    case CYGNUM_HAL_INTERRUPT_LAN:
        HAL_WRITE_UINT16(_MB93091_FPGA_IRQ_REQUEST,      // Clear LAN interrupt
                         0x7FFE & ~_MB93091_FPGA_IRQ_LAN);
        break;
    }
    _mask = (1<<(vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1));
    HAL_WRITE_UINT16(_FRVGEN_IRC_RC, _mask);
    HAL_WRITE_UINT16(_FRVGEN_IRC_IRL, 0x10);  // Clears IRL latch
}
 
//
// Configure an interrupt
//  level - boolean (0=> edge, 1=>level)
//  up - edge: (0=>falling edge, 1=>rising edge)
//       level: (0=>low, 1=>high)
//
void hal_interrupt_configure(int vector, int level, int up)
{
    cyg_uint16 _irr, _tmr, _trig;
 
    if (level) {
        if (up) {
            _trig = 0;     // level, high
        } else {
            _trig = 1;     // level, low
        }
    } else {
        if (up) {
            _trig = 2;     // edge, rising
        } else {
            _trig = 3;     // edge, falling
        }
    }
    switch (vector) {
    case  CYGNUM_HAL_INTERRUPT_TIMER0:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR5, _irr);
        _irr = (_irr & 0xFFF0) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<0);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR5, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0xFFFC) | (_trig<<0);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_TIMER1:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR5, _irr);
        _irr = (_irr & 0xFF0F) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<4);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR5, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0xFFF3) | (_trig<<2);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_TIMER2:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR5, _irr);
        _irr = (_irr & 0xF0FF) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<8);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR5, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0xFFCF) | (_trig<<4);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_DMA0:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR4, _irr);
        _irr = (_irr & 0xFFF0) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<0);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR4, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0xFCFF) | (_trig<<8);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_DMA1:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR4, _irr);
        _irr = (_irr & 0xFF0F) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<4);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR4, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0xF3FF) | (_trig<<10);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_DMA2:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR4, _irr);
        _irr = (_irr & 0xF0FF) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<8);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR4, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0xCFFF) | (_trig<<12);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_DMA3:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR4, _irr);
        _irr = (_irr & 0x0FFF) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<12);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR4, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        _tmr = (_tmr & 0x3FFF) | (_trig<<14);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM0, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_UART0:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR6, _irr);
        _irr = (_irr & 0xFFF0) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<0);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR6, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM1, _tmr);
        _tmr = (_tmr & 0xFCFF) | (_trig<<8);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM1, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_UART1:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR6, _irr);
        _irr = (_irr & 0xFF0F) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<4);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR6, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_ITM1, _tmr);
        _tmr = (_tmr & 0xF3FF) | (_trig<<10);
        HAL_WRITE_UINT16(_FRVGEN_IRC_ITM1, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_EXT0:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR3, _irr);
        _irr = (_irr & 0xFFF0) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<0);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR3, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_TM1, _tmr);
        _tmr = (_tmr & 0xFFFC) | (_trig<<0);
        HAL_WRITE_UINT16(_FRVGEN_IRC_TM1, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_EXT1:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR3, _irr);
        _irr = (_irr & 0xFF0F) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<4);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR3, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_TM1, _tmr);
        _tmr = (_tmr & 0xFFF3) | (_trig<<2);
        HAL_WRITE_UINT16(_FRVGEN_IRC_TM1, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_EXT2:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR3, _irr);
        _irr = (_irr & 0xF0FF) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<8);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR3, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_TM1, _tmr);
        _tmr = (_tmr & 0xFFCF) | (_trig<<4);
        HAL_WRITE_UINT16(_FRVGEN_IRC_TM1, _tmr);
        break;
    case  CYGNUM_HAL_INTERRUPT_EXT3:
        HAL_READ_UINT16(_FRVGEN_IRC_IRR3, _irr);
        _irr = (_irr & 0x0FFF) | ((vector-CYGNUM_HAL_VECTOR_EXTERNAL_INTERRUPT_LEVEL_1+1)<<12);
        HAL_WRITE_UINT16(_FRVGEN_IRC_IRR3, _irr);
        HAL_READ_UINT16(_FRVGEN_IRC_TM1, _tmr);
        _tmr = (_tmr & 0xFF3F) | (_trig<<6);
        HAL_WRITE_UINT16(_FRVGEN_IRC_TM1, _tmr);
        break;
    default:
        ; // Nothing to do
    };
}
 
void hal_interrupt_set_level(int vector, int level)
{
//    UNIMPLEMENTED(__FUNCTION__);
}
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.