URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [h8300/] [h8300h/] [current/] [src/] [h8300h_stub.c] - Rev 786
Compare with Previous | Blame | View Log
//======================================================================== // // h8300h_stub.c // // Helper functions for H8/300H stub // //======================================================================== // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //======================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): Yoshinori Sato // Contributors: Yoshinori Sato // Date: 2002-05-03 // Purpose: // Description: Helper functions for H8/300H stub // Usage: // //####DESCRIPTIONEND#### // //======================================================================== #include <stddef.h> #include <pkgconf/hal.h> #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS #include <cyg/hal/hal_stub.h> #include <cyg/hal/hal_arch.h> #include <cyg/hal/hal_intr.h> #include <cyg/hal/hal_diag.h> #ifdef CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT #include <cyg/hal/dbg-threads-api.h> // dbg_currthread_id #endif /*--------------------------------------------------------------------*/ /* Given a trap value TRAP, return the corresponding signal. */ int __computeSignal (unsigned int trap_number) { switch (trap_number) { case CYGNUM_HAL_VECTOR_TRAP3: return SIGTRAP; default: return SIGINT; } } /*--------------------------------------------------------------------*/ /* Return the trap number corresponding to the last-taken trap. */ int __get_trap_number (void) { extern int CYG_LABEL_NAME(_intvector); // The vector is not not part of the GDB register set so get it // directly from the save context. return CYG_LABEL_NAME(_intvector); } /*--------------------------------------------------------------------*/ /* Set the currently-saved pc register value to PC. This also updates NPC as needed. */ void set_pc (target_register_t pc) { put_register (PC, pc); } /*---------------------------------------------------------------------- * Single-step support. */ typedef struct { unsigned short *addr; unsigned short inst; } breakinfo; static breakinfo InstBuffer = {(unsigned short *)-1,0}; /* Clear any single-step breakpoint(s) that may have been set. */ void __clear_single_step (void) { if ((long)InstBuffer.addr != -1L) { *InstBuffer.addr = InstBuffer.inst; InstBuffer.addr = (unsigned short *)-1; } } /* calculate next pc */ enum jump_type{none,aabs,aind,ret,reg,relb,relw}; /* opcode decode table define ptn: opcode pattern msk: opcode bitmask len: instruction length (<0 next table index) jmp: jump operation mode */ struct optable { unsigned char pattern; unsigned char mask; signed char length; char type; } __attribute__((aligned(1),packed)); #define OPTABLE(ptn,msk,len,jmp) {ptn,msk,len,jmp} const static struct optable optable_0[] = { OPTABLE(0x00,0xff, 1,none), /* 0x00 */ OPTABLE(0x01,0xff,-1,none), /* 0x01 */ OPTABLE(0x02,0xfe, 1,none), /* 0x02-0x03 */ OPTABLE(0x04,0xee, 1,none), /* 0x04-0x05/0x14-0x15 */ OPTABLE(0x06,0xfe, 1,none), /* 0x06-0x07 */ OPTABLE(0x08,0xea, 1,none), /* 0x08-0x09/0x0c-0x0d/0x18-0x19/0x1c-0x1d */ OPTABLE(0x0a,0xee, 1,none), /* 0x0a-0x0b/0x1a-0x1b */ OPTABLE(0x0e,0xee, 1,none), /* 0x0e-0x0f/0x1e-0x1f */ OPTABLE(0x10,0xfc, 1,none), /* 0x10-0x13 */ OPTABLE(0x16,0xfe, 1,none), /* 0x16-0x17 */ OPTABLE(0x20,0xe0, 1,none), /* 0x20-0x3f */ OPTABLE(0x40,0xf0, 1,relb), /* 0x40-0x4f */ OPTABLE(0x50,0xfc, 1,none), /* 0x50-0x53 */ OPTABLE(0x54,0xfd, 1,ret ), /* 0x54/0x56 */ OPTABLE(0x55,0xff, 1,relb), /* 0x55 */ OPTABLE(0x57,0xff, 1,none), /* 0x57 */ OPTABLE(0x58,0xfb, 2,relw), /* 0x58/0x5c */ OPTABLE(0x59,0xfb, 1,reg ), /* 0x59/0x5b */ OPTABLE(0x5a,0xfb, 2,aabs), /* 0x5a/0x5e */ OPTABLE(0x5b,0xfb, 2,aind), /* 0x5b/0x5f */ OPTABLE(0x60,0xe8, 1,none), /* 0x60-0x67/0x70-0x77 */ OPTABLE(0x68,0xfa, 1,none), /* 0x68-0x69/0x6c-0x6d */ OPTABLE(0x6a,0xfe,-2,none), /* 0x6a-0x6b */ OPTABLE(0x6e,0xfe, 2,none), /* 0x6e-0x6f */ OPTABLE(0x78,0xff, 4,none), /* 0x78 */ OPTABLE(0x79,0xff, 2,none), /* 0x79 */ OPTABLE(0x7a,0xff, 3,none), /* 0x7a */ OPTABLE(0x7b,0xff, 2,none), /* 0x7b */ OPTABLE(0x7c,0xfc, 2,none), /* 0x7c-0x7f */ OPTABLE(0x80,0x80, 1,none), /* 0x80-0xff */ }; const static struct optable optable_1[] = { OPTABLE(0x00,0xff,-3,none), /* 0x0100 */ OPTABLE(0x40,0xf0,-3,none), /* 0x0140-0x14f */ OPTABLE(0x80,0xf0, 1,none), /* 0x0180-0x018f */ OPTABLE(0xc0,0xc0, 2,none), /* 0x01c0-0x01ff */ }; const static struct optable optable_2[] = { OPTABLE(0x00,0x20, 2,none), /* 0x6a0?/0x6a8?/0x6b0?/0x6b8? */ OPTABLE(0x20,0x20, 3,none), /* 0x6a2?/0x6aa?/0x6b2?/0x6ba? */ }; const static struct optable optable_3[] = { OPTABLE(0x69,0xfb, 2,none), /* 0x010069/0x01006d/014069/0x01406d */ OPTABLE(0x6b,0xff,-4,none), /* 0x01006b/0x01406b */ OPTABLE(0x6f,0xff, 3,none), /* 0x01006f/0x01406f */ OPTABLE(0x78,0xff, 5,none), /* 0x010078/0x014078 */ }; const static struct optable optable_4[] = { OPTABLE(0x00,0x78, 3,none), /* 0x0100690?/0x01006d0?/0140690/0x01406d0?/0x0100698?/0x01006d8?/0140698?/0x01406d8? */ OPTABLE(0x20,0x78, 4,none), /* 0x0100692?/0x01006d2?/0140692/0x01406d2?/0x010069a?/0x01006da?/014069a?/0x01406da? */ }; const static struct { const struct optable *op; int length; } optables[] = { {optable_0,sizeof(optable_0)/sizeof(struct optable)}, {optable_1,sizeof(optable_1)/sizeof(struct optable)}, {optable_2,sizeof(optable_2)/sizeof(struct optable)}, {optable_3,sizeof(optable_3)/sizeof(struct optable)}, {optable_4,sizeof(optable_4)/sizeof(struct optable)}, }; const static unsigned char condmask[] = { 0x00,0x40,0x01,0x04,0x02,0x08,0x10,0x20 }; static int isbranch(int reson) { unsigned char cond = get_register(CCR); /* encode complex conditions */ /* B4: N^V B5: Z|(N^V) B6: C|Z */ __asm__("bld #3,%w0\n\t" "bxor #1,%w0\n\t" "bst #4,%w0\n\t" "bor #2,%w0\n\t" "bst #5,%w0\n\t" "bld #2,%w0\n\t" "bor #0,%w0\n\t" "bst #6,%w0\n\t" :"=&r"(cond):"g"(cond):"cc"); cond &= condmask[reson >> 1]; if (!(reson & 1)) return cond == 0; else return cond != 0; } static unsigned short *getnextpc(unsigned short *pc) { const struct optable *op; unsigned char *fetch_p; unsigned char inst; unsigned long addr; unsigned long *sp; int op_len; op = optables[0].op; op_len = optables[0].length; fetch_p = (unsigned char *)pc; inst = *fetch_p++; do { if ((inst & op->mask) == op->pattern) { if (op->length < 0) { op = optables[-op->length].op; op_len = optables[-op->length].length + 1; inst = *fetch_p++; } else { switch (op->type) { case none: return pc + op->length; case aabs: addr = *(unsigned long *)pc; return (unsigned short *)(addr & 0x00ffffff); case aind: addr = *pc & 0xff; return (unsigned short *)(*(unsigned long *)addr); case ret: sp = (unsigned long *)get_register(SP); return (unsigned short *)(*(sp+3) & 0x00ffffff); case reg: addr = get_register((*pc >> 4) & 0x07); return (unsigned short *)addr; case relb: if ((inst = 0x55) || isbranch(inst & 0x0f)) (unsigned char *)pc += (signed char)(*fetch_p); return pc+1; /* skip myself */ case relw: if ((inst = 0x5c) || isbranch((*fetch_p & 0xf0) >> 4)) (unsigned char *)pc += (signed short)(*(pc+1)); return pc+2; /* skip myself */ } } } else op++; } while(--op_len > 0); return NULL; } /* Set breakpoint(s) to simulate a single step from the current PC. */ void __single_step (void) { unsigned short *nextpc; nextpc = getnextpc((unsigned short *)get_register(PC)); InstBuffer.addr = nextpc; InstBuffer.inst = *nextpc; *nextpc = HAL_BREAKINST; } void __install_breakpoints (void) { /* NOP since single-step HW exceptions are used instead of breakpoints. */ } void __clear_breakpoints (void) { } /* If the breakpoint we hit is in the breakpoint() instruction, return a non-zero value. */ externC void CYG_LABEL_NAME(breakinst)(void); int __is_breakpoint_function () { return get_register (PC) == (target_register_t)&CYG_LABEL_NAME(breakinst); } /* Skip the current instruction. */ /* only TRAPA instruction */ void __skipinst (void) { put_register (PC, get_register(PC) + 2); } #endif // CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS