URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [i386/] [arch/] [current/] [include/] [arch.inc] - Rev 786
Compare with Previous | Blame | View Log
#ifndef CYGONCE_HAL_ARCH_INC
#define CYGONCE_HAL_ARCH_INC
##=============================================================================
##
## arch.inc
##
## i386 assembler header file
##
##=============================================================================
## ####ECOSGPLCOPYRIGHTBEGIN####
## -------------------------------------------
## This file is part of eCos, the Embedded Configurable Operating System.
## Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
##
## eCos is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free
## Software Foundation; either version 2 or (at your option) any later
## version.
##
## eCos is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with eCos; if not, write to the Free Software Foundation, Inc.,
## 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
##
## As a special exception, if other files instantiate templates or use
## macros or inline functions from this file, or you compile this file
## and link it with other works to produce a work based on this file,
## this file does not by itself cause the resulting work to be covered by
## the GNU General Public License. However the source code for this file
## must still be made available in accordance with section (3) of the GNU
## General Public License v2.
##
## This exception does not invalidate any other reasons why a work based
## on this file might be covered by the GNU General Public License.
## -------------------------------------------
## ####ECOSGPLCOPYRIGHTEND####
##=============================================================================
#######DESCRIPTIONBEGIN####
##
## Author(s): nickg
## Contributors: nickg, pjo
## Date: 1999-10-15
## Purpose: Architecture definitions.
## Description: This file contains various definitions and macros that are
## useful for writing assembly code for the i386 CPU family.
## Usage:
## #include <cyg/hal/arch.inc>
## ...
##
##
######DESCRIPTIONEND####
##
##=============================================================================
#include <cyg/hal/i386.inc>
#include <cyg/hal/variant.inc>
##-----------------------------------------------------------------------------
## CPU specific macros. These provide a common assembler interface to
## operations that may have CPU specific implementations on different
## variants of the architecture.
#ifndef CYGPKG_HAL_I386_CPU_INIT_DEFINED
# Initialize CPU
.macro hal_cpu_init
.endm
#endif /* !CYGPKG_HAL_I386_CPU_INIT_DEFINED */
##-----------------------------------------------------------------------------
#ifndef CYGPKG_HAL_I386_INTC_DEFINED
#ifndef CYGPKG_HAL_I386_INTC_INIT_DEFINED
# initialize all interrupts to disabled
.macro hal_intc_init
.endm
#endif
.macro hal_intc_decode vnum
.endm
#endif
#------------------------------------------------------------------------------
# SMP support
#ifdef CYGPKG_HAL_SMP_SUPPORT
.macro hal_smp_init
#if defined(CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS)
movl $0,cyg_hal_smp_vsr_sync_flag
#endif
.endm
// Put CPU number in register
.macro hal_smp_cpu reg
movl cyg_hal_smp_local_apic,\reg
movl 0x20(\reg),\reg
shrl $24,\reg
.endm
#else
.macro hal_smp_init
.endm
.macro hal_smp_cpu reg
movl $0,\reg
.endm
#endif
#------------------------------------------------------------------------------
# Stack switching macros
#ifndef CYG_HAL_I386_INTSTACK_MACROS_DEFINED
#ifdef CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK
#ifdef CYGPKG_HAL_SMP_SUPPORT
.macro hal_init_istack reg
hal_smp_cpu %ebx
movl $__interrupt_stack_vector,%ecx
movl $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,%eax
imull %ebx,%eax
addl $__interrupt_stack_first,%eax
movl %eax,0(%ecx,%ebx,4)
movl $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,\reg
addl %eax,\reg
.endm
.macro hal_load_istack reg
hal_load_istack_base \reg
addl $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,\reg
.endm
.macro hal_load_istack_base reg
hal_smp_cpu \reg
movl $__interrupt_stack_vector,%eax
movl 0(%eax,\reg,4),\reg
.endm
#else // CYGPKG_HAL_SMP_SUPPORT
.macro hal_init_istack reg,tr
movl $__interrupt_stack,\reg // Load interrupt stack
.endm
.macro hal_load_istack reg
movl $__interrupt_stack,\reg // Load interrupt stack
.endm
.macro hal_load_istack_base reg
movl $__interrupt_stack_base,\reg // Load interrupt stack base
.endm
#endif // CYGPKG_HAL_SMP_SUPPORT
.macro hal_to_intstack
hal_load_istack_base %ebx // EBX = stack base
movl %ebx,%eax
addl $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,%eax
cmpl %ebx,%ebp # compare SP with istack base
jb 1f # if sp < istack base, switch
cmpl %eax,%ebp # compare SP with istack top
jbe 2f # if sp < istack top, dont switch
1:
movl %eax,%esp # move on to new stack
2:
pushl %ebp # Save old SP on new stack
.endm
.macro hal_from_intstack
popl %esp # pop old SP from stack
.endm
#define CYG_HAL_I386_INTSTACK_MACROS_DEFINED
#else // CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK
.macro hal_init_istack reg
.endm
.macro hal_load_istack_base reg
.endm
.macro hal_load_istack reg
.endm
.macro hal_to_intstack
.endm
.macro hal_from_intstack
.endm
#define CYG_HAL_I386_INTSTACK_MACROS_DEFINED
#endif // CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK
#endif // CYG_HAL_I386_INTSTACK_MACROS_DEFINED
#------------------------------------------------------------------------------
# FPU macros.
#ifndef CYGPKG_HAL_I386_FPU_DEFINED
#ifdef CYGHWR_HAL_I386_FPU
#define CYGPKG_HAL_I386_FPU_DEFINED
.macro hal_fpu_init
# Tell the CPU to use the math hardware.
movl %cr0, %eax
orl $0x32, %eax # Set MP, ET, NE bits
andl $~0x8, %eax # And clear TS bit
movl %eax, %cr0
finit # and initialize...
## Enable floating point exceptions. Bit mask:
## 1 - invalid operation
## 2 - denormalized operand
## 4 - zero divide
## 8 - overflow
## 16 - underflow
## 32 - precision
pushl $0 # space for CW
fstcw 0(%esp) # store FPCW to stack
movl 0(%esp),%eax # get into EAX
andb $(~0x04),%al # allow only zero divide exceptions
movl %eax,0(%esp) # put back into memory
fldcw 0(%esp) # reload
addl $4,%esp # pop value
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
# set CR4.OSFXSR to safely use stmxcsr/ldmxcsr
movl %cr4, %eax
orl $0x200, %eax
movl %eax, %cr4
## Enable SIMD exceptions. Bit mask:
## 0x0080 - invalid operation
## 0x0100 - denormalized operand
## 0x0200 - zero divide
## 0x0400 - overflow
## 0x0800 - underflow
## 0x1000 - precision
pushl $0 # space for MXCSR
stmxcsr 0(%esp) # store MXCSR to stack
movl 0(%esp),%eax # get into EAX
andw $(~0x0200),%ax # allow only zero divide exceptions
movl %eax,0(%esp) # put back into memory
ldmxcsr 0(%esp) # reload
addl $4,%esp # pop value
#endif
#ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
# Tell the CPU to generate an FPU unavailable exception
# when the FPU is first used.
movl %cr0, %eax
orl $0x8, %eax
movl %eax, %cr0
# Plant a pointer to the FPU switch VSR into slot 7
# of the VSR table.
movl $__fpu_switch_vsr,%eax
movl %eax,(hal_vsr_table+7*4)
# Now create an FPU context on the stack so that we can take
# FPU-using interrupts and exceptions before the machine starts
# up.
subl $i386reg_fpucontext_size,%esp
movl $0,i386reg_fpucontext_valid(%esp)
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
movl %esp,0(%ecx,%ebx,4) # save in table[cpu] entry
#endif
.endm
.macro hal_fpu_cpu_init
# Tell the CPU to use the math hardware.
movl %cr0, %eax
orl $0x32, %eax # Set MP, ET, NE bits
andl $~0x8, %eax # And clear TS bit
movl %eax, %cr0
finit # and initialize...
## Enable floating point exceptions. Bit mask:
## 1 - invalid operation
## 2 - denormalized operand
## 4 - zero divide
## 8 - overflow
## 16 - underflow
## 32 - precision
pushl $0 # space for CW
fstcw 0(%esp) # store FPCW to stack
movl 0(%esp),%eax # get into EAX
andb $(~0x04),%al # allow only zero divide exceptions
movl %eax,0(%esp) # put back into memory
fldcw 0(%esp) # reload
addl $4,%esp # pop value
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
# set CR4.OSFXSR to safely use stmxcsr/ldmxcsr
movl %cr4, %eax
orl $0x200, %eax
movl %eax, %cr4
## Enable SIMD exceptions. Bit mask:
## 0x0080 - invalid operation
## 0x0100 - denormalized operand
## 0x0200 - zero divide
## 0x0400 - overflow
## 0x0800 - underflow
## 0x1000 - precision
pushl $0 # space for MXCSR
stmxcsr 0(%esp) # store MXCSR to stack
movl 0(%esp),%eax # get into EAX
andw $(~0x0200),%ax # allow only zero divide exceptions
movl %eax,0(%esp) # put back into memory
ldmxcsr 0(%esp) # reload
addl $4,%esp # pop value
#endif
#ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
# Tell the CPU to generate an FPU unavailable exception
# when the FPU is first used.
movl %cr0, %eax
orl $0x8, %eax
movl %eax, %cr0
# Now create an FPU context on the stack so that we can take
# FPU-using interrupts and exceptions before the kernel starts
# up.
subl $i386reg_fpucontext_size,%esp
movl $0,i386reg_fpucontext_valid(%esp)
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
movl %esp,0(%ecx,%ebx,4) # save in table[cpu] entry
#endif
.endm
#ifndef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
# Non-lazy CPU state switching. We simply switch the entire
# FPU state on every context switch, interrupt or exception.
# ------------------------------------------------------------
# Context switch handling
.macro hal_fpu_push_ctx
subl $i386reg_fpstate_size,%esp # make space
fnsave i386reg_fpstate(%esp) # save FPU state
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
# Save SIMD state.
# FIXME. This is awfully inefficient. Need to use FXSAVE to
# save FPU and SIMD at same time. FXSAVE requires a 16 byte
# alignment and does not have an implicit finit as does FSAVE.
stmxcsr i386reg_simd_mxcsr(%esp)
movups %xmm0,i386reg_simd_xmm0(%esp)
movups %xmm1,i386reg_simd_xmm1(%esp)
movups %xmm2,i386reg_simd_xmm2(%esp)
movups %xmm3,i386reg_simd_xmm3(%esp)
movups %xmm4,i386reg_simd_xmm4(%esp)
movups %xmm5,i386reg_simd_xmm5(%esp)
movups %xmm6,i386reg_simd_xmm6(%esp)
movups %xmm7,i386reg_simd_xmm7(%esp)
#endif
movl $1,i386reg_fpstate_valid(%esp) # indicate it is valid
.endm
.macro hal_fpu_pop_ctx
btl $0,i386reg_fpstate_valid(%esp) # check ls bit of valid flag
jc 1f # if set, restore state
finit # otherwise init FPU
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
# FIXME. Anything needed here?
#endif
jmp 2f # and skip restore
1:
frstor i386reg_fpstate(%esp) # restore FPU state
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
# Restore SIMD state.
# FIXME. This is awfully inefficient. Need to use FXRSTOR to
# restore FPU and SIMD at same time. FXRSTOR requires a 16 byte
# alignment.
movups i386reg_simd_xmm0(%esp),%xmm0
movups i386reg_simd_xmm1(%esp),%xmm1
movups i386reg_simd_xmm2(%esp),%xmm2
movups i386reg_simd_xmm3(%esp),%xmm3
movups i386reg_simd_xmm4(%esp),%xmm4
movups i386reg_simd_xmm5(%esp),%xmm5
movups i386reg_simd_xmm6(%esp),%xmm6
movups i386reg_simd_xmm7(%esp),%xmm7
ldmxcsr i386reg_simd_mxcsr(%esp)
#endif
2:
addl $i386reg_fpstate_size,%esp # pop space used
.endm
# ------------------------------------------------------------
# Interrupt and exception handling
# In this configuration, the interrupt and exception code behaves in
# exactly the same way as the context switch code.
.macro hal_fpu_push_int
hal_fpu_push_ctx
.endm
.macro hal_fpu_push_int_annex
.endm
.macro hal_fpu_pop_int_annex
.endm
.macro hal_fpu_pop_int
hal_fpu_pop_ctx
.endm
.macro hal_fpu_push_exc
hal_fpu_push_ctx
.endm
.macro hal_fpu_push_exc_annex
.endm
.macro hal_fpu_pop_exc_annex
.endm
.macro hal_fpu_pop_exc
hal_fpu_pop_ctx
.endm
#else // CYGHWR_HAL_I386_FPU_SWITCH_LAZY
# Lazy CPU state switching. We defer CPU state switching until the new
# thread actually uses the FPU. This state switch is handled by
# __fpu_switch_vsr in vectors.S.
.extern cyg_hal_fpustate_owner
.extern cyg_hal_fpustate_current
# ------------------------------------------------------------
# Context switch handling
# On context switch we simply stack a pointer to this
# threads FPU context save area.
.macro hal_fpu_push_ctx
hal_smp_cpu %ebx # Get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
pushl 0(%ecx,%ebx,4) # push table[cpu] entry
.endm
# We do nothing here but set the CR0:TS bit to force
# an exception when the FPU is next used and pop the
# FPU save area pointer into the static variable.
.macro hal_fpu_pop_ctx
movl %cr0, %ecx # get CR0
orl $0x8, %ecx # set TS bit
movl %ecx, %cr0 # restore CR0
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
popl 0(%ecx,%ebx,4) # pop table[cpu] entry
.endm
# ------------------------------------------------------------
# Interrupt handling
# On entry to an interrupt we save the current threads FPU context
# pointer and set the CR0:TS bit to trap any FP operations in the
# interrupt.
.macro hal_fpu_push_int
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
pushl 0(%ecx,%ebx,4) # push table[cpu] entry
# ensure that CR0:TS bit is set
movl %cr0, %ecx # get CR0
orl $0x8, %ecx # set TS bit
movl %ecx, %cr0 # restore CR0
.endm
# The following is called after we transfer to the interrupt
# stack. We make space here for the FPU state of the interrupt
# handler to be saved in case we get nested interrupts that use FP.
.macro hal_fpu_push_int_annex
subl $i386reg_fpucontext_size,%esp
movl $0,i386reg_fpucontext_valid(%esp)
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
movl %esp,0(%ecx,%ebx,4) # save in table[cpu] entry
.endm
# This is invoked just before any transfer back to the thread stack.
# We check whether we are the FPU state owner, and if so, abdicate.
# There is no need to save the state, the next thread will load its
# own state over the top of it.
.macro hal_fpu_pop_int_annex
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_owner,%ecx # current state table
cmpl 0(%ecx,%ebx,4),%esp # are we FPU owner?
jne 1f # if not, then just continue
movl $0,0(%ecx,%ebx,4) # no one owns FPU now
# ensure that CR0:TS bit is set to force a reload of
# the previous FPU state
movl %cr0, %ecx # get CR0
orl $0x8, %ecx # set TS bit
movl %ecx, %cr0 # restore CR0
1:
addl $i386reg_fpucontext_size,%esp # pop FPU save area
.endm
# Final return from interrupt handling. Just pull the current
# FPU context off the stack.
.macro hal_fpu_pop_int
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
popl 0(%ecx,%ebx,4) # pop table[cpu] entry
.endm
# ------------------------------------------------------------
# Exception handling
# Whenever we take an exception, we save the current FPU state away
# into its save area. This way, if we are going to end up in GDB, the
# whole machine state is saved in memory.
.macro hal_fpu_push_exc
hal_smp_cpu %ebx # get CPU id
movl $cyg_hal_fpustate_current,%ecx # current state table
pushl 0(%ecx,%ebx,4) # push table[cpu] entry
movl $cyg_hal_fpustate_owner,%ecx # current owner table
movl 0(%ecx,%ebx,4),%eax # EAX = FPU state owner
cmpl $0,%eax # test it
je 1f # skip if zero
fnsave i386reg_fpucontext_state(%eax) # save state
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
# Save SIMD state.
# FIXME. This is awfully inefficient. Need to use FXSAVE to
# save FPU and SIMD at same time. FXSAVE requires a 16 byte
# alignment and does not have an implicit finit as does FSAVE.
stmxcsr i386reg_simd_mxcsr(%eax)
movups %xmm0,i386reg_simd_xmm0(%eax)
movups %xmm1,i386reg_simd_xmm1(%eax)
movups %xmm2,i386reg_simd_xmm2(%eax)
movups %xmm3,i386reg_simd_xmm3(%eax)
movups %xmm4,i386reg_simd_xmm4(%eax)
movups %xmm5,i386reg_simd_xmm5(%eax)
movups %xmm6,i386reg_simd_xmm6(%eax)
movups %xmm7,i386reg_simd_xmm7(%eax)
#endif
movl $1,i386reg_fpucontext_valid(%eax) # set valid
movl $0,0(%ecx,%ebx,4) # zero owner pointer
1:
.endm
# The rest of the exception macros behave exactly like the
# interrupt ones.
.macro hal_fpu_push_exc_annex
hal_fpu_push_int_annex
.endm
.macro hal_fpu_pop_exc_annex
hal_fpu_pop_int_annex
.endm
.macro hal_fpu_pop_exc
hal_fpu_pop_int
.endm
#endif // CYGHWR_HAL_I386_FPU_SWITCH_LAZY
#else /* !CYGHWR_HAL_I386_FPU */
# Non-FP macros.
.macro hal_fpu_init
.endm
.macro hal_fpu_cpu_init
.endm
.macro hal_fpu_push_ctx
.endm
.macro hal_fpu_pop_ctx
.endm
.macro hal_fpu_push_int
.endm
.macro hal_fpu_push_int_annex
.endm
.macro hal_fpu_pop_int_annex
.endm
.macro hal_fpu_pop_int
.endm
.macro hal_fpu_push_exc
.endm
.macro hal_fpu_push_exc_annex
.endm
.macro hal_fpu_pop_exc_annex
.endm
.macro hal_fpu_pop_exc
.endm
#endif
#endif
#------------------------------------------------------------------------------
# MMU macros.
#ifndef CYGPKG_HAL_I386_MMU_DEFINED
#define CYGPKG_HAL_I386_MMU_DEFINED
.macro hal_mmu_init
.endm
#endif
#------------------------------------------------------------------------------
# A20 gate enable
#define K_RDWR 0x60
#define K_STATUS 0x64
#define K_CMD 0x64
#define K_OBUF_FUL 0x01
#define K_IBUF_FUL 0x02
#define KC_CMD_WIN 0xD0
#define KC_CMD_WOUT 0xD1
#define KB_A20 0xDF
.macro hal_a20_enable
// Enable A20 so that addresses at 1MB don't wrap around back to 0.
1: inb $K_STATUS, %al
testb $K_IBUF_FUL, %al
jnz 1b
2: inb $K_STATUS, %al
testb $K_OBUF_FUL, %al
jz 3f
inb $K_RDWR, %al
jmp 2b
3: movb $KC_CMD_WOUT, %al
outb %al, $K_CMD
1: inb $K_STATUS, %al
testb $K_IBUF_FUL, %al
jnz 1b
movb $KB_A20, %al
outb %al, $K_RDWR
1: inb $K_STATUS, %al
testb $K_IBUF_FUL, %al
jnz 1b
.endm
#------------------------------------------------------------------------------
# MEMC macros.
# This version simply enables the A20 gate.
#ifndef CYGPKG_HAL_I386_MEMC_DEFINED
.macro hal_memc_init
hal_a20_enable
.endm
#endif
#------------------------------------------------------------------------------
# Cache macros.
#ifndef CYGPKG_HAL_I386_CACHE_DEFINED
.macro hal_cache_init
.endm
#endif
#------------------------------------------------------------------------------
# Diagnostics macros.
#ifndef CYGPKG_HAL_I386_DIAG_DEFINED
.macro hal_diag_init
.endm
.macro hal_diag_excpt_start
.endm
.macro hal_diag_intr_start
.endm
.macro hal_diag_restore
.endm
#endif
#------------------------------------------------------------------------------
# Timer initialization.
#ifndef CYGPKG_HAL_I386_TIMER_DEFINED
.macro hal_timer_init
.endm
#endif
#------------------------------------------------------------------------------
# Monitor initialization.
#ifndef CYGPKG_HAL_I386_MON_DEFINED
.macro hal_mon_init
.endm
#endif
#------------------------------------------------------------------------------
#endif // ifndef CYGONCE_HAL_ARCH_INC
# end of arch.inc