OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [i386/] [arch/] [current/] [include/] [arch.inc] - Rev 786

Compare with Previous | Blame | View Log

#ifndef CYGONCE_HAL_ARCH_INC
#define CYGONCE_HAL_ARCH_INC
##=============================================================================
##
##      arch.inc
##
##      i386 assembler header file
##
##=============================================================================
## ####ECOSGPLCOPYRIGHTBEGIN####                                            
## -------------------------------------------                              
## This file is part of eCos, the Embedded Configurable Operating System.   
## Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
##
## eCos is free software; you can redistribute it and/or modify it under    
## the terms of the GNU General Public License as published by the Free     
## Software Foundation; either version 2 or (at your option) any later      
## version.                                                                 
##
## eCos is distributed in the hope that it will be useful, but WITHOUT      
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
## FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
## for more details.                                                        
##
## You should have received a copy of the GNU General Public License        
## along with eCos; if not, write to the Free Software Foundation, Inc.,    
## 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
##
## As a special exception, if other files instantiate templates or use      
## macros or inline functions from this file, or you compile this file      
## and link it with other works to produce a work based on this file,       
## this file does not by itself cause the resulting work to be covered by   
## the GNU General Public License. However the source code for this file    
## must still be made available in accordance with section (3) of the GNU   
## General Public License v2.                                               
##
## This exception does not invalidate any other reasons why a work based    
## on this file might be covered by the GNU General Public License.         
## -------------------------------------------                              
## ####ECOSGPLCOPYRIGHTEND####                                              
##=============================================================================
#######DESCRIPTIONBEGIN####
##
## Author(s):    nickg
## Contributors: nickg, pjo
## Date:        1999-10-15
## Purpose:     Architecture definitions.
## Description: This file contains various definitions and macros that are
##              useful for writing assembly code for the i386 CPU family.
## Usage:
##              #include <cyg/hal/arch.inc>
##              ...
##              
##
######DESCRIPTIONEND####
##
##=============================================================================

#include <cyg/hal/i386.inc>

#include <cyg/hal/variant.inc>

##-----------------------------------------------------------------------------
## CPU specific macros. These provide a common assembler interface to
## operations that may have CPU specific implementations on different
## variants of the architecture.                
        
#ifndef CYGPKG_HAL_I386_CPU_INIT_DEFINED
        # Initialize CPU
        .macro  hal_cpu_init
        .endm
#endif /* !CYGPKG_HAL_I386_CPU_INIT_DEFINED */

##-----------------------------------------------------------------------------

#ifndef CYGPKG_HAL_I386_INTC_DEFINED

#ifndef CYGPKG_HAL_I386_INTC_INIT_DEFINED
        # initialize all interrupts to disabled
        .macro  hal_intc_init
        .endm
#endif

        .macro  hal_intc_decode vnum
        .endm

#endif

#------------------------------------------------------------------------------
# SMP support
        
#ifdef CYGPKG_HAL_SMP_SUPPORT

        .macro  hal_smp_init
#if defined(CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS)
        movl    $0,cyg_hal_smp_vsr_sync_flag
#endif
        .endm
        
        // Put CPU number in register
        .macro  hal_smp_cpu reg
        movl    cyg_hal_smp_local_apic,\reg
        movl    0x20(\reg),\reg
        shrl    $24,\reg        
        .endm

#else

        .macro  hal_smp_init
        .endm

        .macro hal_smp_cpu reg
        movl    $0,\reg
        .endm

#endif                          

#------------------------------------------------------------------------------
# Stack switching macros

#ifndef CYG_HAL_I386_INTSTACK_MACROS_DEFINED

#ifdef CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK

#ifdef CYGPKG_HAL_SMP_SUPPORT

        .macro  hal_init_istack reg
        hal_smp_cpu %ebx
        movl    $__interrupt_stack_vector,%ecx
        movl    $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,%eax
        imull   %ebx,%eax
        addl    $__interrupt_stack_first,%eax
        movl    %eax,0(%ecx,%ebx,4)
        movl    $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,\reg
        addl    %eax,\reg
        .endm

        .macro  hal_load_istack reg
        hal_load_istack_base \reg
        addl    $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,\reg
        .endm

        .macro  hal_load_istack_base reg
        hal_smp_cpu \reg
        movl    $__interrupt_stack_vector,%eax
        movl    0(%eax,\reg,4),\reg
        .endm

#else // CYGPKG_HAL_SMP_SUPPORT
        .macro  hal_init_istack reg,tr
        movl    $__interrupt_stack,\reg         // Load interrupt stack
        .endm

        .macro  hal_load_istack reg
        movl    $__interrupt_stack,\reg         // Load interrupt stack
        .endm

        .macro  hal_load_istack_base reg
        movl    $__interrupt_stack_base,\reg    // Load interrupt stack base
        .endm

#endif // CYGPKG_HAL_SMP_SUPPORT
                
        .macro  hal_to_intstack
        hal_load_istack_base %ebx               // EBX = stack base
        movl    %ebx,%eax
        addl    $CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE,%eax
        cmpl    %ebx,%ebp                       # compare SP with istack base
        jb      1f                              # if sp < istack base, switch
        cmpl    %eax,%ebp                       # compare SP with istack top
        jbe     2f                              # if sp < istack top, dont switch
1:      
        movl    %eax,%esp                       # move on to new stack
2:              
        pushl   %ebp                            # Save old SP on new stack
        .endm

        .macro  hal_from_intstack
        popl    %esp                            # pop old SP from stack
        .endm

#define CYG_HAL_I386_INTSTACK_MACROS_DEFINED


#else // CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK

        .macro  hal_init_istack reg
        .endm

        .macro  hal_load_istack_base reg
        .endm

        .macro  hal_load_istack reg
        .endm

        .macro  hal_to_intstack
        .endm

        .macro  hal_from_intstack
        .endm

#define CYG_HAL_I386_INTSTACK_MACROS_DEFINED

#endif // CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK

#endif // CYG_HAL_I386_INTSTACK_MACROS_DEFINED
        
#------------------------------------------------------------------------------
# FPU macros.
        
#ifndef CYGPKG_HAL_I386_FPU_DEFINED

#ifdef CYGHWR_HAL_I386_FPU

#define CYGPKG_HAL_I386_FPU_DEFINED

        .macro  hal_fpu_init
        # Tell the CPU to use the math hardware.
        movl    %cr0, %eax
        orl     $0x32, %eax     # Set MP, ET, NE bits
        andl    $~0x8, %eax     # And clear TS bit
        movl    %eax, %cr0

        finit                   # and initialize...

        ## Enable floating point exceptions. Bit mask:
        ##  1 - invalid operation
        ##  2 - denormalized operand
        ##  4 - zero divide
        ##  8 - overflow
        ## 16 - underflow
        ## 32 - precision
        pushl   $0              # space for CW
        fstcw   0(%esp)         # store FPCW to stack
        movl    0(%esp),%eax    # get into EAX
        andb    $(~0x04),%al    # allow only zero divide exceptions
        movl    %eax,0(%esp)    # put back into memory
        fldcw   0(%esp)         # reload
        addl    $4,%esp         # pop value

#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
        # set CR4.OSFXSR to safely use stmxcsr/ldmxcsr
        movl    %cr4, %eax
        orl     $0x200, %eax
        movl    %eax, %cr4

        ## Enable SIMD exceptions. Bit mask:
        ## 0x0080 - invalid operation
        ## 0x0100 - denormalized operand
        ## 0x0200 - zero divide
        ## 0x0400 - overflow
        ## 0x0800 - underflow
        ## 0x1000 - precision
        pushl   $0              # space for MXCSR
        stmxcsr 0(%esp)         # store MXCSR to stack  
        movl    0(%esp),%eax    # get into EAX
        andw    $(~0x0200),%ax  # allow only zero divide exceptions
        movl    %eax,0(%esp)    # put back into memory
        ldmxcsr 0(%esp)         # reload
        addl    $4,%esp         # pop value
#endif

#ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
        # Tell the CPU to generate an FPU unavailable exception
        # when the FPU is first used.
        movl    %cr0, %eax
        orl     $0x8, %eax
        movl    %eax, %cr0
        # Plant a pointer to the FPU switch VSR into slot 7
        # of the VSR table.
        movl    $__fpu_switch_vsr,%eax
        movl    %eax,(hal_vsr_table+7*4)
        # Now create an FPU context on the stack so that we can take
        # FPU-using interrupts and exceptions before the machine starts
        # up.
        subl    $i386reg_fpucontext_size,%esp
        movl    $0,i386reg_fpucontext_valid(%esp)
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        movl    %esp,0(%ecx,%ebx,4)             # save in table[cpu] entry
#endif
        .endm

        .macro  hal_fpu_cpu_init
        # Tell the CPU to use the math hardware.
        movl    %cr0, %eax
        orl     $0x32, %eax     # Set MP, ET, NE bits
        andl    $~0x8, %eax     # And clear TS bit
        movl    %eax, %cr0

        finit                   # and initialize...

        ## Enable floating point exceptions. Bit mask:
        ##  1 - invalid operation
        ##  2 - denormalized operand
        ##  4 - zero divide
        ##  8 - overflow
        ## 16 - underflow
        ## 32 - precision
        pushl   $0              # space for CW
        fstcw   0(%esp)         # store FPCW to stack
        movl    0(%esp),%eax    # get into EAX
        andb    $(~0x04),%al    # allow only zero divide exceptions
        movl    %eax,0(%esp)    # put back into memory
        fldcw   0(%esp)         # reload
        addl    $4,%esp         # pop value

#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
        # set CR4.OSFXSR to safely use stmxcsr/ldmxcsr
        movl    %cr4, %eax
        orl     $0x200, %eax
        movl    %eax, %cr4

        ## Enable SIMD exceptions. Bit mask:
        ## 0x0080 - invalid operation
        ## 0x0100 - denormalized operand
        ## 0x0200 - zero divide
        ## 0x0400 - overflow
        ## 0x0800 - underflow
        ## 0x1000 - precision
        pushl   $0              # space for MXCSR
        stmxcsr 0(%esp)         # store MXCSR to stack  
        movl    0(%esp),%eax    # get into EAX
        andw    $(~0x0200),%ax  # allow only zero divide exceptions
        movl    %eax,0(%esp)    # put back into memory
        ldmxcsr 0(%esp)         # reload
        addl    $4,%esp         # pop value
#endif

#ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
        # Tell the CPU to generate an FPU unavailable exception
        # when the FPU is first used.
        movl    %cr0, %eax
        orl     $0x8, %eax
        movl    %eax, %cr0
        # Now create an FPU context on the stack so that we can take
        # FPU-using interrupts and exceptions before the kernel starts
        # up.
        subl    $i386reg_fpucontext_size,%esp
        movl    $0,i386reg_fpucontext_valid(%esp)
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        movl    %esp,0(%ecx,%ebx,4)             # save in table[cpu] entry
#endif

        .endm

#ifndef CYGHWR_HAL_I386_FPU_SWITCH_LAZY

        # Non-lazy CPU state switching. We simply switch the entire
        # FPU state on every context switch, interrupt or exception.

        # ------------------------------------------------------------
        # Context switch handling

        .macro  hal_fpu_push_ctx
        subl    $i386reg_fpstate_size,%esp      # make space
        fnsave  i386reg_fpstate(%esp)           # save FPU state
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
        # Save SIMD state.

        # FIXME. This is awfully inefficient. Need to use FXSAVE to
        # save FPU and SIMD at same time. FXSAVE requires a 16 byte
        # alignment and does not have an implicit finit as does FSAVE.

        stmxcsr i386reg_simd_mxcsr(%esp)
        movups  %xmm0,i386reg_simd_xmm0(%esp)
        movups  %xmm1,i386reg_simd_xmm1(%esp)
        movups  %xmm2,i386reg_simd_xmm2(%esp)
        movups  %xmm3,i386reg_simd_xmm3(%esp)
        movups  %xmm4,i386reg_simd_xmm4(%esp)
        movups  %xmm5,i386reg_simd_xmm5(%esp)
        movups  %xmm6,i386reg_simd_xmm6(%esp)
        movups  %xmm7,i386reg_simd_xmm7(%esp)
#endif
        movl    $1,i386reg_fpstate_valid(%esp)  # indicate it is valid
        .endm

        .macro  hal_fpu_pop_ctx
        btl     $0,i386reg_fpstate_valid(%esp)  # check ls bit of valid flag
        jc      1f                              # if set, restore state
        finit                                   # otherwise init FPU
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
        # FIXME. Anything needed here?
#endif
        jmp     2f                              # and skip restore
1:
        frstor  i386reg_fpstate(%esp)           # restore FPU state
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
        # Restore SIMD state.

        # FIXME. This is awfully inefficient. Need to use FXRSTOR to
        # restore FPU and SIMD at same time. FXRSTOR requires a 16 byte
        # alignment.

        movups  i386reg_simd_xmm0(%esp),%xmm0
        movups  i386reg_simd_xmm1(%esp),%xmm1
        movups  i386reg_simd_xmm2(%esp),%xmm2
        movups  i386reg_simd_xmm3(%esp),%xmm3
        movups  i386reg_simd_xmm4(%esp),%xmm4
        movups  i386reg_simd_xmm5(%esp),%xmm5
        movups  i386reg_simd_xmm6(%esp),%xmm6
        movups  i386reg_simd_xmm7(%esp),%xmm7
        ldmxcsr i386reg_simd_mxcsr(%esp)
#endif
2:
        addl    $i386reg_fpstate_size,%esp      # pop space used
        .endm

        # ------------------------------------------------------------
        # Interrupt and exception handling

        # In this configuration, the interrupt and exception code behaves in
        # exactly the same way as the context switch code.

        .macro  hal_fpu_push_int
        hal_fpu_push_ctx
        .endm

        .macro  hal_fpu_push_int_annex
        .endm

        .macro  hal_fpu_pop_int_annex
        .endm

        .macro  hal_fpu_pop_int
        hal_fpu_pop_ctx
        .endm

        .macro  hal_fpu_push_exc
        hal_fpu_push_ctx
        .endm

        .macro  hal_fpu_push_exc_annex
        .endm

        .macro  hal_fpu_pop_exc_annex
        .endm

        .macro  hal_fpu_pop_exc
        hal_fpu_pop_ctx
        .endm

#else // CYGHWR_HAL_I386_FPU_SWITCH_LAZY

        # Lazy CPU state switching. We defer CPU state switching until the new
        # thread actually uses the FPU. This state switch is handled by
        # __fpu_switch_vsr in vectors.S.

        .extern cyg_hal_fpustate_owner
        .extern cyg_hal_fpustate_current

        # ------------------------------------------------------------
        # Context switch handling

        # On context switch we simply stack a pointer to this
        # threads FPU context save area.

        .macro  hal_fpu_push_ctx
        hal_smp_cpu %ebx                        # Get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        pushl   0(%ecx,%ebx,4)                  # push table[cpu] entry
        .endm

        # We do nothing here but set the CR0:TS bit to force
        # an exception when the FPU is next used and pop the
        # FPU save area pointer into the static variable.

        .macro  hal_fpu_pop_ctx
        movl    %cr0, %ecx                      # get CR0
        orl     $0x8, %ecx                      # set TS bit
        movl    %ecx, %cr0                      # restore CR0
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        popl    0(%ecx,%ebx,4)                  # pop table[cpu] entry
        .endm

        # ------------------------------------------------------------
        # Interrupt handling

        # On entry to an interrupt we save the current threads FPU context
        # pointer and set the CR0:TS bit to trap any FP operations in the
        # interrupt.

        .macro  hal_fpu_push_int
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        pushl   0(%ecx,%ebx,4)                  # push table[cpu] entry
        # ensure that CR0:TS bit is set
        movl    %cr0, %ecx                      # get CR0
        orl     $0x8, %ecx                      # set TS bit
        movl    %ecx, %cr0                      # restore CR0
        .endm

        # The following is called after we transfer to the interrupt
        # stack. We make space here for the FPU state of the interrupt
        # handler to be saved in case we get nested interrupts that use FP.

        .macro  hal_fpu_push_int_annex
        subl    $i386reg_fpucontext_size,%esp
        movl    $0,i386reg_fpucontext_valid(%esp)
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        movl    %esp,0(%ecx,%ebx,4)             # save in table[cpu] entry
        .endm

        # This is invoked just before any transfer back to the thread stack.
        # We check whether we are the FPU state owner, and if so, abdicate.
        # There is no need to save the state, the next thread will load its
        # own state over the top of it.

        .macro  hal_fpu_pop_int_annex
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_owner,%ecx    # current state table
        cmpl    0(%ecx,%ebx,4),%esp             # are we FPU owner?
        jne     1f                              # if not, then just continue
        movl    $0,0(%ecx,%ebx,4)               # no one owns FPU now
        # ensure that CR0:TS bit is set to force a reload of
        # the previous FPU state
        movl    %cr0, %ecx                      # get CR0
        orl     $0x8, %ecx                      # set TS bit
        movl    %ecx, %cr0                      # restore CR0
1:
        addl    $i386reg_fpucontext_size,%esp   # pop FPU save area
        .endm

        # Final return from interrupt handling. Just pull the current
        # FPU context off the stack.
        .macro  hal_fpu_pop_int
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        popl    0(%ecx,%ebx,4)                  # pop table[cpu] entry
        .endm

        # ------------------------------------------------------------
        # Exception handling

        # Whenever we take an exception, we save the current FPU state away
        # into its save area. This way, if we are going to end up in GDB, the
        # whole machine state is saved in memory.

        .macro  hal_fpu_push_exc
        hal_smp_cpu %ebx                        # get CPU id
        movl    $cyg_hal_fpustate_current,%ecx  # current state table
        pushl   0(%ecx,%ebx,4)                  # push table[cpu] entry
        movl    $cyg_hal_fpustate_owner,%ecx    # current owner table
        movl    0(%ecx,%ebx,4),%eax             # EAX = FPU state owner
        cmpl    $0,%eax                         # test it
        je      1f                              # skip if zero
        fnsave  i386reg_fpucontext_state(%eax)  # save state
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
        # Save SIMD state.

        # FIXME. This is awfully inefficient. Need to use FXSAVE to
        # save FPU and SIMD at same time. FXSAVE requires a 16 byte
        # alignment and does not have an implicit finit as does FSAVE.

        stmxcsr i386reg_simd_mxcsr(%eax)
        movups  %xmm0,i386reg_simd_xmm0(%eax)
        movups  %xmm1,i386reg_simd_xmm1(%eax)
        movups  %xmm2,i386reg_simd_xmm2(%eax)
        movups  %xmm3,i386reg_simd_xmm3(%eax)
        movups  %xmm4,i386reg_simd_xmm4(%eax)
        movups  %xmm5,i386reg_simd_xmm5(%eax)
        movups  %xmm6,i386reg_simd_xmm6(%eax)
        movups  %xmm7,i386reg_simd_xmm7(%eax)
#endif
        movl    $1,i386reg_fpucontext_valid(%eax) # set valid
        movl    $0,0(%ecx,%ebx,4)               # zero owner pointer
1:
        .endm

        # The rest of the exception macros behave exactly like the
        # interrupt ones.

        .macro  hal_fpu_push_exc_annex
        hal_fpu_push_int_annex
        .endm

        .macro  hal_fpu_pop_exc_annex
        hal_fpu_pop_int_annex   
        .endm

        .macro  hal_fpu_pop_exc
        hal_fpu_pop_int
        .endm

#endif // CYGHWR_HAL_I386_FPU_SWITCH_LAZY

#else /* !CYGHWR_HAL_I386_FPU */

        # Non-FP macros.

        .macro  hal_fpu_init
        .endm

        .macro  hal_fpu_cpu_init
        .endm

        .macro  hal_fpu_push_ctx
        .endm

        .macro  hal_fpu_pop_ctx
        .endm

        .macro  hal_fpu_push_int
        .endm

        .macro  hal_fpu_push_int_annex
        .endm

        .macro  hal_fpu_pop_int_annex
        .endm

        .macro  hal_fpu_pop_int
        .endm

        .macro  hal_fpu_push_exc
        .endm

        .macro  hal_fpu_push_exc_annex
        .endm

        .macro  hal_fpu_pop_exc_annex
        .endm

        .macro  hal_fpu_pop_exc
        .endm

#endif

#endif  

#------------------------------------------------------------------------------
# MMU macros.

#ifndef CYGPKG_HAL_I386_MMU_DEFINED

#define CYGPKG_HAL_I386_MMU_DEFINED

        .macro  hal_mmu_init
        .endm

#endif  

#------------------------------------------------------------------------------
# A20 gate enable

#define K_RDWR                  0x60
#define K_STATUS                0x64
#define K_CMD                   0x64
#define K_OBUF_FUL              0x01
#define K_IBUF_FUL              0x02
#define KC_CMD_WIN              0xD0
#define KC_CMD_WOUT             0xD1
#define KB_A20                  0xDF

        .macro  hal_a20_enable
        // Enable A20 so that addresses at 1MB don't wrap around back to 0.
1:      inb     $K_STATUS, %al
        testb   $K_IBUF_FUL, %al
        jnz     1b

2:      inb     $K_STATUS, %al
        testb   $K_OBUF_FUL, %al
        jz      3f
        inb     $K_RDWR, %al
        jmp     2b

3:      movb    $KC_CMD_WOUT, %al
        outb    %al, $K_CMD
1:      inb     $K_STATUS, %al
        testb   $K_IBUF_FUL, %al
        jnz     1b

        movb    $KB_A20, %al
        outb    %al, $K_RDWR
1:      inb     $K_STATUS, %al
        testb   $K_IBUF_FUL, %al
        jnz     1b
        .endm

#------------------------------------------------------------------------------
# MEMC macros.
# This version simply enables the A20 gate.
        
#ifndef CYGPKG_HAL_I386_MEMC_DEFINED

        .macro  hal_memc_init
        hal_a20_enable
        .endm

#endif  
        
#------------------------------------------------------------------------------
# Cache macros.
        
#ifndef CYGPKG_HAL_I386_CACHE_DEFINED

        .macro  hal_cache_init
        .endm

#endif  

#------------------------------------------------------------------------------
# Diagnostics macros.
        
#ifndef CYGPKG_HAL_I386_DIAG_DEFINED

        .macro  hal_diag_init
        .endm

        .macro  hal_diag_excpt_start
        .endm

        .macro  hal_diag_intr_start
        .endm

        .macro  hal_diag_restore
        .endm
#endif  

#------------------------------------------------------------------------------
# Timer initialization.
        
#ifndef CYGPKG_HAL_I386_TIMER_DEFINED

        .macro  hal_timer_init
        .endm

#endif  

#------------------------------------------------------------------------------
# Monitor initialization.
        
#ifndef CYGPKG_HAL_I386_MON_DEFINED

        .macro  hal_mon_init
        .endm

#endif  

#------------------------------------------------------------------------------
#endif // ifndef CYGONCE_HAL_ARCH_INC
# end of arch.inc

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.