URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [m68k/] [arch/] [current/] [include/] [hal_arch.h] - Rev 794
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef CYGONCE_HAL_ARCH_H #define CYGONCE_HAL_ARCH_H //============================================================================= // // hal_arch.h // // Architecture specific abstractions // //============================================================================= // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 2003, 2006, 2008 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //============================================================================= //####DESCRIPTIONBEGIN#### // // Author(s): bartv // Date: 2003-06-04 //####DESCRIPTIONEND#### //============================================================================= #include <pkgconf/system.h> #include <pkgconf/hal.h> #include <pkgconf/hal_m68k.h> #include <cyg/infra/cyg_type.h> #include <cyg/hal/var_arch.h> // ---------------------------------------------------------------------------- // The default IPL level for when interrupts are enabled. Usually this will // be set to 0, but on some platforms it may be appropriate to run with // a higher IPL level and effectively leave some interrupts disabled. #ifndef CYGNUM_HAL_INTERRUPT_DEFAULT_IPL_LEVEL # define CYGNUM_HAL_INTERRUPT_DEFAULT_IPL_LEVEL 0 #endif // ---------------------------------------------------------------------------- // setjmp/longjmp support. These only deal with the integer and fpu units. // If there are other hardware units then they are unlikely to be used // directly by the compiler, only by application code. Hence it is // application code that should decide whether or not each unit's state // should be preserved across setjmp/longjmp boundaries. // // Floating point registers have to be saved/restored here even if they // are not saved during a context switch, because we are concerned // about state within a single thread. The control and status registers // are saved as well, but fpiar can be ignored - setjmp() is not going // to happen while handling a floating point exception. // // The default implementation is in assembler and uses weak aliases. That // code has to be kept in step with this structure definition. #ifndef HAL_SETJMP #define HAL_SETJMP typedef struct { CYG_ADDRESS pc; CYG_ADDRESS sp; cyg_uint32 d[6]; // d2 to d7, d0 and d1 are caller-save CYG_ADDRESS a[5]; // a2 to a6, a0 and a1 are caller-save, a7 (sp) is separate #ifdef CYGINT_HAL_M68K_VARIANT_FPU long double f[6]; // f2 to f7, f0 and f1 are caller-save #endif } hal_jmp_buf_t; // This type is used by normal routines to pass the address of the // structure into our routines without having to explicitly take the // address of the structure. typedef cyg_uint32 hal_jmp_buf[sizeof(hal_jmp_buf_t) / sizeof(cyg_uint32)]; externC int hal_m68k_setjmp(hal_jmp_buf); externC void hal_m68k_longjmp(hal_jmp_buf, int); #define hal_setjmp(_env) hal_m68k_setjmp(_env) #define hal_longjmp(_env, _val) hal_m68k_longjmp(_env, _val) #endif // HAL_SETJMP // ---------------------------------------------------------------------------- // Thread context support. The implementation is in assembler functions // rather than inline macros. That makes it easier to cope with // hardware-specific units which have their own context. // // A thread context consists of an integer part, a floating point part // (iff the hardware has a standard FPU and if the configuration makes // FPU context part of the save state), and OTHER for extra hardware // units. #define HAL_M68K_SR_C (0x01 << 0) #define HAL_M68K_SR_V (0x01 << 1) #define HAL_M68K_SR_Z (0x01 << 2) #define HAL_M68K_SR_N (0x01 << 3) #define HAL_M68K_SR_X (0x01 << 4) #define HAL_M68K_SR_S (0x01 << 13) #define HAL_M68K_SR_T (0x01 << 15) #define HAL_M68K_SR_IPL_MASK (0x07 << 8) #define HAL_M68K_SR_IPL_SHIFT 8 typedef struct { // The integer context, d0-d7,a0-a6 cyg_uint32 da[15]; // FPU context. This is only relevant if the hardware has an FPU, // and then only if the configuration makes the FPU context part // of the save state. #ifdef CYGIMP_HAL_M68K_FPU_SAVE cyg_uint32 fpsr; CYG_ADDRESS fpiar; long double f[8]; #endif // Some m68k variants may have additional state that should be part // of a thread context. #ifdef HAL_CONTEXT_OTHER HAL_CONTEXT_OTHER #endif // Program counter, status register, etc. The exact layout is // determined by the variant. The intention is that the structure // matches the state pushed onto the stack by the hardware when an // interrupt occurs, so the context can overlap this part of the // stack. That avoids having to copy the saved PC and SR registers // from the stack into the context structure. The final step of // a context switch is an rte instruction. HAL_CONTEXT_PCSR } HAL_SavedRegisters; #define HAL_CONTEXT_INTEGER_SIZE (15 * 4) #ifdef CYGIMP_HAL_M68K_FPU_SAVE # define HAL_CONTEXT_FPU_SIZE ((2 * 4) + (8 * 12)) #else # define HAL_CONTEXT_FPU_SIZE 0 #endif #ifndef HAL_CONTEXT_OTHER_SIZE # define HAL_CONTEXT_OTHER_SIZE 0 #endif #ifndef HAL_CONTEXT_PCSR_SIZE # define HAL_CONTEXT_PCSR_SIZE 8 #endif #define HAL_CONTEXT_FULL_SIZE (HAL_CONTEXT_INTEGER_SIZE + HAL_CONTEXT_FPU_SIZE + HAL_CONTEXT_OTHER_SIZE + HAL_CONTEXT_PCSR_SIZE) // Load and switch are handled by functions in hal_arch.S. One level // of indirection is removed here for the destination thread, so that // the actual stack pointer gets passed to assembler. externC void hal_thread_load_context(CYG_ADDRESS) CYGBLD_ATTRIB_NORET; externC void hal_thread_switch_context(CYG_ADDRESS, CYG_ADDRESS); #define HAL_THREAD_LOAD_CONTEXT(_to_) \ CYG_MACRO_START \ hal_thread_load_context((CYG_ADDRESS) *(_to_)); \ CYG_MACRO_END #define HAL_THREAD_SWITCH_CONTEXT(_from_, _to_) \ CYG_MACRO_START \ hal_thread_switch_context((CYG_ADDRESS)(_from_), (CYG_ADDRESS)*(_to_)); \ CYG_MACRO_END // Init context can be done easily in C. // // LOAD_CONTEXT and SWITCH_CONTEXT will end up doing an rte, so at the top // of the stack we want the SR, return PC, a dummy PC for the entry point's // stack frame, and the argument to the function. // // +----------------+ // | _thread_ arg | // +----------------+ // | return PC | // +----------------+ // | _entry_ PC | // +- - - - - - - - + // | SR | // SP ----> +- - - - - - - - + // | HAL | // | SavedRegisters | // | | // // FPU and OTHER contexts are handled by macros which may or may not expand. // // The PC/SR fields are handled by variant-specific code. #ifdef CYGIMP_HAL_M68K_FPU_SAVE # define HAL_CONTEXT_FPU_INIT(_regs_) \ CYG_MACRO_START \ int _j_; \ (_regs_)->fpsr = 0; \ (_regs_)->fpiar = 0; \ for (_j_ = 0; _j_ < 8; _j_++) { \ (_regs_)->f[_j_] = 0.0; \ } \ CYG_MACRO_END #else # define HAL_CONTEXT_FPU_INIT(_regs_) #endif #ifndef HAL_CONTEXT_OTHER_INIT # define HAL_CONTEXT_OTHER_INIT(_regs_) #endif // Only initialize with ints enabled if CYGPKG_KERNEL. RedBoot does a // LoadContext, causing interrupts to be enabled prematurely. #ifdef CYGPKG_KERNEL # define _HAL_M68K_INIT_CONTEXT_SR_ (0x2000 | (CYGNUM_HAL_INTERRUPT_DEFAULT_IPL_LEVEL<<8)) #else # define _HAL_M68K_INIT_CONTEXT_SR_ (0x2700) #endif #define HAL_THREAD_INIT_CONTEXT( _sparg_, _thread_, _entry_, _id_) \ CYG_MACRO_START \ cyg_uint32* _sp_ = ((cyg_uint32*) ((cyg_uint32)(_sparg_) & ~(CYGARC_ALIGNMENT - 1))); \ HAL_SavedRegisters* _regs_; \ int _i_; \ *(--_sp_) = (cyg_uint32)(_thread_); \ *(--_sp_) = 0xDEADC0DE; \ _regs_ = (HAL_SavedRegisters*) ((cyg_uint32)_sp_ - sizeof(HAL_SavedRegisters)); \ for (_i_ = 0; _i_ < 14; _i_++) { \ _regs_->da[_i_] = _id_; \ } \ _regs_->da[14] = 0; \ HAL_CONTEXT_FPU_INIT(_regs_) \ HAL_CONTEXT_OTHER_INIT(_regs_) \ HAL_CONTEXT_PCSR_INIT(_regs_, _entry_, _HAL_M68K_INIT_CONTEXT_SR_); \ (_sparg_) = (CYG_ADDRESS) (_regs_); \ CYG_MACRO_END // ---------------------------------------------------------------------------- // Minimal and sensible stack sizes: the intention is that applications // will use these to provide a stack size in the first instance prior to // proper analysis. Idle thread stack should be this big. // // THESE ARE NOT INTENDED TO BE MICROMETRICALLY ACCURATE FIGURES. // THEY ARE HOWEVER ENOUGH TO START PROGRAMMING. // YOU MUST MAKE YOUR STACKS LARGER IF YOU HAVE LARGE "AUTO" VARIABLES! // // This is not a config option because it should not be adjusted except // under "enough rope" sort of disclaimers. // Stack frame overhead per call. 6 data registers, 5 address // registers, frame pointer, and return address. We can't guess the // local variables so just assume that using all of the registers // averages out. # define CYGNUM_HAL_STACK_FRAME_SIZE ((6 + 5 + 1 + 1) * 4) // Stack needed for a context switch. Allow for sr and vector as well. #ifndef CYGNUM_HAL_STACK_CONTEXT_SIZE # define CYGNUM_HAL_STACK_CONTEXT_SIZE HAL_CONTEXT_FULL_SIZE #endif // Interrupt handling. These need to allow for nesting and a // separate interrupt stack. #ifndef CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK # ifndef CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING // No interrupt stack, no nesting. Worst case: a saved context, a // frame for the interrupt_end() call, six frames for DSR processing, // another saved context for an interrupt during the DSRs, and // six frames for the ISR. # define CYGNUM_HAL_STACK_INTERRUPT_SIZE ((2 * CYGNUM_HAL_STACK_CONTEXT_SIZE) + (13 * CYGNUM_HAL_STACK_FRAME_SIZE)) # else // No interrupt stack but nesting. Worst case: a saved context, // a frame for interrupt_end(), six frames for DSR processing, then // up to five higher priority interrupts each requiring a context // and six frames. # define CYGNUM_HAL_STACK_INTERRUPT_SIZE ((6 * CYGNUM_HAL_STACK_CONTEXT_SIZE) + (37 * CYGNUM_HAL_STACK_FRAME_SIZE)) # endif #else # ifndef CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING // An interrupt stack but no nesting. Worst case: a saved context, // a frame for interrupt_end(), and another saved context. There // is no need to worry about ISR or DSR frames since those will // be on the interrupt stack. We also need to allow for nested // interrupts before these are disabled, which will involve only // 2 words rather than a full stack. # define CYGNUM_HAL_STACK_INTERRUPT_SIZE ((2 * CYGNUM_HAL_STACK_CONTEXT_SIZE) + (1 * CYGNUM_HAL_STACK_FRAME_SIZE) + (5 * 2 * 4)) # else // An interrupt stack and nesting. We need to allow for another five // nested contexts because nested interrupts may happen after pushing // the current context but before switching to the interrupt stack. # define CYGNUM_HAL_STACK_INTERRUPT_SIZE ((7 * CYGNUM_HAL_STACK_CONTEXT_SIZE) + (1 * CYGNUM_HAL_STACK_FRAME_SIZE)) # endif #endif // We define a minimum stack size as the minimum any thread could ever // legitimately get away with. We can throw asserts if users ask for // less than this. This allows for a saved context for context switching // plus eight stack frames for cals, in addition to the interrupt overhead. #define CYGNUM_HAL_STACK_SIZE_MINIMUM (CYGNUM_HAL_STACK_INTERRUPT_SIZE + CYGNUM_HAL_STACK_CONTEXT_SIZE + (8 * CYGNUM_HAL_STACK_FRAME_SIZE)) // Now make a reasonable choice for a typical thread size. Allow for // another 8 call frames and a K for on-stack buffers, printf(), // and debugging overheads. #define CYGNUM_HAL_STACK_SIZE_TYPICAL (CYGNUM_HAL_STACK_SIZE_MINIMUM + (8 * CYGNUM_HAL_STACK_FRAME_SIZE) + 1024) // ----------------------------------------------------------------------------- // Bit manipulation routines. The vanilla 68000 has no special // instructions for this so assembler implementations are used // instead. Newer ColdFires do have suitable instructions so will // define their own versions of these macro. #ifndef HAL_LSBIT_INDEX externC cyg_uint32 hal_lsbit_index(cyg_uint32 mask); #define HAL_LSBIT_INDEX(index, mask) (index) = hal_lsbit_index(mask); #endif #ifndef HAL_MSBIT_INDEX externC cyg_uint32 hal_msbit_index(cyg_uint32 mask); #define HAL_MSBIT_INDEX(index, mask) (index) = hal_msbit_index(mask); #endif // There are some useful bit-set and bit-clear instructions which allow // for atomic updates of a single byte of memory. #define HAL_M68K_BSET(_address_, _bit_) \ CYG_MACRO_START \ asm volatile("bset %0,(%1)\n" : : "i" (_bit_), "a" (_address_) : "cc", "memory"); \ CYG_MACRO_END #define HAL_M68K_BCLR(_address_, _bit_) \ CYG_MACRO_START \ asm volatile("bclr %0,(%1)\n" : : "i" (_bit_), "a" (_address_) : "cc", "memory"); \ CYG_MACRO_END //----------------------------------------------------------------------------- // Idle thread code. A plain 68000 has no special support, so a no-op // function is used. Variants may use this to go into sleep mode. #ifndef HAL_IDLE_THREAD_ACTION # define HAL_IDLE_THREAD_ACTION(_count_) CYG_EMPTY_STATEMENT #endif //----------------------------------------------------------------------------- // Execution reorder barrier. // When optimizing the compiler can reorder code. In multithreaded systems // where the order of actions is vital, this can sometimes cause problems. // This macro may be inserted into places where reordering should not happen. #define HAL_REORDER_BARRIER() __asm__ volatile ( "" : : : "memory" ) //-------------------------------------------------------------------------- // Macros for switching context between two eCos instances (jump from // code in ROM to code in RAM or vice versa). The 68000 does not have any // relevant global state so these macros are no-ops. #define CYGARC_HAL_SAVE_GP() #define CYGARC_HAL_RESTORE_GP() //----------------------------------------------------------------------------- // gdb support // Translate a stack pointer as saved by the thread context macros // into a pointer to a HAL_SavedRegisters structure. On the 68K // these are equivalent. #define HAL_THREAD_GET_SAVED_REGISTERS(_stack_, _regs_) \ CYG_MACRO_START \ (_regs_) = (HAL_SavedRegisters*)(_stack_); \ CYG_MACRO_END // Translate between an eCos context and a gdb register set. externC void hal_get_gdb_registers(CYG_ADDRWORD*, HAL_SavedRegisters*); externC void hal_set_gdb_registers(HAL_SavedRegisters*, CYG_ADDRWORD*); #define HAL_GET_GDB_REGISTERS(_regval_, _regs_) \ CYG_MACRO_START \ hal_get_gdb_registers((CYG_ADDRWORD*)(_regval_), (HAL_SavedRegisters*)(_regs_)); \ CYG_MACRO_END #define HAL_SET_GDB_REGISTERS(_regs_,_regval_) \ CYG_MACRO_START \ hal_set_gdb_registers((HAL_SavedRegisters*)(_regs_), (CYG_ADDRWORD*)(_regval_)); \ CYG_MACRO_END #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS // HAL_BREAKPOINT() is a code sequence that will cause a breakpoint to happen // if executed. // HAL_BREAKINST is the value of the breakpoint instruction and // HAL_BREAKINST_SIZE is its size in bytes. #define HAL_BREAKPOINT(_label_) \ __asm__ volatile (" .globl " #_label_ ";" \ #_label_":" \ " trap #15" \ ); #define HAL_BREAKINST 0x4E4F #define HAL_BREAKINST_SIZE 2 // The GDB register definitions. as per gdb/m68k-stub.c // FIXME: more work is needed for floating point support. enum regnames { D0, D1, D2, D3, D4, D5, D6, D7, A0, A1, A2, A3, A4, A5, FP, SP, PS, PC, #ifdef CYGINT_HAL_M68K_VARIANT_FPU FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, FPCONTROL, FPSTATUS, FPIADDR #endif }; #ifdef CYGINT_HAL_M68K_VARIANT_FPU # define NUMREGS 29 #else # define NUMREGS 18 #endif #define REGSIZE(_x_) (4) typedef enum regnames regnames_t; typedef CYG_ADDRWORD target_register_t; externC int __computeSignal(unsigned int trap_number); externC int __get_trap_number(void); externC void __install_breakpoints(void); externC void __clear_breakpoints(void); externC void __single_step(void); externC void __clear_single_step(void); externC void __skipinst(void); externC int __is_breakpoint_function(void); externC void set_pc(target_register_t); #define HAL_STUB_PLATFORM_STUBS_FIXUP() \ CYG_MACRO_START \ if (CYGNUM_HAL_VECTOR_TRAP15 == __get_trap_number()) \ put_register(PC, get_register(PC) - 2); \ CYG_MACRO_END #endif // CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS //----------------------------------------------------------------------------- // Exception handling function. // This function is defined by the kernel according to this prototype. It is // invoked from the HAL to deal with any CPU exceptions that the HAL does // not want to deal with itself. It usually invokes the kernel's exception // delivery mechanism. #if defined(CYGFUN_HAL_COMMON_KERNEL_SUPPORT) && defined(CYGPKG_HAL_EXCEPTIONS) externC void cyg_hal_deliver_exception( CYG_WORD code, CYG_ADDRWORD data ); #endif //----------------------------------------------------------------------------- #endif // CYGONCE_HAL_ARCH_H // End of hal_arch.h
Go to most recent revision | Compare with Previous | Blame | View Log