URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [mips/] [malta/] [current/] [src/] [platform.S] - Rev 798
Go to most recent revision | Compare with Previous | Blame | View Log
##
#=============================================================================
## platform.S
##
## MIPS Malta platform code
##
##=============================================================================
## ####ECOSGPLCOPYRIGHTBEGIN####
## -------------------------------------------
## This file is part of eCos, the Embedded Configurable Operating System.
## Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
##
## eCos is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free
## Software Foundation; either version 2 or (at your option) any later
## version.
##
## eCos is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with eCos; if not, write to the Free Software Foundation, Inc.,
## 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
##
## As a special exception, if other files instantiate templates or use
## macros or inline functions from this file, or you compile this file
## and link it with other works to produce a work based on this file,
## this file does not by itself cause the resulting work to be covered by
## the GNU General Public License. However the source code for this file
## must still be made available in accordance with section (3) of the GNU
## General Public License v2.
##
## This exception does not invalidate any other reasons why a work based
## on this file might be covered by the GNU General Public License.
## -------------------------------------------
## ####ECOSGPLCOPYRIGHTEND####
##=============================================================================
#######DESCRIPTIONBEGIN####
##
## Author(s): dmoseley
## Contributors:dmoseley, jskov
## Date: 2001-03-20
## Purpose: MIPS Malta platform code
## Description: Platform specific code for Malta board.
##
##
##
##
######DESCRIPTIONEND####
##
##=============================================================================
#include <pkgconf/system.h>
#include <pkgconf/hal.h>
#ifdef CYGPKG_KERNEL
# include <pkgconf/kernel.h>
#endif
#include <cyg/hal/arch.inc>
#include <cyg/hal/plf_io.h>
#include <cyg/hal/hal_arch.h>
#include <cyg/hal/plf_defs.inc>
#include CYGBLD_HAL_PLATFORM_H
##-----------------------------------------------------------------------------
##-----------------------------------------------------------------------------
# Platform Initialization.
# This code performs platform specific initialization.
##-----------------------------------------------------------------------------
## I2C accessors - these need to delay after accessing the controller.
// Need to delay between clocking the serial bits since the CPU is way too
// fast for the I2C interface. CPU runs at CYGHWR_HAL_MIPS_MALTA_CPU_CLOCK
// and the I2C no fasten than 1.7MHz. We want to delay the CPU for half
// an I2C cycle and two instructions are executed per loop, hence:
#define PAUSE \
li t0, (20*(CYGHWR_HAL_MIPS_MALTA_CPU_CLOCK/1700000/2/2)); \
99: bne t0, zero, 99b; \
addiu t0, -1
#define I2C_OE(v) \
li t0,v; \
sw t0,HAL_I2CFPGA_OE(a1); \
PAUSE
#define I2C_OUT(v) \
li t0,v; \
sw t0,HAL_I2CFPGA_OUT(a1); \
PAUSE
#define I2C_IN(v) \
lw v,HAL_I2CFPGA_INP(a1); \
andi v,v,HAL_I2CFPGA_IN_SDA_MASK; \
PAUSE
#define I2C_ENABLE \
I2C_OE(HAL_I2C_CIN_DIN); \
I2C_OUT(HAL_I2C_CHIGH_DHIGH); \
li t0,HAL_I2CFPGA_SEL_FPGA; \
sw t0,HAL_I2CFPGA_SEL(a1); \
PAUSE
##-----------------------------------------------------------------------------
## MEMC initialization.
##
#if defined(CYG_HAL_STARTUP_ROM)
.text
.set noreorder
.macro MASK_WRITE_PCI_REG regnum, devnum, mask
.set noreorder
# First, read the appropriate register
li t0, HAL_GALILEO_PCI0_CONFIG_ADDR_ConfigEn | \regnum | \devnum
sw t0, HAL_GALILEO_PCI0_CONFIG_ADDR_OFFSET(s7)
lw t1, HAL_GALILEO_PCI0_CONFIG_DATA_OFFSET(s7)
# Now, mask in the appropriate bits
li t2, \mask
or t1, t2
# Write the updated value
li t0, HAL_GALILEO_PCI0_CONFIG_ADDR_ConfigEn | \regnum | \devnum
sw t0, HAL_GALILEO_PCI0_CONFIG_ADDR_OFFSET(s7)
sw t1, HAL_GALILEO_PCI0_CONFIG_DATA_OFFSET(s7)
.endm
.macro WRITE_PCI_REG regnum, devnum, base
.set noreorder
li t0, HAL_GALILEO_PCI0_CONFIG_ADDR_ConfigEn | \regnum | \devnum
li t1, \base
sw t0, HAL_GALILEO_PCI0_CONFIG_ADDR_OFFSET(s7)
sw t1, HAL_GALILEO_PCI0_CONFIG_DATA_OFFSET(s7)
.endm
#define NO_MASK 0
#define NO_ERROR_CHECK 0
#define ERROR_CHECK 1
.macro READ_SPD_VALUE func, mask, ret_reg, err_check
.set noreorder
jal read_spd_value
li a0, \func # delay slot
.if \err_check
beq v0, zero, error
nop
.endif
move \ret_reg, v0
.if \mask
and \ret_reg, \mask
.endif
.endm
##-----------------------------------------------------------------------------
##
## Initialize the RAM.
##
## To do that, we need to first initialize the Galileo PCI stuff to gain access
## to the SAA9730.
## From there, use the I2C bus of the SAA9730 to read the SPD SDRAM
## config data. We then setup the Galileo SDRAM configuration
##
## Returns
## v0 = Error Code
## v1 = SDRAM size
##
FUNC_START(hal_malta_init_sdram)
.set noreorder
# Save the return address
move s8, ra
# Setup the base address registers
li s7, CYGARC_UNCACHED_ADDRESS(HAL_GALILEO_REGISTER_BASE)
#
# Change the Galileo Base address to HAL_MALTA_CONTROLLER_BASE
#
li t0, HAL_MALTA_CONTROLLER_BASE_ISD_CONFIG
sw t0, HAL_GALILEO_INT_SPACE_DECODE_OFFSET(s7)
li s7, CYGARC_UNCACHED_ADDRESS(HAL_MALTA_CONTROLLER_BASE)
# Setup the Galileo controller Endian configuration
li t0, (HAL_GALILEO_BYTE_SWAP)
sw t0, HAL_GALILEO_PCI_INTERNAL_COMMAND_OFFSET(s7)
# Setup the PCI_0 Timeout and retry configuration
li t0, HAL_GALILEO_PCI0_TIMEOUT_RETRY_VALUE
sw t0, HAL_GALILEO_PCI0_TIMEOUT_RETRY_OFFSET(s7)
# Setup Galileo as PCI Master
MASK_WRITE_PCI_REG HAL_GALILEO_PCI0_STATUS_COMMAND_REGNUM, HAL_MALTA_NULL_DEVNUM, \
(HAL_GALILEO_PCI0_CONFIG_MEMEn | HAL_GALILEO_PCI0_CONFIG_MasEn | HAL_GALILEO_PCI0_CONFIG_SErrEn)
# Setup Galileo PCI latency timer
MASK_WRITE_PCI_REG HAL_GALILEO_PCI0_BIST_REGNUM, HAL_MALTA_NULL_DEVNUM, \
HAL_GALILEO_PCI0_LAT_TIMER_VAL
# Enable FPGA I2C
li a1, CYGARC_UNCACHED_ADDRESS(HAL_I2CFPGA_BASE)
I2C_ENABLE
##=====================================================================================
##
## Read the SPD device parameters and determine memory size
##
READ_SPD_VALUE HAL_SPD_GET_NUM_ROW_BITS, 0xf, s0, ERROR_CHECK
READ_SPD_VALUE HAL_SPD_GET_NUM_COL_BITS, 0xf, s1, ERROR_CHECK
READ_SPD_VALUE HAL_SPD_GET_NUM_DEVICE_BANKS, NO_MASK, s2, ERROR_CHECK
READ_SPD_VALUE HAL_SPD_GET_SDRAM_WIDTH, 0x7f, s3, ERROR_CHECK
READ_SPD_VALUE HAL_SPD_GET_NUM_MODULE_BANKS, NO_MASK, s4, ERROR_CHECK
READ_SPD_VALUE HAL_SPD_GET_ROW_DENSITY, NO_MASK, s5, ERROR_CHECK
READ_SPD_VALUE HAL_SPD_GET_BURST_LENGTH, NO_MASK, s6, ERROR_CHECK
#
# Determine Size in Mbit
# SIZE = SDRAM_WIDTH * NUM_DEVICE_BANKS * 2 ^ (NUM_ROW_BITS + NUM_COL_BITS)
#
addu t0, s0, s1 # t0 = (NUM_ROW_BITS + NUM_COL_BITS)
li t1, 1 # t1 = 2 ^ 0
sll t1, t0 # t1 = 2 ^ (NUM_ROW_BITS + NUM_COL_BITS)
multu s2, t1
mflo s6 # s6 = NUM_DEVICE_BANKS * 2 ^ (NUM_ROW_BITS + NUM_COL_BITS)
nop
nop
nop
multu s6, s3
mflo s6 # s6 = SDRAM_WIDTH * NUM_DEVICE_BANKS * 2 ^ (NUM_ROW_BITS + NUM_COL_BITS)
nop
nop
nop
#
# Determine size of Bank 0
# SPD Density of Each Row on Module value is used. Bit 7 represents
# 512MB, bit 6 256MB, etc. Highest set bit is size of bank 0.
# If there are two banks and these have different sizes, an extra
# bit will be set. If the sizes are the same, only the one bit is set.
# Note, at the exit of this loop, the size-bit of bank 0 will have been
# shifted out, allowing an easy check for multiple sizes below
#
li s0, SZ_512M
0:
and t1, s5, BIT7
bnez t1, 8f
sll s5, 1
b 0b
srl s0, 1
8:
#
# Determine if Bank 1 exists
#
li t0, 1
beq s4, t0, 8f
move s1, zero
#
# Determine if Bank 1 is different than Bank 0. If no additional bits
# set, size is the same.
#
and t1, s5, 0xFF
beq t1, zero, 8f
move s1, s0
#
# Determine size of Bank 1. It will be at least one factor smaller
# than that of bank 0.
#
sll s1,1
0:
and t1, s5, BIT7
bnez t1, 8f
sll s5, 1
b 0b
srl s1, 1
8:
#
# FIXME: We should probably do some validation on the various
# memory parameters here at some point.
#
#
# Set the base SDRAM bank configuration value.
# All other fields are zero, and the proper value is masked
# in when they are known
#
li s5, HAL_GALILEO_SDRAM_SRAS_TO_SCAS_DELAY_3C | \
HAL_GALILEO_SDRAM_WIDTH_64BIT | \
HAL_GALILEO_SDRAM_SRAS_PRECHARGE_3C
#
# Setup the CASLAT value.
# Support only CASLAT = 2
#
READ_SPD_VALUE HAL_SPD_GET_CAS_LAT, NO_MASK, v0, NO_ERROR_CHECK
and t0, v0, 2
beqz t0, error
nop
ori s5, HAL_GALILEO_SDRAM_BANK0_CASLAT_2
#
# Setup SDRAM device size
#
li t0, SZ_16M
beq s6, t0, 8f
nop
ori s5, HAL_GALILEO_SDRAM_BANK0_SZ_64M
8:
#
# Setup burst length: Support only 8
#
READ_SPD_VALUE HAL_SPD_GET_BURST_LENGTH, NO_MASK, v0, NO_ERROR_CHECK
and t0, v0, 8
beqz t0, error
nop
#
# Setup Parity.
# Only support Parity/Noparity. Don't support ECC.
#
READ_SPD_VALUE HAL_SPD_GET_CONFIG_TYPE, NO_MASK, v0, NO_ERROR_CHECK
li t0, HAL_SPD_CONFIG_TYPE_PARITY
beq t0, v0, 0f
nop
li t0, HAL_SPD_CONFIG_TYPE_ECC
beq t0, v0, error
nop
b 8f
li v1, 0
0:
ori s5, HAL_GALILEO_SDRAM_BANK0_PARITY
li v1, 1
8:
#
# Setup number of device banks
# Only support 2 or 4 banks
#
li t0, 2
beq s2, t0, 8f
nop
li t0, 4
beq s2, t0, 0f
nop
b error
nop
0:
ori s5, HAL_GALILEO_SDRAM_NUM_BANKS_4
8:
#
# Now actually store the bank config register
#
sw s5, HAL_GALILEO_SDRAM_BANK0_OFFSET(s7)
sw s5, HAL_GALILEO_SDRAM_BANK2_OFFSET(s7)
#
# Setup the SDRAM configuration register
# All other fields are zero, and the proper value is masked
# in when they are known
#
li s5, HAL_GALILEO_SDRAM_DUPLICATE_BANK_ADDR | HAL_GALILEO_SDRAM_BANK_INTERLEAVE_DIS
#
# Setup the Refresh Rate
#
READ_SPD_VALUE HAL_SPD_GET_REFRESH_RATE, 0x7f, v0, NO_ERROR_CHECK
li t0, HAL_SPD_REFRESH_RATE_125
beq t0, v0, 8f
li t0, HAL_SPD_REFRESH_COUNTER_125
li t0, HAL_SPD_REFRESH_RATE_62_5
beq t0, v0, 8f
li t0, HAL_SPD_REFRESH_COUNTER_62_5
li t0, HAL_SPD_REFRESH_RATE_31_3
beq t0, v0, 8f
li t0, HAL_SPD_REFRESH_COUNTER_31_3
li t0, HAL_SPD_REFRESH_RATE_15_625
beq t0, v0, 8f
li t0, HAL_SPD_REFRESH_COUNTER_15_625
li t0, HAL_SPD_REFRESH_RATE_7_8
beq t0, v0, 8f
li t0, HAL_SPD_REFRESH_COUNTER_7_8
# Unknown: assume 3.9 microseconds
li t0, HAL_SPD_REFRESH_COUNTER_3_9
8:
or s5, t0
#if 0 // FIXME: Dunno what this is supposed to do, but it changes the RMW flag,
// not anything related to RAM width.
#
# Setup RAM_WIDTH
#
beqz v1, 8f
nop
READ_SPD_VALUE HAL_SPD_GET_ERROR_CHECK_WIDTH, 0x7f, v0, NO_ERROR_CHECK
beq v0, zero, 8f
nop
ori s5, HAL_GALILEO_SDRAM_CFG_RAM_WIDTH
8:
#endif
#
# Store the SDRAM configuration register
#
sw s5, HAL_GALILEO_SDRAM_CONFIG_OFFSET(s7)
#
# Setup SDRAM Bank 0 Address Decoding
#
li a0, CYGARC_PHYSICAL_ADDRESS(HAL_MALTA_RAM_BASE) # Physical bottom of Bank 0
add a1, s0, a0
subu a1, 1 # Physical top of Bank 0
srl t0, a0, HAL_GALILEO_CPU_DECODE_SHIFT # Setup SCS[1:0]
srl t1, a1, HAL_GALILEO_CPU_DECODE_SHIFT # First level decoding
sw t0, HAL_GALILEO_SCS10_LD_OFFSET(s7) # (ie Processor Decode Region)
sw t1, HAL_GALILEO_SCS10_HD_OFFSET(s7) #
srl t0, a0, HAL_GALILEO_DEV_DECODE_SHIFT # Setup SCS0
srl t1, a1, HAL_GALILEO_DEV_DECODE_SHIFT # Second level decoding
sw t0, HAL_GALILEO_SCS0_LD_OFFSET(s7) # (ie Device Sub-decode Region)
sw t1, HAL_GALILEO_SCS0_HD_OFFSET(s7) #
#
# Setup SDRAM Bank 1 Address Decoding
#
add a0, s0, CYGARC_PHYSICAL_ADDRESS(HAL_MALTA_RAM_BASE) # Physical bottom of Bank 1
add a1, a0, s1
subu a1, 1 # Physical top of Bank 1
srl t0, a0, HAL_GALILEO_CPU_DECODE_SHIFT # Setup SCS[3:2]
srl t1, a1, HAL_GALILEO_CPU_DECODE_SHIFT # First level decoding
sw t0, HAL_GALILEO_SCS32_LD_OFFSET(s7) # (ie Processor Decode Region)
sw t1, HAL_GALILEO_SCS32_HD_OFFSET(s7) #
srl t0, a0, HAL_GALILEO_DEV_DECODE_SHIFT # Setup SCS2
srl t1, a1, HAL_GALILEO_DEV_DECODE_SHIFT # Second level decoding
sw t0, HAL_GALILEO_SCS2_LD_OFFSET(s7) # (ie Device Sub-decode Region)
sw t1, HAL_GALILEO_SCS2_HD_OFFSET(s7) #
#
# Setup PCI windows
#
li a0, CYGARC_PHYSICAL_ADDRESS(HAL_MALTA_PCI_MEM0_BASE)
add a1, a0, HAL_MALTA_PCI_MEM0_SIZE
subu a1, 1 # Physical top of Mem Bank 0
srl t0, a0, HAL_GALILEO_CPU_DECODE_SHIFT
srl t1, a1, HAL_GALILEO_CPU_DECODE_SHIFT
sw t0, HAL_GALILEO_PCIMEM0_LD_OFFSET(s7)
sw t1, HAL_GALILEO_PCIMEM0_HD_OFFSET(s7)
li a0, CYGARC_PHYSICAL_ADDRESS(HAL_MALTA_PCI_MEM1_BASE)
add a1, a0, HAL_MALTA_PCI_MEM1_SIZE
subu a1, 1 # Physical top of Mem Bank 1
srl t0, a0, HAL_GALILEO_CPU_DECODE_SHIFT
srl t1, a1, HAL_GALILEO_CPU_DECODE_SHIFT
sw t0, HAL_GALILEO_PCIMEM1_LD_OFFSET(s7)
sw t1, HAL_GALILEO_PCIMEM1_HD_OFFSET(s7)
li a0, CYGARC_PHYSICAL_ADDRESS(HAL_MALTA_PCI_IO_BASE)
add a1, a0, HAL_MALTA_PCI_IO_SIZE
subu a1, 1 # Physical top of IO Bank
srl t0, a0, HAL_GALILEO_CPU_DECODE_SHIFT
srl t1, a1, HAL_GALILEO_CPU_DECODE_SHIFT
sw t0, HAL_GALILEO_PCIIO_LD_OFFSET(s7)
sw t1, HAL_GALILEO_PCIIO_HD_OFFSET(s7)
# Here's a nice gotcha. The Intel southbridge *must* see IO
# starting from 0.
sw zero,HAL_GALILEO_PCI_IO_REMAP(s7)
#
# Setup FLASH Address Decoding
#
li a0, CYGARC_PHYSICAL_ADDRESS(HAL_MALTA_FLASH_BASE) # Physical bottom of Flash Bank
add a1, a0, HAL_MALTA_FLASH_SIZE
subu a1, 1 # Physical top of Flash Bank
srl t0, a0, HAL_GALILEO_CPU_DECODE_SHIFT # Setup CS[2:0]
srl t1, a1, HAL_GALILEO_CPU_DECODE_SHIFT # First level decoding
sw t0, HAL_GALILEO_CS20_LD_OFFSET(s7) # (ie Processor Decode Region)
sw t1, HAL_GALILEO_CS20_HD_OFFSET(s7) #
srl t0, a0, HAL_GALILEO_DEV_DECODE_SHIFT # Setup CS0
srl t1, a1, HAL_GALILEO_DEV_DECODE_SHIFT # Second level decoding
sw t0, HAL_GALILEO_CS0_LD_OFFSET(s7) # (ie Device Sub-decode Region)
sw t1, HAL_GALILEO_CS0_HD_OFFSET(s7) #
#
# Now disable all unused decodes
# (SCS1, SCS3, PCI1xx, CS1, CS2)
#
li t0, 0xffff
move t1, zero
sw t0, HAL_GALILEO_SCS1_LD_OFFSET(s7)
sw t1, HAL_GALILEO_SCS1_HD_OFFSET(s7)
sw t0, HAL_GALILEO_SCS3_LD_OFFSET(s7)
sw t1, HAL_GALILEO_SCS3_HD_OFFSET(s7)
sw t0, HAL_GALILEO_PCI1IO_LD_OFFSET(s7)
sw t1, HAL_GALILEO_PCI1IO_HD_OFFSET(s7)
sw t0, HAL_GALILEO_PCI1MEM0_LD_OFFSET(s7)
sw t1, HAL_GALILEO_PCI1MEM0_HD_OFFSET(s7)
sw t0, HAL_GALILEO_PCI1MEM1_LD_OFFSET(s7)
sw t1, HAL_GALILEO_PCI1MEM1_HD_OFFSET(s7)
sw t0, HAL_GALILEO_CS1_LD_OFFSET(s7)
sw t1, HAL_GALILEO_CS1_HD_OFFSET(s7)
sw t0, HAL_GALILEO_CS2_LD_OFFSET(s7)
sw t1, HAL_GALILEO_CS2_HD_OFFSET(s7)
noerror:
move v0, zero
add v1, s0, s1
move ra, s8
jr ra
nop
error:
li v0, HAL_MALTA_MEMERROR
move ra, s8
jr ra
nop
FUNC_END(hal_malta_init_sdram)
.macro i2c_start
# Start: SDA low -> high with SLC high
I2C_OE(HAL_I2C_COUT_DOUT)
I2C_OUT(HAL_I2C_CHIGH_DHIGH)
I2C_OUT(HAL_I2C_CHIGH_DLOW)
I2C_OUT(HAL_I2C_CLOW_DLOW)
.endm
.macro i2c_stop
# Stop: SDA high -> low with SLC high
I2C_OE(HAL_I2C_COUT_DOUT)
I2C_OUT(HAL_I2C_CLOW_DLOW)
I2C_OUT(HAL_I2C_CHIGH_DLOW)
I2C_OUT(HAL_I2C_CHIGH_DHIGH)
I2C_OUT(HAL_I2C_CLOW_DHIGH)
.endm
.macro i2c_write
# Value to write in t1.
# Writes happen by clocking SCL low->high->low while SDA defines
# the bit to be sent (MSB first).
I2C_OE(HAL_I2C_COUT_DOUT)
li t2, 7
1: srlv t3, t1, t2
andi t3, 1
beq t3, zero, 2f
nop
# Send 1
I2C_OUT(HAL_I2C_CLOW_DHIGH)
I2C_OUT(HAL_I2C_CHIGH_DHIGH)
I2C_OUT(HAL_I2C_CLOW_DHIGH)
b 3f
nop
2: # Send 0
I2C_OUT(HAL_I2C_CLOW_DLOW)
I2C_OUT(HAL_I2C_CHIGH_DLOW)
I2C_OUT(HAL_I2C_CLOW_DLOW)
3: bne t2, zero, 1b
addiu t2, -1
# Now tristate the SDA and pulse the clock. Receiver will
# ack the transfer by pulling SDA low.
# Read by pulsing clock. Leave result in t1
I2C_OE(HAL_I2C_COUT_DIN)
I2C_OUT(HAL_I2C_CHIGH_DHIGH)
I2C_IN(t1)
I2C_OUT(HAL_I2C_CLOW_DHIGH)
.endm
.macro i2c_read
# Value read is returned in t1
# Reads happen by clocking SCL high->low while reading SDA
I2C_OE(HAL_I2C_COUT_DIN)
move t1,zero
li t2, 7
1: I2C_OUT(HAL_I2C_CHIGH_DHIGH)
I2C_IN(t3)
sll t1,1
or t1,t1,t3
I2C_OUT(HAL_I2C_CLOW_DHIGH)
bne t2, zero, 1b
addiu t2, -1
// Send ack by clocking with SDA low.
I2C_OUT(HAL_I2C_CLOW_DHIGH)
I2C_OE(HAL_I2C_COUT_DOUT)
I2C_OUT(HAL_I2C_CHIGH_DHIGH)
I2C_OUT(HAL_I2C_CLOW_DHIGH)
.endm
##
## Read a value from the SDRAM SPD device.
##
## Parameters: a0 = subaddress
## Returns: v0 = SPD value read
##
FUNC_START(read_spd_value)
.set noreorder
# Setup a base address register
li a1, CYGARC_UNCACHED_ADDRESS(HAL_I2CFPGA_BASE)
i2c_start
# Write address of SDRAM sense controller
li t1,( HAL_I2C_SPD_ADDRESS | HAL_I2C_WRITE )
i2c_write
li t0,HAL_I2CFPGA_OUT_SDA_NACK
beq t0,t1,i2c_error
move v0,zero
# Write address of data wanted
move t1,a0
i2c_write
li t0,HAL_I2CFPGA_OUT_SDA_NACK
beq t0,t1,i2c_error
move v0,zero
i2c_start
# Write address of SDRAM sense controller
li t1,( HAL_I2C_SPD_ADDRESS | HAL_I2C_READ )
i2c_write
li t0,HAL_I2CFPGA_OUT_SDA_NACK
beq t0,t1,i2c_error
move v0,zero
# Read data
i2c_read
move v0,t1
i2c_stop
i2c_error:
jr ra
nop
FUNC_END(read_spd_value)
#endif // defined(CYG_HAL_STARTUP_ROM)
##-----------------------------------------------------------------------------
## ISR springboard.
## This routine decodes the interrupt from the southbridge and vectors to it.
# On entry:
# a0 = MIPS status register interrupt number (1,2 or 3)
# a1 = ISR data value (= interrupt controller reg address)
# a2 = saved reg dump ptr
# s0 = saved reg dump ptr
# s1 = vector table offset
# s2 = interrupt number
# a3,v0,v1 etc available for use
.text
FUNC_START(hal_isr_springboard_southbridge)
.set noreorder
# Get req bits of controller 1
lb v0,0(a1)
lb v1,1(a1) # apply mask
xori v1,v1,0xffff
and v0,v0,v1
andi v1,v0,0xffff&~(1<<(CYGNUM_HAL_INTERRUPT_CASCADE-CYGNUM_HAL_INTERRUPT_CTRL1_BASE))
bne v1,zero,1f
ori a2,zero,CYGNUM_HAL_INTERRUPT_CTRL1_BASE
# If cascade is set, check controller 2
andi v0,v0,(1<<(CYGNUM_HAL_INTERRUPT_CASCADE-CYGNUM_HAL_INTERRUPT_CTRL1_BASE))
beq v0,zero,2f
lb v0,HAL_PIIX4_MASTER_SLAVE_OFFSET(a1)
lb v1,HAL_PIIX4_MASTER_SLAVE_OFFSET+1(a1) # apply mask
xori v1,v1,0xffff
and v0,v0,v1
bne v0,zero,1f
ori a2,zero,CYGNUM_HAL_INTERRUPT_CTRL2_BASE
# Spurious interrupt, return to VSR
2: jr ra
move v0,zero
1:
# FIXME: May want to rewrite this to do ls bit on byte
# to save a few cycles.
# The following code implements an ls bit index algorithm similar
# to that in hal_lsbit_index() in hal_misc.c.
negu v1,v0 # v1 = -v0
and v1,v1,v0 # v1 &= v0 [isolate ls bit]
sll v0,v1,16 # v0 = v1<<16
subu v1,v0,v1 # v1 = v0 - v1
sll a0,v1,6 # a0 = v1<<6
addu v1,v1,a0 # v1 += a0
sll a1,v1,4 # a1 = v1<<4
addu v1,v1,a1 # v1 += a1
la v0,hal_isr_springboard_table # v0 = table address
srl v1,v1,26 # v1 = v1>>26
addu v1,v1,v0 # v1 = table entry address
lb a0,0(v1) # a0 = intc isr number
add s2,a0,a2 # s2 = eCos isr number
#ifdef CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN
hal_isr_springboard_chaining:
# This serves as the __default_interrupt_isr entry-point in
# chaning mode, thus ensuring that all interrupts from
# vectors 0-5 eventually end up on the special CHAINING vector.
# (See the hal_interrupt_handlers table)
ori s1,zero,CYGNUM_HAL_INTERRUPT_CHAINING*4 # s1 = chaining isr ix
#else
sll s1,s2,2 # s1 = isr table index
#endif
la v1,hal_interrupt_handlers
add v1,v1,s1 # v1 = isr handler address
lw v1,0(v1) # v1 = isr handler
la a1,hal_interrupt_data
add a1,a1,s1 # a1 = address of data ptr
lw a1,0(a1) # a1 = data pointer
move a0,s2 # pass interrupt number
jr v1 # jump to handler, return is to
nop # default vsr already in ra
FUNC_END(hal_isr_springboard_southbridge)
hal_isr_springboard_table:
.byte -1, 0, 1, 12, 2, 6, 0, 13
.byte 3, 0, 7, 0, 0, 0, 0, 14
.byte 10, 4, 0, 0, 8, 0, 0, 25
.byte 0, 0, 0, 0, 0, 21, 27, 15
.byte 31, 11, 5, 0, 0, 0, 0, 0
.byte 9, 0, 0, 24, 0, 0, 20, 26
.byte 30, 0, 0, 0, 0, 23, 0, 19
.byte 29, 0, 22, 18, 28, 17, 16, 0
##-----------------------------------------------------------------------------
# Interrupt vector tables.
# These tables contain the isr, data and object pointers used to deliver
# interrupts to user code.
.extern hal_default_isr
.data
.globl hal_interrupt_handlers
hal_interrupt_handlers:
.long hal_isr_springboard_southbridge
.rept CYGNUM_HAL_ISR_COUNT-1
.long hal_default_isr
.endr
.globl hal_interrupt_data
hal_interrupt_data:
.long HAL_PIIX4_MASTER_OCW3
.rept CYGNUM_HAL_ISR_COUNT-1
.long 0
.endr
.globl hal_interrupt_objects
hal_interrupt_objects:
.rept CYGNUM_HAL_ISR_COUNT
.long 0
.endr
##-----------------------------------------------------------------------------
## end of platform.S
Go to most recent revision | Compare with Previous | Blame | View Log