URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [mips/] [vrc437x/] [current/] [src/] [plf_serial.c] - Rev 868
Go to most recent revision | Compare with Previous | Blame | View Log
//============================================================================= // // plf_stub.c // // Platform specific code for GDB stub support. // //============================================================================= // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): nickg, jskov (based on the old tx39 hal_stub.c) // Contributors:nickg, jskov // Date: 1999-02-12 // Purpose: Platform specific code for GDB stub support. // //####DESCRIPTIONEND#### // //============================================================================= #include <pkgconf/hal.h> #include <cyg/hal/hal_io.h> // HAL IO macros #include <cyg/hal/hal_diag.h> // diag output. FIXME #include <cyg/hal/hal_arch.h> #include <cyg/hal/hal_intr.h> #include <cyg/hal/hal_if.h> #include <cyg/hal/hal_misc.h> #include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED #include <cyg/hal/plf_z8530.h> /*---------------------------------------------------------------------------*/ static unsigned char _diag_init[] = { 0x00, /* Register 0 */ 0x00, /* Register 1 - no interrupts */ 0x00, /* Register 2 */ 0xC1, /* Register 3 - Rx enable, 8 data */ 0x44, /* Register 4 - x16 clock, 1 stop, no parity */ 0x68, /* Register 5 - Tx enable, 8 data */ 0x00, /* Register 6 */ 0x00, /* Register 7 */ 0x00, /* Register 8 */ 0x00, /* Register 9 */ 0x00, /* Register 10 */ 0x56, /* Register 11 - Rx, Tx clocks from baud rate generator */ 0x00, /* Register 12 - baud rate LSB */ 0x00, /* Register 13 - baud rate MSB */ 0x03, /* Register 14 - enable baud rate generator */ 0x00 /* Register 15 */ }; #define BRTC(brate) (( ((unsigned) DUART_CLOCK) / (2*(brate)*SCC_CLKMODE_TC)) - 2) #define DUART_CLOCK 4915200 /* Z8530 duart */ #define SCC_CLKMODE_TC 16 /* Always run x16 clock for async modes */ //----------------------------------------------------------------------------- typedef struct { cyg_uint32 base; cyg_uint32 msec_timeout; int isr_vector; } channel_data_t; static channel_data_t channels[2] = { { DUART_A, 1000, CYGNUM_HAL_INTERRUPT_DUART}, { DUART_B, 1000, CYGNUM_HAL_INTERRUPT_DUART} }; //----------------------------------------------------------------------------- // Set the baud rate static void cyg_hal_plf_serial_set_baud(cyg_uint32 duart, cyg_uint16 baud_rate) { unsigned short brg = BRTC(baud_rate); HAL_DUART_WRITE_CR(duart, 12, brg&0xFF); HAL_DUART_WRITE_CR(duart, 13, brg>>8); } //----------------------------------------------------------------------------- // The minimal init, get and put functions. All by polling. void cyg_hal_plf_serial_init_channel(void* __ch_data) { cyg_uint32 duart; unsigned short brg = BRTC(CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD); int i; channel_data_t *chan; // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; #ifdef CYGPRI_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_CONFIGURABLE if( (chan-&channels[0]) == CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL ) brg = BRTC(CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD); #endif #ifdef CYGPRI_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_CONFIGURABLE if( (chan-&channels[0]) == CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL ) brg = BRTC(CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD); #endif duart = chan->base; _diag_init[12] = brg & 0xFF; _diag_init[13] = brg >> 8; for (i = 1; i < 16; i++) { HAL_DUART_WRITE_CR(duart, i, _diag_init[i]); } } void cyg_hal_plf_serial_putc(void* __ch_data, cyg_uint8 __ch) { cyg_uint32 duart; cyg_uint8 rr0; // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; duart = ((channel_data_t*)__ch_data)->base; CYGARC_HAL_SAVE_GP(); do { HAL_DUART_READ_CR(duart, 0, rr0 ); } while( (rr0 & 0x04) == 0 ); HAL_DUART_WRITE_TR( duart, __ch ); HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_DUART ); CYGARC_HAL_RESTORE_GP(); } static cyg_bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch) { cyg_uint32 duart; cyg_uint8 rr0; // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; duart = ((channel_data_t*)__ch_data)->base; HAL_DUART_READ_CR(duart, 0, rr0 ); if( (rr0 & 0x01) == 0 ) return false; HAL_DUART_READ_RR( duart, *ch ); HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_DUART ); return true; } cyg_uint8 cyg_hal_plf_serial_getc(void* __ch_data) { cyg_uint8 ch; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch)); CYGARC_HAL_RESTORE_GP(); return ch; } #ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT static void cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; while(__len-- > 0) cyg_hal_plf_serial_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; while(__len-- > 0) *__buf++ = cyg_hal_plf_serial_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } cyg_bool cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; channel_data_t* chan; cyg_bool res; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; delay_count = chan->msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } CYGARC_HAL_RESTORE_GP(); return res; } static int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; channel_data_t* chan; int ret = 0; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; switch (__func) { case __COMMCTL_IRQ_ENABLE: irq_state = 1; HAL_DUART_WRITE_CR( chan->base, 1, 0x10 ); HAL_DUART_WRITE_CR( chan->base, 9, 0x0a ); HAL_INTERRUPT_SET_LEVEL(chan->isr_vector, 0); HAL_INTERRUPT_UNMASK(chan->isr_vector); break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; HAL_DUART_WRITE_CR( chan->base, 1, 0x00 ); HAL_DUART_WRITE_CR( chan->base, 9, 0x00 ); HAL_INTERRUPT_MASK(chan->isr_vector); break; case __COMMCTL_DBG_ISR_VECTOR: ret = chan->isr_vector; break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = chan->msec_timeout; chan->msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } break; case __COMMCTL_SETBAUD: { cyg_uint32 baud_rate; cyg_uint32 duart = chan->base; va_list ap; va_start(ap, __func); baud_rate = va_arg(ap, cyg_uint32); va_end(ap); // Set baud rate. cyg_hal_plf_serial_set_baud(duart, baud_rate); } break; case __COMMCTL_GETBAUD: break; default: break; } CYGARC_HAL_RESTORE_GP(); return ret; } static int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { int res = 0; channel_data_t* chan; char c; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector); *__ctrlc = 0; if ( cyg_hal_plf_serial_getc_nonblock(__ch_data, &c) ) { if( cyg_hal_is_break( &c , 1 ) ) *__ctrlc = 1; res = CYG_ISR_HANDLED; } CYGARC_HAL_RESTORE_GP(); return res; } #endif static void cyg_hal_plf_serial_init(void) { #ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); #endif // Disable interrupts. HAL_INTERRUPT_MASK(channels[0].isr_vector); // Init channels cyg_hal_plf_serial_init_channel((void*)&channels[0]); #ifdef CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT // Setup procs in the vector table // Set channel 0 CYGACC_CALL_IF_SET_CONSOLE_COMM(0); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[0]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); #endif } void cyg_hal_plf_comms_init(void) { static int initialized = 0; if (initialized) return; initialized = 1; cyg_hal_plf_serial_init(); } //----------------------------------------------------------------------------- // End of plf_serial.c
Go to most recent revision | Compare with Previous | Blame | View Log