URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [powerpc/] [ppc40x/] [current/] [src/] [hal_diag.c] - Rev 794
Go to most recent revision | Compare with Previous | Blame | View Log
//============================================================================= // // hal_diag.c // // HAL diagnostic I/O code // //============================================================================= // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): hmt // Contributors:hmt, gthomas // Date: 1999-06-08 // Purpose: HAL diagnostic output // Description: Implementations of HAL diagnostic I/O support. // //####DESCRIPTIONEND#### // //============================================================================= #define CYGARC_HAL_COMMON_EXPORT_CPU_MACROS #include <pkgconf/hal.h> #include <cyg/infra/cyg_type.h> // base types #include <cyg/infra/cyg_trac.h> // tracing macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_diag.h> #include <cyg/hal/hal_intr.h> // Interrupt macros #include <cyg/hal/drv_api.h> #if defined(CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS) #include <cyg/hal/hal_stub.h> // hal_output_gdb_string #endif #include <cyg/hal/ppc_regs.h> //============================================================================= // Serial driver //============================================================================= //----------------------------------------------------------------------------- // There are two serial ports. #if defined(CYGHWR_HAL_POWERPC_PPC4XX_405) || defined(CYGHWR_HAL_POWERPC_PPC4XX_405GP) #define CYG_DEV_SERIAL_BASE_A _PPC405GP_UART0 #define CYG_DEV_SERIAL_BASE_B _PPC405GP_UART1 #endif #if defined(CYGHWR_HAL_POWERPC_PPC4XX_405EP) #define CYG_DEV_SERIAL_BASE_A _PPC405EP_UART0 #define CYG_DEV_SERIAL_BASE_B _PPC405EP_UART1 #endif //----------------------------------------------------------------------------- // Define the serial registers. The PPC405GP has 16552 UART(s) builtin. // The PPC405EP has 16750 UART(s) builtin #define CYG_DEV_SERIAL_RBR 0x00 // receiver buffer register, read, dlab = 0 #define CYG_DEV_SERIAL_THR 0x00 // transmitter holding register, write, dlab = 0 #define CYG_DEV_SERIAL_DLL 0x00 // divisor latch (LS), read/write, dlab = 1 #define CYG_DEV_SERIAL_IER 0x01 // interrupt enable register, read/write, dlab = 0 #define CYG_DEV_SERIAL_DLM 0x01 // divisor latch (MS), read/write, dlab = 1 #define CYG_DEV_SERIAL_IIR 0x02 // interrupt identification register, read, dlab = 0 #define CYG_DEV_SERIAL_FCR 0x02 // fifo control register, write, dlab = 0 #define CYG_DEV_SERIAL_AFR 0x02 // alternate function register, read/write, dlab = 1 #define CYG_DEV_SERIAL_LCR 0x03 // line control register, read/write #define CYG_DEV_SERIAL_MCR 0x04 #define CYG_DEV_SERIAL_MCR_A 0x04 #define CYG_DEV_SERIAL_MCR_B 0x04 #define CYG_DEV_SERIAL_LSR 0x05 // line status register, read #define CYG_DEV_SERIAL_MSR 0x06 // modem status register, read #define CYG_DEV_SERIAL_SCR 0x07 // scratch pad register // The interrupt enable register bits. #define SIO_IER_ERDAI 0x01 // enable received data available irq #define SIO_IER_ETHREI 0x02 // enable THR empty interrupt #define SIO_IER_ELSI 0x04 // enable receiver line status irq #define SIO_IER_EMSI 0x08 // enable modem status interrupt // The interrupt identification register bits. #define SIO_IIR_IP 0x01 // 0 if interrupt pending #define SIO_IIR_ID_MASK 0x0e // mask for interrupt ID bits #define ISR_Tx 0x02 #define ISR_Rx 0x04 // The line status register bits. #define SIO_LSR_DR 0x01 // data ready #define SIO_LSR_OE 0x02 // overrun error #define SIO_LSR_PE 0x04 // parity error #define SIO_LSR_FE 0x08 // framing error #define SIO_LSR_BI 0x10 // break interrupt #define SIO_LSR_THRE 0x20 // transmitter holding register empty #define SIO_LSR_TEMT 0x40 // transmitter register empty #define SIO_LSR_ERR 0x80 // any error condition // Modem control register #define SIO_MCR_DTR 0x01 // [inverted] DTR #define SIO_MCR_RTS 0x02 // [inverted] RTS // The modem status register bits. #define SIO_MSR_DCTS 0x01 // delta clear to send #define SIO_MSR_DDSR 0x02 // delta data set ready #define SIO_MSR_TERI 0x04 // trailing edge ring indicator #define SIO_MSR_DDCD 0x08 // delta data carrier detect #define SIO_MSR_CTS 0x10 // clear to send #define SIO_MSR_DSR 0x20 // data set ready #define SIO_MSR_RI 0x40 // ring indicator #define SIO_MSR_DCD 0x80 // data carrier detect // The line control register bits. #define SIO_LCR_WLS0 0x01 // word length select bit 0 #define SIO_LCR_WLS1 0x02 // word length select bit 1 #define SIO_LCR_STB 0x04 // number of stop bits #define SIO_LCR_PEN 0x08 // parity enable #define SIO_LCR_EPS 0x10 // even parity select #define SIO_LCR_SP 0x20 // stick parity #define SIO_LCR_SB 0x40 // set break #define SIO_LCR_DLAB 0x80 // divisor latch access bit // The FIFO control register #define SIO_FCR_FCR0 0x01 // enable xmit and rcvr fifos #define SIO_FCR_FCR1 0x02 // clear RCVR FIFO #define SIO_FCR_FCR2 0x04 // clear XMIT FIFO //----------------------------------------------------------------------------- typedef struct { cyg_uint8* base; cyg_int32 msec_timeout; int isr_vector; } channel_data_t; int cyg_var_baud_generator(int baud) { int clock_rate, baud_clock, clock_divisor; unsigned int cr0; // Calculate baud rate clock divisor CYGARC_MFDCR(DCR_CPC0_CR0, cr0); clock_divisor = ((cr0 & 0x3E) >> 1) + 1; clock_rate = ((CYGHWR_HAL_POWERPC_CPU_SPEED*1000000)/clock_divisor); baud_clock = ((clock_rate)/16)/baud; return baud_clock; } //----------------------------------------------------------------------------- static void init_serial_channel(const channel_data_t* __ch_data) { cyg_uint8* base = __ch_data->base; cyg_uint8 lcr; int baud_clock = cyg_var_baud_generator(CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_IER, 0); // Disable and clear FIFOs (need to enable to clear). HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_FCR, (SIO_FCR_FCR0 | SIO_FCR_FCR1 | SIO_FCR_FCR2)); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_FCR, 0); // 8-1-no parity. HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_LCR, SIO_LCR_WLS0 | SIO_LCR_WLS1); // Set speed to the default baud rate HAL_READ_UINT8(base+CYG_DEV_SERIAL_LCR, lcr); lcr |= SIO_LCR_DLAB; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_LCR, lcr); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_DLL, baud_clock & 0xFF); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_DLM, (baud_clock >> 8) & 0xFF); lcr &= ~SIO_LCR_DLAB; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_LCR, lcr); // Enable FIFOs (and clear them). HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_FCR, (SIO_FCR_FCR0 | SIO_FCR_FCR1 | SIO_FCR_FCR2)); // Assert handshake signals HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_MCR, (SIO_MCR_DTR|SIO_MCR_RTS)); } static cyg_bool cyg_hal_var_serial_getc_nonblock(char* __ch_data, cyg_uint8* ch) { cyg_uint8* base/* = ((channel_data_t*)__ch_data)->base*/; cyg_uint8 lsr; base = ((channel_data_t*)__ch_data)->base; HAL_READ_UINT8(base+CYG_DEV_SERIAL_LSR, lsr); if ((lsr & SIO_LSR_DR) == 0) return false; HAL_READ_UINT8(base+CYG_DEV_SERIAL_RBR, *ch); return true; } cyg_uint8 cyg_hal_var_serial_getc(void* __ch_data) { cyg_uint8 ch; while(!cyg_hal_var_serial_getc_nonblock(__ch_data, &ch)); return ch; } void cyg_hal_var_serial_putc(void* __ch_data, cyg_uint8 c) { cyg_uint8* base = ((channel_data_t*)__ch_data)->base; cyg_uint8 lsr; do { HAL_READ_UINT8(base+CYG_DEV_SERIAL_LSR, lsr); } while ((lsr & SIO_LSR_THRE) == 0); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_THR, c); // Hang around until the character has been safely sent. do { HAL_READ_UINT8(base+CYG_DEV_SERIAL_LSR, lsr); } while ((lsr & SIO_LSR_THRE) == 0); } static const channel_data_t channels[2] = { { (cyg_uint8*)CYG_DEV_SERIAL_BASE_A, 1000, CYGNUM_HAL_INTERRUPT_UART0}, #if (CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1) { (cyg_uint8*)CYG_DEV_SERIAL_BASE_B, 1000, CYGNUM_HAL_INTERRUPT_UART1}, #endif }; static void cyg_hal_var_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { while(__len-- > 0) cyg_hal_var_serial_putc(__ch_data, *__buf++); } static void cyg_hal_var_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { while(__len-- > 0) *__buf++ = cyg_hal_var_serial_getc(__ch_data); } cyg_bool cyg_hal_var_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_bool res; delay_count = chan->msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_var_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } return res; } static int cyg_hal_var_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_uint8 ier; int ret = 0; switch (__func) { case __COMMCTL_IRQ_ENABLE: HAL_INTERRUPT_UNMASK(chan->isr_vector); HAL_INTERRUPT_SET_LEVEL(chan->isr_vector, 1); HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); ier |= SIO_IER_ERDAI; HAL_WRITE_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); irq_state = 1; break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; HAL_INTERRUPT_MASK(chan->isr_vector); HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); ier &= ~SIO_IER_ERDAI; HAL_WRITE_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); break; case __COMMCTL_DBG_ISR_VECTOR: ret = chan->isr_vector; break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = chan->msec_timeout; chan->msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } default: break; } return ret; } static int cyg_hal_var_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { channel_data_t* chan = (channel_data_t*)__ch_data; cyg_uint8 _iir; int res = 0; HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_IIR, _iir); _iir &= SIO_IIR_ID_MASK; *__ctrlc = 0; if ( ISR_Rx == _iir ) { cyg_uint8 c, lsr; HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_LSR, lsr); if (lsr & SIO_LSR_DR) { HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_RBR, c); if( cyg_hal_is_break( &c , 1 ) ) *__ctrlc = 1; } // Acknowledge the interrupt HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector); res = CYG_ISR_HANDLED; } return res; } void cyg_hal_var_serial_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Disable interrupts. HAL_INTERRUPT_MASK(channels[0].isr_vector); #if (CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1) HAL_INTERRUPT_MASK(channels[1].isr_vector); #endif // Init channels init_serial_channel(&channels[0]); #if (CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1) init_serial_channel(&channels[1]); #endif // Setup procs in the vector table // Set channel 0 CYGACC_CALL_IF_SET_CONSOLE_COMM(0); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[0]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_var_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_var_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_var_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_var_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_var_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_var_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_var_serial_getc_timeout); #if (CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1) // Set channel 1 CYGACC_CALL_IF_SET_CONSOLE_COMM(1); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[1]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_var_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_var_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_var_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_var_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_var_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_var_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_var_serial_getc_timeout); #endif // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } // EOF hal_diag.c
Go to most recent revision | Compare with Previous | Blame | View Log