URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [synth/] [arch/] [current/] [src/] [synth_entry.c] - Rev 817
Go to most recent revision | Compare with Previous | Blame | View Log
//========================================================================== // // synth_entry.c // // Entry code for Linux synthetic target. // //========================================================================== // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002, 2005 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): proven // Contributors:proven, jskov, bartv // Date: 1999-01-06 // Purpose: Entry point for Linux synthetic target. // //####DESCRIPTIONEND#### // //========================================================================= #include <pkgconf/system.h> #include <pkgconf/hal.h> #include <cyg/infra/cyg_type.h> #include <cyg/infra/cyg_ass.h> #include <cyg/infra/diag.h> #include <cyg/hal/hal_arch.h> #include <cyg/hal/hal_intr.h> #include <cyg/hal/hal_io.h> #include CYGHWR_MEMORY_LAYOUT_H /*------------------------------------------------------------------------*/ /* C++ support - run initial constructors */ #ifdef CYGSEM_HAL_STOP_CONSTRUCTORS_ON_FLAG cyg_bool cyg_hal_stop_constructors; #endif typedef void (*pfunc) (void); extern pfunc __CTOR_LIST__[]; extern pfunc __CTOR_END__[]; void cyg_hal_invoke_constructors (void) { #ifdef CYGSEM_HAL_STOP_CONSTRUCTORS_ON_FLAG static pfunc *p = &__CTOR_END__[-1]; cyg_hal_stop_constructors = 0; for (; p >= __CTOR_LIST__; p--) { (*p) (); if (cyg_hal_stop_constructors) { p--; break; } } #else pfunc *p; for (p = &__CTOR_END__[-1]; p >= __CTOR_LIST__; p--) (*p) (); #endif } // ---------------------------------------------------------------------------- // The low-level entry point is platform-specific, typically in the // assember file vectors.S. However that entry point simply jumps // directly here, with no further processing or stack manipulation. // The HAL specification defines clearly what should happen during // startup. externC void cyg_start( void ); externC void synth_hardware_init(void); externC void synth_hardware_init2(void); void _linux_entry( void ) { // "Initialize various cpu status registers, including disabling interrupts." // That is a no-op for the synthetic target, in particular interrupts are // already disabled. // "Set up any CPU memory controller to access ROM, RAM, and I/O // devices correctly". The ROM and RAM are set up via the linker // script and taken care of automatically during loading. There // are no memory-mapped devices. Arguably the auxiliary should be // started up here, but instead that is left to platform // initialization. // "Enable the cache". Effectively the synthetic target has no cache, // anything provided by the hardware is not readily accessible. // "Set up the stack pointer". The system starts up a program with a // suitable stack. // "Initialize any global pointer register". There is no such register. // Perform platform-specific initialization. Actually, all Linux // platforms can share this. It involves setting up signal handlers, // starting the I/O auxiliary, and so on. synth_hardware_init(); // This is not a ROM startup, so no need to worry about copying the // .data section. // "Zero the .bss section". Linux will have done this for us. // "Create a suitable C stack frame". Already done. // Invoke the C++ constructors. cyg_hal_invoke_constructors(); // Once the C++ constructors have been invoked, a second stage // of hardware initialization is desirable. At this point all // eCos device drivers should have been initialized so the // I/O auxiliary will have loaded the appropriate support // scripts, and the auxiliary can now map the window(s) on to // the display and generally operate normally. synth_hardware_init2(); // "Call cyg_start()". OK. cyg_start(); // "Drop into an infinite loop". Not a good idea for the synthetic // target. Instead, exit. cyg_hal_sys_exit(0); } // ---------------------------------------------------------------------------- // Stub functions needed for linking with various versions of gcc // configured for Linux rather than i386-elf. #if (__GNUC__ < 3) // 2.95.x libgcc.a __pure_virtual() calls __write(). int __write(void) { return -1; } #endif #if (__GNUC__ >= 3) // Versions of gcc/g++ after 3.0 (approx.), when configured for Linux // native development (specifically, --with-__cxa_enable), have // additional dependencies related to the destructors for static // objects. When compiling C++ code with static objects the compiler // inserts a call to __cxa_atexit() with __dso_handle as one of the // arguments. __cxa_atexit() would normally be provided by glibc, and // __dso_handle is part of crtstuff.c. Synthetic target applications // are linked rather differently, so either a differently-configured // compiler is needed or dummy versions of these symbols should be // provided. If these symbols are not actually used then providing // them is still harmless, linker garbage collection will remove them. void __cxa_atexit(void (*arg1)(void*), void* arg2, void* arg3) { } void* __dso_handle = (void*) &__dso_handle; // gcc 3.2.2 (approx). The libsupc++ version of the new operator pulls // in exception handling code, even when using the nothrow version and // building with -fno-exceptions. libgcc_eh.a provides the necessary // functions, but requires a dl_iterate_phdr() function. That is related // to handling dynamically loaded code so is not applicable to eCos. int dl_iterate_phdr(void* arg1, void* arg2) { return -1; } #endif #if (__GNUC__ >= 4) // First noticed with gcc 4.1.1. There is now code to detect stack // smashing. void __attribute__ ((noreturn)) __stack_chk_fail_local(void) { CYG_FAIL("Stack smashing detected, aborting"); diag_printf("Application error: stack smashing detected.\n"); cyg_hal_sys_exit(1); for (;;); } // Another symbol which indicates a similar problem occurred. void __stack_chk_fail(void) { __stack_chk_fail_local(); } #endif //----------------------------------------------------------------------------- // End of entry.c
Go to most recent revision | Compare with Previous | Blame | View Log