URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [io/] [adc/] [current/] [doc/] [adc.sgml] - Rev 786
Compare with Previous | Blame | View Log
<!-- DOCTYPE part PUBLIC "-//OASIS//DTD DocBook V3.1//EN" -->
<!-- {{{ Banner -->
<!-- =============================================================== -->
<!-- -->
<!-- adc.sgml -->
<!-- -->
<!-- Generic ADC documentation. -->
<!-- -->
<!-- =============================================================== -->
<!-- ####ECOSDOCCOPYRIGHTBEGIN#### -->
<!-- =============================================================== -->
<!-- Copyright (C) 2008 Free Software Foundation, Inc. -->
<!-- This material may be distributed only subject to the terms -->
<!-- and conditions set forth in the Open Publication License, v1.0 -->
<!-- or later (the latest version is presently available at -->
<!-- http://www.opencontent.org/openpub/) -->
<!-- Distribution of the work or derivative of the work in any -->
<!-- standard (paper) book form is prohibited unless prior -->
<!-- permission obtained from the copyright holder -->
<!-- =============================================================== -->
<!-- ####ECOSDOCCOPYRIGHTEND#### -->
<!-- =============================================================== -->
<!-- #####DESCRIPTIONBEGIN#### -->
<!-- -->
<!-- Author(s): nickg -->
<!-- Date: 2008/05/12 -->
<!-- -->
<!-- ####DESCRIPTIONEND#### -->
<!-- =============================================================== -->
<!-- }}} -->
<part id="io-adc"><title>ADC Support</title>
<refentry id="adc">
<refmeta>
<refentrytitle>Overview</refentrytitle>
</refmeta>
<refnamediv>
<refname>Overview</refname>
<refpurpose>eCos Support for Analog/Digital Converters</refpurpose>
</refnamediv>
<refsect1 id="adc-intro"><title>Introduction</title>
<para>
ADC support in eCos is based around the standard character device
interface. Hence all device IO function, or file IO functions may be
used to access ADC devices.
</para>
<para>
ADC devices are presented as read-only serial channels that generate
samples at a given rate. The size of each sample is hardware specific
and is defined by the <type>cyg_adc_sample_t</type> type. The sample
rate may be set at runtime by the application. Most ADC devices
support several channels which are all sampled at the same
rate. Therefore setting the rate for one channel will usually change
the rate for all channels on that device.
</para>
</refsect1>
<refsect1 id="adc-examples"><title>Examples</title>
<para>
The use of the ADC devices is best shown by example. The following is
a simple example of using the eCos device interface to access the ADC:
</para>
<programlisting width=72>
int res;
cyg_io_handle_t handle;
// Get a handle for ADC device 0 channel 0
res = cyg_io_lookup( "/dev/adc00", &handle );
if( res != ENOERR )
handle_error(err);
for(;;)
{
cyg_adc_sample_t sample;
cyg_uint32 len = sizeof(sample);
// read a sample from the channel
res = cyg_io_read( handle, &sample, &len );
if( res != ENOERR )
handle_error(err);
use_sample( sample );
}
</programlisting>
<para>
In this example, the required channel is looked up and a handle on it
acquired. Conventionally ADC devices are named "/dev/adcXY" where X is
the device number and Y the channel within that device. Following
this, samples are read from the device sequentially.
</para>
<para>
ADC devices may also be accessed using FILEIO operations. These allow
more sophisticated usage. The following example shows
<function>select()</function> being used to gather samples from several devices.
</para>
<programlisting width=72>
int fd1, fd2;
// open channels, non-blocking
fd1 = open( "/dev/adc01", O_RDONLY|O_NONBLOCK );
fd2 = open( "/dev/adc02", O_RDONLY|O_NONBLOCK );
if( fd1 < 0 || fd2 < 0 )
handle_error( errno );
for(;;)
{
fd_set rd;
int maxfd = 0;
int err;
cyg_adc_sample_t samples[128];
int len;
FD_ZERO( &rd );
FD_SET( fd1, &rd );
FD_SET( fd2, &rd );
maxfd = max(fd1,fd2);
// select on available data on each channel.
err = select( maxfd+1, &rd, NULL, NULL, NULL );
if( err < 0 )
handle_error(errno);
// If channel 1 has data, handle it
if( FD_ISSET( fd1, &rd ) )
{
len = read( fd1, &samples, sizeof(samples) );
if( len > 0 )
handle_samples_chan1( &samples, len/sizeof(sample[0]) );
}
// If channel 2 has data, handle it
if( FD_ISSET( fd2, &rd ) )
{
len = read( fd2, &samples, sizeof(samples) );
if( len > 0 )
handle_samples_chan2( &samples, len/sizeof(sample[0]) );
}
}
</programlisting>
<para>
This test uses FILEIO operations to access ADC channels. It starts by
opening two channels for reading only and with blocking disabled. It
then falls into a loop using select to wake up whenever either channel
has samples available.
</para>
</refsect1>
<refsect1 id="adc-details"><title>Details</title>
<para>
As indicated, the main interface to ADC devices is via the standard
character device interface. However, there are a number of aspects
that are ADC specific.
</para>
<refsect2 id="adc-details-sample-t"><title>Sample Type</title>
<para>
Samples can vary in size depending on the underlying hardware and is
often a non-standard number of bits. The actual number of bits is
defined by the hardware driver package, and the generic ADC package
uses this to define a type <type>cyg_adc_sample_t</type> which can
contain at least the required number of bits. All reads from an ADC
channel should be expressed in multiples of this type, and actual
bytes read will also always be a multiple.
</para>
</refsect2>
<refsect2 id="adc-details-rate"><title>Sample Rate</title>
<para>
The sample rate of an ADC device can be varied by calling a
<function>set_config</function> function, either at the device IO API
level or at the FILEIO level. The following two functions show how
this is done at each:
</para>
<programlisting width=72>
int set_rate_io( cyg_io_handle_t handle, int rate )
{
cyg_adc_info_t info;
cyg_uint32 len = sizeof(info);
info.rate = rate;
return cyg_io_set_config( handle,
CYG_IO_SET_CONFIG_ADC_RATE,
&info,
&len);
}
int set_rate_fileio( int fd, int rate )
{
cyg_adc_info_t info;
info.rate = rate;
return cyg_fs_fsetinfo( fd,
CYG_IO_SET_CONFIG_ADC_RATE,
&info,
sizeof(info) );
}
</programlisting>
</refsect2>
<refsect2 id="adc-details-enable"><title>Enabling a Channel</title>
<para>
Channels are initialized in a disabled state and generate no
samples. When a channel is first looked up or opened, then it is
automatically enabled and samples start to accumulate. A channel may
then be disable or re-enabled via a <function>set_config</function>
function:
</para>
<programlisting width=72>
int disable_io( cyg_io_handle_t handle )
{
return cyg_io_set_config( handle,
CYG_IO_SET_CONFIG_ADC_DISABLE,
NULL,
NULL);
}
int enable_io( cyg_io_handle_t handle )
{
return cyg_io_set_config( handle,
CYG_IO_SET_CONFIG_ADC_ENABLE,
NULL,
NULL);
}
</programlisting>
</refsect2>
<refsect2 id="adc-details-flush"><title>Flushing a Channel</title>
<para>
In some particular cases, user might require to flush the ADC data buffer. Flushing
may be perfomed via a <function>set_config</function>
function:
</para>
<programlisting width=72>
int flush_io( cyg_io_handle_t handle )
{
return cyg_io_set_config( handle,
CYG_IO_SET_CONFIG_ADC_DATA_FLUSH,
NULL,
NULL);
}
</programlisting>
</refsect2>
</refsect1>
<refsect1 id="adc-config"><title>Configuration</title>
<para>
The ADC package defines a number of generic configuration options that
apply to all ADC implementations:
</para>
<variablelist>
<varlistentry><term>cdl_component CYGPKG_IO_ADC_DEVICES</term>
<listitem><para>
This option enables the hardware device drivers for the current
platform. ADC devices will only be enabled if this option is itself
enabled.
</para></listitem>
</varlistentry>
<varlistentry><term>cdl_option CYGNUM_IO_ADC_SAMPLE_SIZE</term>
<listitem><para>
This option defines the sample size for the ADC devices. Given in
bits, it will be rounded up to 8, 16 or 32 to define the
<type>cyg_adc_sample_t</type> type. This option is usually set by the
hardware device driver.
</para></listitem>
</varlistentry>
<varlistentry><term>cdl_option CYGPKG_IO_ADC_SELECT_SUPPORT</term>
<listitem><para>
This option enables support for the <function>select()</function> API
function on all ADC devices. This option can be disabled if the
<function>select()</function> is not used, saving some code and data
space.
</para></listitem>
</varlistentry>
</variablelist>
<para>
In addition to the generic options, each hardware device driver
defines some parameters for each device and channel. The exact names
of the following option depends on the hardware device driver, but
options of this form should be available in all drivers.
</para>
<variablelist>
<varlistentry><term>cdl_option CYGDAT_IO_ADC_EXAMPLE_CHANNELN_NAME</term>
<listitem><para>
This option specifies the name of the device for an ADC
channel. Channel names should be of the form "/dev/adcXY" where X is
the device number and Y the channel within that device.
</para></listitem>
</varlistentry>
<varlistentry><term>cdl_option CYGNUM_IO_ADC_EXAMPLE_CHANNELN_BUFSIZE</term>
<listitem><para>
This option specifies the buffer size for an ADC channel. The value is
expressed in multiples of <type>cyg_adc_sample_t</type> rather than
bytes. The default value is 128.
</para></listitem>
</varlistentry>
<varlistentry><term>cdl_option CYGNUM_IO_ADC_EXAMPLE_DEFAULT_RATE</term>
<listitem><para>
This option defines the initial default sample rate for all
channels. The hardware driver may place constraints on the range of
values this option may take.
</para></listitem>
</varlistentry>
</variablelist>
</refsect1>
</refentry>
<refentry id="adcdev">
<refmeta>
<refentrytitle>ADC Device Drivers</refentrytitle>
</refmeta>
<refnamediv>
<refname>Overview</refname>
<refpurpose>ADC Device Drivers</refpurpose>
</refnamediv>
<refsect1 id="adcdev-intro"><title>Introduction</title>
<para>
This section describes how to write an ADC hardware device. While
users of ADC devices do not need to read it, it may provide added
insight into how the devices work.
</para>
</refsect1>
<refsect1 id="adcdev-data"><title>Data Structures</title>
<para>
An ADC hardware driver is represented by a number of data
structures. These are generic <literal>device</literal> and
<literal>channel</literal> data structures, a driver private device
data structure, a generic character device table entry and a driver
function table. Most of these structures are instantiated using
macros, which will be described here.
</para>
<para>
The data structure instantiation for a typical single device, four
channel ADC would look like this:
</para>
<programlisting width=72>
//==========================================================================
// Instantiate data structures
// -------------------------------------------------------------------------
// Driver functions:
CYG_ADC_FUNCTIONS( example_adc_funs,
example_adc_enable,
example_adc_disable,
example_adc_set_rate );
// -------------------------------------------------------------------------
// Device instance:
static example_adc_info example_adc_info0 =
{
.base = CYGARC_HAL_EXAMPLE_ADC_BASE,
.vector = CYGNUM_HAL_INTERRUPT_ADC
};
CYG_ADC_DEVICE( example_adc_device,
&example_adc_funs,
&example_adc_info0,
CYGNUM_IO_ADC_EXAMPLE_DEFAULT_RATE );
// -------------------------------------------------------------------------
// Channel instances:
#define EXAMPLE_ADC_CHANNEL( __chan ) \
CYG_ADC_CHANNEL( example_adc_channel##__chan, \
__chan, \
CYGNUM_IO_ADC_EXAMPLE_CHANNEL##__chan##_BUFSIZE, \
&example_adc_device ); \
\
DEVTAB_ENTRY( example_adc_channel##__chan##_device, \
CYGDAT_IO_ADC_EXAMPLE_CHANNEL##__chan##_NAME, \
0, \
&cyg_io_adc_devio, \
example_adc_init, \
example_adc_lookup, \
&example_adc_channel##__chan );
EXAMPLE_ADC_CHANNEL( 0 );
EXAMPLE_ADC_CHANNEL( 1 );
EXAMPLE_ADC_CHANNEL( 2 );
EXAMPLE_ADC_CHANNEL( 3 );
</programlisting>
<para>
The macro <literal>CYG_ADC_FUNCTIONS()</literal> instantiates a
function table called <varname>example_adc_funs</varname> and
populates it with the ADC driver functions (see later for details).
</para>
<para>
Then an instance of the driver private device data structure is
instantiated. In addition to the device base address and interrupt
vector shown here, this stucture should contain the interrupt object
and handle for attaching to the vector. It may also contain any other
variables needed to manage the device.
</para>
<para>
The macro <literal>CYG_ADC_DEVICE()</literal> instantiates a
<structname>cyg_adc_device</structname> structure, named
<varname>example_adc_device</varname> which will contain pointers to
the function table and private data structure. The initial sample rate
is also supplied here.
</para>
<para>
For each channel, an ADC channel structure and a device table entry
must be created. The macro <literal>EXAMPLE_ADC_CHANNEL()</literal> is
defined to simplify this process. The macro
<literal>CYG_ADC_CHANNEL</literal> defines a
<structname>cyg_adc_channel</structname> structure, which contains the
channel number, the buffer size, and a pointer to the device object
defined earlier. The call to <literal>DEVTAB_ENTRY()</literal>
generates a device table entry containing the configured channel name,
a pointer to a device function table defined in the generic ADC
driver, pointers to init and lookup functions implemented here, and a
pointer to the channel data structure just defined.
</para>
<para>
Finally, four channels, numbered 0 to 3 are created.
</para>
</refsect1>
<refsect1 id="adcdev-functions"><title>Functions</title>
<para>
There are several classes of function that need to be defined in an
ADC driver. These are those function that go into the channel's device
table, those that go into the ADC device's function table, calls that
the driver makes into the generic ADC package, and interrupt handling
functions.
</para>
<refsect2 id="adcdev-functions-devtab"><title>Device Table Functions</title>
<para>
These functions are placed in the standard device table entry for each
channel and handle initialization and location of the device within
the generic driver infrastructure.
</para>
<para>
<function>static bool example_adc_init(struct cyg_devtab_entry *tab)</function>
This function is called from the device IO infrastructure to
initialize the device. It should perform any work needed to start up
the device, short of actually starting the generation of samples. This
function will be called for each channel, so if there is
initialization that only needs to be done once, such as creating an
interrupt object, then care should be taken to do this. This function
should also call <function>cyg_adc_device_init()</function> to
initialize the generic parts of the driver.
</para>
<para>
<function>static Cyg_ErrNo example_adc_lookup(struct cyg_devtab_entry **tab, struct cyg_devtab_entry *sub_tab, const char *name)</function>
This function is called when a client looks up or opens a channel. It
should call <function>cyg_adc_channel_init()</function> to initialize
the generic part of the channel. It should also perform any operations
needed to start the channel generating samples.
</para>
</refsect2>
<refsect2 id="adcdev-functions-driver"><title>Driver Functions</title>
<para>
These are the functions installed into the driver function table by
the <literal>CYG_ADC_FUNCTIONS()</literal> macro.
</para>
<para>
<function>static void example_adc_enable( cyg_adc_channel *chan )</function>
This function is called from the generic ADC package to enable the
channel in response to a
<literal>CYG_IO_SET_CONFIG_ADC_ENABLE</literal> config operation. It
should take any steps needed to start the channel generating samples.
</para>
<para>
<function>static void example_adc_disable( cyg_adc_channel *chan )</function>
This function is called from the generic ADC package to enable the
channel in response to a
<literal>CYG_IO_SET_CONFIG_ADC_DISABLE</literal> config operation. It
should take any steps needed to stop the channel generating samples.
</para>
<para>
<function>static void example_adc_set_rate( cyg_adc_channel *chan, cyg_uint32 rate )</function>
This function is called from the generic ADC package to enable the
channel in response to a <literal>CYG_IO_SET_CONFIG_ADC_RATE</literal>
config operation. It should take any steps needed to change the sample
rate of the channel, or of the entire device.
</para>
</refsect2>
<refsect2 id="adcdev-functions-generic"><title>Generic Package Functions</title>
<para>
These functions are called by a hardware ADC device driver to perform
operations in the generic ADC package.
</para>
<para>
<function>__externC void cyg_adc_device_init( cyg_adc_device *device )</function>
This function is called from the driver's init function and is used to
initialize the <type>cyg_adc_device</type> object.
</para>
<para>
<function>__externC void cyg_adc_channel_init(cyg_adc_channel *chan)</function>
This function is called from the driver's lookup function and is used
to initialize the <type>cyg_adc_channel</type> object.
</para>
<para>
<function>__externC cyg_uint32 cyg_adc_receive_sample(cyg_adc_channel *chan, cyg_adc_sample_t sample)</function>
This function is called from the driver's ISR to add a new sample to
the buffer. The return value will be either zero, or
<literal>CYG_ISR_CALL_DSR</literal> and should be ORed with the return
value of the ISR.
</para>
<para>
<function>__externC void cyg_adc_wakeup(cyg_adc_channel *chan )</function>
This function is called from the driver's DSR to cause any threads
waiting for data to wake up when a new sample is available. It should
only be called if the <structfield>wakeup</structfield> field of the
channel object is <literal>true</literal>.
</para>
</refsect2>
<refsect2 id="adcdev-functions-interrupt"><title>Interrupt Functions</title>
<para>
These functions are internal to the driver, but make calls on generic
package functions. Typically an ADC device will have a single
interrupt vector with which it signals available samples on the
channels and any error conditions such as overruns.
</para>
<para>
<function>static cyg_uint32 example_adc_isr(cyg_vector_t vector, cyg_addrword_t data)</function>
This function is the ISR attached to the ADC device's interrupt
vector. It is responsible for reading samples from the channels and
passing them on to the generic layer. It needs to check each channel
for data, and call <function>cyg_adc_receive_sample()</function> for
each new sample available, and then ready the device for the next
interrupt. It's activities are best explained by example:
</para>
<programlisting width=72>
static cyg_uint32 example_adc_isr(cyg_vector_t vector, cyg_addrword_t data)
{
cyg_adc_device *example_device = (cyg_adc_device *) data;
example_adc_info *example_info = example_device->dev_priv;
cyg_uint32 res = 0;
int i;
// Deal with errors if necessary
DEVICE_CHECK_ERRORS( example_info );
// Look for all channels with data available
for( i = 0; i < CHANNEL_COUNT; i++ )
{
if( CHANNEL_SAMPLE_AVALIABLE(i) )
{
// Fetch data from this channel and pass up to higher
// level.
cyg_adc_sample_t data = CHANNEL_GET_SAMPLE(i);
res |= CYG_ISR_HANDLED | cyg_adc_receive_sample( example_info->channel[i], data );
}
}
// Clear any interrupt conditions
DEVICE_CLEAR_INTERRUPTS( example_info );
cyg_drv_interrupt_acknowledge(example_info->vector);
return res;
}
</programlisting>
<para>
<function>static void example_adc_dsr(cyg_vector_t vector, cyg_ucount32 count, cyg_addrword_t data)</function>
This function is the DSR attached to the ADC device's interrupt
vector. It is called by the kernel if the ISR return value contains
the <literal>CYG_ISR_HANDLED</literal> bit. It needs to call
<function>cyg_adc_wakeup()</function> for each channel that has its
<structfield>wakeup</structfield> field set. Again, and example should
make it all clear:
</para>
<programlisting width=72>
static void example_adc_dsr(cyg_vector_t vector, cyg_ucount32 count, cyg_addrword_t data)
{
cyg_adc_device *example_device = (cyg_adc_device *) data;
example_adc_info *example_info = example_device->dev_priv;
int i;
// Look for all channels with pending wakeups
for( i = 0; i < CHANNEL_COUNT; i++ )
{
if( example_info->channel[i]->wakeup )
cyg_adc_wakeup( example_info->channel[i] );
}
}
</programlisting>
</refsect2>
</refsect1>
</refentry>
</part>