URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [freertos-6.1.1/] [Demo/] [CORTEX_STM32F107_GCC_Rowley/] [main.c] - Rev 676
Go to most recent revision | Compare with Previous | Blame | View Log
/* FreeRTOS V6.1.1 - Copyright (C) 2011 Real Time Engineers Ltd. *************************************************************************** * * * If you are: * * * * + New to FreeRTOS, * * + Wanting to learn FreeRTOS or multitasking in general quickly * * + Looking for basic training, * * + Wanting to improve your FreeRTOS skills and productivity * * * * then take a look at the FreeRTOS books - available as PDF or paperback * * * * "Using the FreeRTOS Real Time Kernel - a Practical Guide" * * http://www.FreeRTOS.org/Documentation * * * * A pdf reference manual is also available. Both are usually delivered * * to your inbox within 20 minutes to two hours when purchased between 8am * * and 8pm GMT (although please allow up to 24 hours in case of * * exceptional circumstances). Thank you for your support! * * * *************************************************************************** This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation AND MODIFIED BY the FreeRTOS exception. ***NOTE*** The exception to the GPL is included to allow you to distribute a combined work that includes FreeRTOS without being obliged to provide the source code for proprietary components outside of the FreeRTOS kernel. FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License and the FreeRTOS license exception along with FreeRTOS; if not it can be viewed here: http://www.freertos.org/a00114.html and also obtained by writing to Richard Barry, contact details for whom are available on the FreeRTOS WEB site. 1 tab == 4 spaces! http://www.FreeRTOS.org - Documentation, latest information, license and contact details. http://www.SafeRTOS.com - A version that is certified for use in safety critical systems. http://www.OpenRTOS.com - Commercial support, development, porting, licensing and training services. */ /* * Creates all the demo application tasks, then starts the scheduler. The WEB * documentation provides more details of the standard demo application tasks * (which just exist to test the kernel port and provide an example of how to use * each FreeRTOS API function). * * In addition to the standard demo tasks, the following tasks and tests are * defined and/or created within this file: * * "LCD" task - the LCD task is a 'gatekeeper' task. It is the only task that * is permitted to access the display directly. Other tasks wishing to write a * message to the LCD send the message on a queue to the LCD task instead of * accessing the LCD themselves. The LCD task just blocks on the queue waiting * for messages - waking and displaying the messages as they arrive. The use * of a gatekeeper in this manner permits both tasks and interrupts to write to * the LCD without worrying about mutual exclusion. This is demonstrated by the * check hook (see below) which sends messages to the display even though it * executes from an interrupt context. * * "Check" hook - This only executes fully every five seconds from the tick * hook. Its main function is to check that all the standard demo tasks are * still operational. Should any unexpected behaviour be discovered within a * demo task then the tick hook will write an error to the LCD (via the LCD task). * If all the demo tasks are executing with their expected behaviour then the * check task writes PASS to the LCD (again via the LCD task), as described above. * * LED tasks - These just demonstrate how multiple instances of a single task * definition can be created. Each LED task simply toggles an LED. The task * parameter is used to pass the number of the LED to be toggled into the task. * * "uIP" task - This is the task that handles the uIP stack. All TCP/IP * processing is performed in this task. * * "Fast Interrupt Test" - A high frequency periodic interrupt is generated * using a free running timer to demonstrate the use of the * configKERNEL_INTERRUPT_PRIORITY configuration constant. The interrupt * service routine measures the number of processor clocks that occur between * each interrupt - and in so doing measures the jitter in the interrupt timing. * The maximum measured jitter time is latched in the ulMaxJitter variable, and * displayed on the OLED display by the 'OLED' task as described below. The * fast interrupt is configured and handled in the timertest.c source file. * */ /* Standard includes. */ #include <stdio.h> /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" #include "queue.h" #include "semphr.h" /* Library includes. */ #include "stm32f10x_it.h" #include "stm32f10x_tim.h" #include "STM3210D_lcd.h" /* Demo app includes. */ #include "BlockQ.h" #include "integer.h" #include "flash.h" #include "partest.h" #include "semtest.h" #include "PollQ.h" #include "GenQTest.h" #include "QPeek.h" #include "recmutex.h" /* The time between cycles of the 'check' functionality (defined within the tick hook. */ #define mainCHECK_DELAY ( ( portTickType ) 5000 / portTICK_RATE_MS ) /* Task priorities. */ #define mainQUEUE_POLL_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 ) #define mainBLOCK_Q_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainUIP_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) #define mainFLASH_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainLCD_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 ) #define mainINTEGER_TASK_PRIORITY ( tskIDLE_PRIORITY ) #define mainGEN_QUEUE_TASK_PRIORITY ( tskIDLE_PRIORITY ) /* The WEB server has a larger stack as it utilises stack hungry string handling library calls. */ #define mainBASIC_WEB_STACK_SIZE ( configMINIMAL_STACK_SIZE * 4 ) /* The length of the queue used to send messages to the LCD task. */ #define mainQUEUE_SIZE ( 3 ) /* The period of the system clock in nano seconds. This is used to calculate the jitter time in nano seconds. */ #define mainNS_PER_CLOCK ( ( unsigned long ) ( ( 1.0 / ( double ) configCPU_CLOCK_HZ ) * 1000000000.0 ) ) /*-----------------------------------------------------------*/ /* * Configure the hardware for the demo. */ static void prvSetupHardware( void ); /* * Very simple task that toggles an LED. */ static void prvLCDTask( void *pvparameters ); /* * The task that handles the uIP stack. All TCP/IP processing is performed in * this task. */ extern void vuIP_Task( void *pvParameters ); /* * The LCD gatekeeper task as described in the comments at the top of this file. * */ static void prvLCDTask( void *pvParameters ); /* * Configures the high frequency timers - those used to measure the timing * jitter while the real time kernel is executing. */ extern void vSetupHighFrequencyTimer( void ); /*-----------------------------------------------------------*/ /* The queue used to send messages to the LCD task. */ xQueueHandle xLCDQueue; /*-----------------------------------------------------------*/ int main( void ) { #ifdef DEBUG debug(); #endif prvSetupHardware(); /* Start the standard demo tasks. These are just here to exercise the kernel port and provide examples of how the FreeRTOS API can be used. */ vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY ); vStartSemaphoreTasks( mainSEM_TEST_PRIORITY ); vStartPolledQueueTasks( mainQUEUE_POLL_PRIORITY ); vStartIntegerMathTasks( mainINTEGER_TASK_PRIORITY ); vStartGenericQueueTasks( mainGEN_QUEUE_TASK_PRIORITY ); vStartLEDFlashTasks( mainFLASH_TASK_PRIORITY ); vStartQueuePeekTasks(); vStartRecursiveMutexTasks(); /* Create the uIP task. The WEB server runs in this task. */ xTaskCreate( vuIP_Task, ( signed char * ) "uIP", mainBASIC_WEB_STACK_SIZE, ( void * ) NULL, mainUIP_TASK_PRIORITY, NULL ); /* Create the queue used by the LCD task. Messages for display on the LCD are received via this queue. */ xLCDQueue = xQueueCreate( mainQUEUE_SIZE, sizeof( char * ) ); /* Start the LCD gatekeeper task - as described in the comments at the top of this file. */ xTaskCreate( prvLCDTask, ( signed char * ) "LCD", configMINIMAL_STACK_SIZE * 2, NULL, mainLCD_TASK_PRIORITY, NULL ); /* Configure the high frequency interrupt used to measure the interrupt jitter time. When debugging it can be helpful to comment this line out to prevent the debugger repeatedly going into the interrupt service routine. */ vSetupHighFrequencyTimer(); /* Start the scheduler. */ vTaskStartScheduler(); /* Will only get here if there was insufficient memory to create the idle task. The idle task is created within vTaskStartScheduler(). */ for( ;; ); } /*-----------------------------------------------------------*/ static void prvLCDTask( void *pvParameters ) { unsigned char *pucMessage; unsigned long ulLine = Line3; const unsigned long ulLineHeight = 24; static char cMsgBuf[ 30 ]; extern unsigned short usMaxJitter; ( void ) pvParameters; /* The LCD gatekeeper task as described in the comments at the top of this file. */ /* Initialise the LCD and display a startup message that includes the configured IP address. */ STM3210D_LCD_Init(); LCD_Clear(White); LCD_SetTextColor(Green); LCD_DisplayStringLine( Line0, ( unsigned char * ) " www.FreeRTOS.org" ); LCD_SetTextColor(Blue); sprintf( cMsgBuf, " %d.%d.%d.%d", configIP_ADDR0, configIP_ADDR1, configIP_ADDR2, configIP_ADDR3 ); LCD_DisplayStringLine( Line1, ( unsigned char * ) cMsgBuf ); LCD_SetTextColor(Black); for( ;; ) { /* Wait for a message to arrive to be displayed. */ xQueueReceive( xLCDQueue, &pucMessage, portMAX_DELAY ); /* Clear the current line of text. */ LCD_ClearLine( ulLine ); /* Move on to the next line. */ ulLine += ulLineHeight; if( ulLine > Line9 ) { ulLine = Line3; } /* Display the received text, and the max jitter value. */ sprintf( cMsgBuf, "%s [%uns]", pucMessage, usMaxJitter * mainNS_PER_CLOCK ); LCD_DisplayStringLine( ulLine, ( unsigned char * ) cMsgBuf ); } } /*-----------------------------------------------------------*/ static void prvSetupHardware( void ) { /* Start with the clocks in their expected state. */ RCC_DeInit(); /* Enable HSE (high speed external clock). */ RCC_HSEConfig( RCC_HSE_ON ); /* Wait till HSE is ready. */ while( RCC_GetFlagStatus( RCC_FLAG_HSERDY ) == RESET ) { } /* 2 wait states required on the flash. */ *( ( unsigned long * ) 0x40022000 ) = 0x02; /* HCLK = SYSCLK */ RCC_HCLKConfig( RCC_SYSCLK_Div1 ); /* PCLK2 = HCLK */ RCC_PCLK2Config( RCC_HCLK_Div1 ); /* PCLK1 = HCLK/2 */ RCC_PCLK1Config( RCC_HCLK_Div2 ); /* PLLCLK = (25MHz / 2 ) * 5 = 62.5 MHz. */ RCC_PLLConfig( RCC_PLLSource_HSE_Div2, RCC_PLLMul_5 ); /* Enable PLL. */ RCC_PLLCmd( ENABLE ); /* Wait till PLL is ready. */ while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } /* Select PLL as system clock source. */ RCC_SYSCLKConfig( RCC_SYSCLKSource_PLLCLK ); /* Wait till PLL is used as system clock source. */ while( RCC_GetSYSCLKSource() != 0x08 ) { } /* Enable GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and AFIO clocks */ RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE ); /* Set the Vector Table base address at 0x08000000 */ NVIC_SetVectorTable( NVIC_VectTab_FLASH, 0x0 ); NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4 ); /* Configure HCLK clock as SysTick clock source. */ SysTick_CLKSourceConfig( SysTick_CLKSource_HCLK ); /* Initialise the IO used for the LED outputs. */ vParTestInitialise(); } /*-----------------------------------------------------------*/ void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) { /* This function will get called if a task overflows its stack. If the parameters are corrupt then inspect pxCurrentTCB to find which was the offending task. */ ( void ) pxTask; ( void ) pcTaskName; for( ;; ); } /*-----------------------------------------------------------*/ void vApplicationTickHook( void ) { char *pcMessage = "Status: PASS"; static unsigned long ulTicksSinceLastDisplay = 0; portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; /* Called from every tick interrupt as described in the comments at the top of this file. Have enough ticks passed to make it time to perform our health status check again? */ ulTicksSinceLastDisplay++; if( ulTicksSinceLastDisplay >= mainCHECK_DELAY ) { /* Reset the counter so these checks run again in mainCHECK_DELAY ticks time. */ ulTicksSinceLastDisplay = 0; /* Has an error been found in any task? */ if( xAreGenericQueueTasksStillRunning() != pdTRUE ) { pcMessage = "ERROR: GEN Q"; } else if( xAreQueuePeekTasksStillRunning() != pdTRUE ) { pcMessage = "ERROR: PEEK Q"; } else if( xAreBlockingQueuesStillRunning() != pdTRUE ) { pcMessage = "ERROR: BLOCK Q"; } else if( xAreSemaphoreTasksStillRunning() != pdTRUE ) { pcMessage = "ERROR: SEMAPHR"; } else if( xArePollingQueuesStillRunning() != pdTRUE ) { pcMessage = "ERROR: POLL Q"; } else if( xAreIntegerMathsTaskStillRunning() != pdTRUE ) { pcMessage = "ERROR: INT MATH"; } else if( xAreRecursiveMutexTasksStillRunning() != pdTRUE ) { pcMessage = "ERROR: REC MUTEX"; } /* Send the message to the OLED gatekeeper for display. The xHigherPriorityTaskWoken parameter is not actually used here as this function is running in the tick interrupt anyway - but it must still be supplied. */ xHigherPriorityTaskWoken = pdFALSE; xQueueSendFromISR( xLCDQueue, &pcMessage, &xHigherPriorityTaskWoken ); } } /*-----------------------------------------------------------*/
Go to most recent revision | Compare with Previous | Blame | View Log