URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [freertos-6.1.1/] [Demo/] [MB91460_Softune/] [SRC/] [main.c] - Rev 584
Compare with Previous | Blame | View Log
/* FreeRTOS V6.1.1 - Copyright (C) 2011 Real Time Engineers Ltd. *************************************************************************** * * * If you are: * * * * + New to FreeRTOS, * * + Wanting to learn FreeRTOS or multitasking in general quickly * * + Looking for basic training, * * + Wanting to improve your FreeRTOS skills and productivity * * * * then take a look at the FreeRTOS books - available as PDF or paperback * * * * "Using the FreeRTOS Real Time Kernel - a Practical Guide" * * http://www.FreeRTOS.org/Documentation * * * * A pdf reference manual is also available. Both are usually delivered * * to your inbox within 20 minutes to two hours when purchased between 8am * * and 8pm GMT (although please allow up to 24 hours in case of * * exceptional circumstances). Thank you for your support! * * * *************************************************************************** This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation AND MODIFIED BY the FreeRTOS exception. ***NOTE*** The exception to the GPL is included to allow you to distribute a combined work that includes FreeRTOS without being obliged to provide the source code for proprietary components outside of the FreeRTOS kernel. FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License and the FreeRTOS license exception along with FreeRTOS; if not it can be viewed here: http://www.freertos.org/a00114.html and also obtained by writing to Richard Barry, contact details for whom are available on the FreeRTOS WEB site. 1 tab == 4 spaces! http://www.FreeRTOS.org - Documentation, latest information, license and contact details. http://www.SafeRTOS.com - A version that is certified for use in safety critical systems. http://www.OpenRTOS.com - Commercial support, development, porting, licensing and training services. */ /* * Creates all the demo application tasks, then starts the scheduler. The WEB * documentation provides more details of the demo application tasks. * * In addition to the standard demo tasks, the follow demo specific tasks are * create: * * The "Check" task. This only executes every three seconds but has the highest * priority so is guaranteed to get processor time. Its main function is to * check that all the other tasks are still operational. Most tasks maintain * a unique count that is incremented each time the task successfully completes * its function. Should any error occur within such a task the count is * permanently halted. The check task inspects the count of each task to ensure * it has changed since the last time the check task executed. If all the count * variables have changed all the tasks are still executing error free, and the * check task toggles the onboard LED. Should any task contain an error at any time * the LED toggle rate will change from 3 seconds to 500ms. * * The "Register Check" tasks. These tasks fill the CPU registers with known * values, then check that each register still contains the expected value 0 the * discovery of an unexpected value being indicative of an error in the RTOS * context switch mechanism. The register check tasks operate at low priority * so are switched in and out frequently. * * The "Trace Utility" task. This can be used to obtain trace and debug * information via UART5. */ /* Hardware specific includes. */ #include "mb91467d.h" #include "vectors.h" #include "watchdog.h" /* Scheduler includes. */ #include "FreeRTOS.h" #include "task.h" /* Demo app includes. */ #include "flash.h" #include "integer.h" #include "comtest2.h" #include "semtest.h" #include "BlockQ.h" #include "dynamic.h" #include "flop.h" #include "GenQTest.h" #include "QPeek.h" #include "blocktim.h" #include "death.h" #include "taskutility.h" #include "partest.h" #include "crflash.h" /* Demo task priorities. */ #define mainWATCHDOG_TASK_PRIORITY ( tskIDLE_PRIORITY + 5 ) #define mainCHECK_TASK_PRIORITY ( tskIDLE_PRIORITY + 4 ) #define mainUTILITY_TASK_PRIORITY ( tskIDLE_PRIORITY ) #define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 3 ) #define mainCOM_TEST_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainQUEUE_BLOCK_PRIORITY ( tskIDLE_PRIORITY + 2 ) #define mainDEATH_PRIORITY ( tskIDLE_PRIORITY + 1 ) #define mainLED_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 ) #define mainGENERIC_QUEUE_PRIORITY ( tskIDLE_PRIORITY ) /* Baud rate used by the COM test tasks. */ #define mainCOM_TEST_BAUD_RATE ( ( unsigned portLONG ) 19200 ) /* The frequency at which the 'Check' tasks executes. See the comments at the top of the page. When the system is operating error free the 'Check' task toggles an LED every three seconds. If an error is discovered in any task the rate is increased to 500 milliseconds. [in this case the '*' characters on the LCD represent LEDs]*/ #define mainNO_ERROR_CHECK_DELAY ( ( portTickType ) 3000 / portTICK_RATE_MS ) #define mainERROR_CHECK_DELAY ( ( portTickType ) 500 / portTICK_RATE_MS ) /* The total number of LEDs available. */ #define mainNO_CO_ROUTINE_LEDs ( 8 ) /* The first LED used by the comtest tasks. */ #define mainCOM_TEST_LED ( 0x05 ) /* The LED used by the check task. */ #define mainCHECK_TEST_LED ( 0x07 ) /* The number of interrupt levels to use. */ #define mainINTERRUPT_LEVELS ( 31 ) /* The number of 'flash' co-routines to create - each toggles a different LED. */ #define mainNUM_FLASH_CO_ROUTINES ( 8 ) /*---------------------------------------------------------------------------*/ /* * The function that implements the Check task. See the comments at the head * of the page for implementation details. */ static void prvErrorChecks( void *pvParameters ); /* * Called by the Check task. Returns pdPASS if all the other tasks are found * to be operating without error - otherwise returns pdFAIL. */ static portSHORT prvCheckOtherTasksAreStillRunning( void ); /* * Setup the microcontroller as used by this demo. */ static void prvSetupHardware( void ); /* * Tasks that test the context switch mechanism by filling the CPU registers * with known values then checking that each register contains the value * expected. Each of the two tasks use different values, and as low priority * tasks, get swapped in and out regularly. */ static void vFirstRegisterTestTask( void *pvParameters ); static void vSecondRegisterTestTask( void *pvParameters ); /*---------------------------------------------------------------------------*/ /* The variable that is set to true should an error be found in one of the register test tasks. */ unsigned portLONG ulRegTestError = pdFALSE; /*---------------------------------------------------------------------------*/ /* Start all the demo application tasks, then start the scheduler. */ void main(void) { /* Initialise the hardware ready for the demo. */ prvSetupHardware(); /* Start the standard demo application tasks. */ vStartLEDFlashTasks( mainLED_TASK_PRIORITY ); vStartIntegerMathTasks( tskIDLE_PRIORITY ); vAltStartComTestTasks( mainCOM_TEST_PRIORITY, mainCOM_TEST_BAUD_RATE, mainCOM_TEST_LED - 1 ); vStartSemaphoreTasks( mainSEM_TEST_PRIORITY ); vStartBlockingQueueTasks ( mainQUEUE_BLOCK_PRIORITY ); vStartDynamicPriorityTasks(); vStartMathTasks( tskIDLE_PRIORITY ); vStartGenericQueueTasks( mainGENERIC_QUEUE_PRIORITY ); vStartQueuePeekTasks(); vCreateBlockTimeTasks(); vStartFlashCoRoutines( mainNUM_FLASH_CO_ROUTINES ); /* Start the 'Check' task which is defined in this file. */ xTaskCreate( prvErrorChecks, ( signed portCHAR * ) "Check", configMINIMAL_STACK_SIZE, NULL, mainCHECK_TASK_PRIORITY, NULL ); /* Start the 'Register Test' tasks as described at the top of this file. */ xTaskCreate( vFirstRegisterTestTask, ( signed portCHAR * ) "Reg1", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); xTaskCreate( vSecondRegisterTestTask, ( signed portCHAR * ) "Reg2", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); /* Start the task that write trace information to the UART. */ vUtilityStartTraceTask( mainUTILITY_TASK_PRIORITY ); /* If we are going to service the watchdog from within a task, then create the task here. */ #if WATCHDOG == WTC_IN_TASK vStartWatchdogTask( mainWATCHDOG_TASK_PRIORITY ); #endif /* The suicide tasks must be started last as they record the number of other tasks that exist within the system. The value is then used to ensure at run time the number of tasks that exists is within expected bounds. */ vCreateSuicidalTasks( mainDEATH_PRIORITY ); /* Now start the scheduler. Following this call the created tasks should be executing. */ vTaskStartScheduler( ); /* vTaskStartScheduler() will only return if an error occurs while the idle task is being created. */ for( ;; ); } /*-----------------------------------------------------------*/ static void prvErrorChecks( void *pvParameters ) { portTickType xDelayPeriod = mainNO_ERROR_CHECK_DELAY, xLastExecutionTime; /* Initialise xLastExecutionTime so the first call to vTaskDelayUntil() works correctly. */ xLastExecutionTime = xTaskGetTickCount(); /* Cycle for ever, delaying then checking all the other tasks are still operating without error. */ for( ;; ) { /* Wait until it is time to check again. The time we wait here depends on whether an error has been detected or not. When an error is detected the time is shortened resulting in a faster LED flash rate. */ /* Perform this check every mainCHECK_DELAY milliseconds. */ vTaskDelayUntil( &xLastExecutionTime, xDelayPeriod ); /* See if the other tasks are all ok. */ if( prvCheckOtherTasksAreStillRunning() != pdPASS ) { /* An error occurred in one of the tasks so shorten the delay period - which has the effect of increasing the frequency of the LED toggle. */ xDelayPeriod = mainERROR_CHECK_DELAY; } /* Flash! */ vParTestToggleLED( mainCHECK_TEST_LED ); } } /*-----------------------------------------------------------*/ static portSHORT prvCheckOtherTasksAreStillRunning( void ) { portBASE_TYPE lReturn = pdPASS; /* The demo tasks maintain a count that increments every cycle of the task provided that the task has never encountered an error. This function checks the counts maintained by the tasks to ensure they are still being incremented. A count remaining at the same value between calls therefore indicates that an error has been detected. */ if( xAreIntegerMathsTaskStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xAreComTestTasksStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xAreSemaphoreTasksStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xAreBlockingQueuesStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xAreDynamicPriorityTasksStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xAreMathsTaskStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xIsCreateTaskStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if( xAreBlockTimeTestTasksStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if ( xAreGenericQueueTasksStillRunning() != pdTRUE ) { lReturn = pdFAIL; } if ( xAreQueuePeekTasksStillRunning() != pdTRUE ) { lReturn = pdFAIL; } /* Have the register test tasks found any errors? */ if( ulRegTestError != pdFALSE ) { lReturn = pdFAIL; } return lReturn; } /*-----------------------------------------------------------*/ static void prvSetupHardware( void ) { /* Allow all interrupt levels. */ __set_il( mainINTERRUPT_LEVELS ); /* Initialise interrupts. */ InitIrqLevels(); /* Initialise the ports used by the LEDs. */ vParTestInitialise(); /* If we are going to use the watchdog, then initialise it now. */ #if WATCHDOG != WTC_NONE InitWatchdog(); #endif } /*-----------------------------------------------------------*/ /* Idle hook function. */ #if configUSE_IDLE_HOOK == 1 void vApplicationIdleHook( void ) { /* Are we using the idle task to kick the watchdog? See watchdog.h for watchdog kicking options. Note this is for demonstration only and is not a suggested method of servicing the watchdog in a real application. */ #if WATCHDOG == WTC_IN_IDLE Kick_Watchdog(); #endif vCoRoutineSchedule(); } #else #if WATCHDOG == WTC_IN_IDLE #error configUSE_IDLE_HOOK must be set to 1 in FreeRTOSConfig.h if the watchdog is being cleared in the idle task hook. #endif #endif /*-----------------------------------------------------------*/ /* Tick hook function. */ #if configUSE_TICK_HOOK == 1 void vApplicationTickHook( void ) { /* Are we using the tick to kick the watchdog? See watchdog.h for watchdog kicking options. Note this is for demonstration only and is not a suggested method of servicing the watchdog in a real application. */ #if WATCHDOG == WTC_IN_TICK Kick_Watchdog(); #endif } #else #if WATCHDOG == WTC_IN_TICK #error configUSE_TICK_HOOK must be set to 1 in FreeRTOSConfig.h if the watchdog is being cleared in the tick hook. #endif #endif /*-----------------------------------------------------------*/ static void vFirstRegisterTestTask( void *pvParameters ) { extern volatile unsigned portLONG ulCriticalNesting; /* Fills the registers with known values (different to the values used in vSecondRegisterTestTask()), then checks that the registers still all contain the expected value. This is done to test the context save and restore mechanism as this task is swapped onto and off of the CPU. */ for( ;; ) { #pragma asm ;Load known values into each register. LDI #0x11111111, R0 LDI #0x22222222, R1 LDI #0x33333333, R2 LDI #0x44444444, R3 LDI #0x55555555, R4 LDI #0x66666666, R5 LDI #0x77777777, R6 LDI #0x88888888, R7 LDI #0x99999999, R8 LDI #0xaaaaaaaa, R9 LDI #0xbbbbbbbb, R10 LDI #0xcccccccc, R11 LDI #0xdddddddd, R12 ;Check each register still contains the expected value. LDI #0x11111111, R13 CMP R13, R0 BNE First_Set_Error LDI #0x22222222, R13 CMP R13, R1 BNE First_Set_Error LDI #0x33333333, R13 CMP R13, R2 BNE First_Set_Error LDI #0x44444444, R13 CMP R13, R3 BNE First_Set_Error LDI #0x55555555, R13 CMP R13, R4 BNE First_Set_Error LDI #0x66666666, R13 CMP R13, R5 BNE First_Set_Error LDI #0x77777777, R13 CMP R13, R6 BNE First_Set_Error LDI #0x88888888, R13 CMP R13, R7 BNE First_Set_Error LDI #0x99999999, R13 CMP R13, R8 BNE First_Set_Error LDI #0xaaaaaaaa, R13 CMP R13, R9 BNE First_Set_Error LDI #0xbbbbbbbb, R13 CMP R13, R10 BNE First_Set_Error LDI #0xcccccccc, R13 CMP R13, R11 BNE First_Set_Error LDI #0xdddddddd, R13 CMP R13, R12 BNE First_Set_Error BRA First_Start_Next_Loop First_Set_Error: ; Latch that an error has occurred. LDI #_ulRegTestError, R0 LDI #0x00000001, R1 ST R1, @R0 First_Start_Next_Loop: #pragma endasm } } /*-----------------------------------------------------------*/ static void vSecondRegisterTestTask( void *pvParameters ) { extern volatile unsigned portLONG ulCriticalNesting; /* Fills the registers with known values (different to the values used in vFirstRegisterTestTask()), then checks that the registers still all contain the expected value. This is done to test the context save and restore mechanism as this task is swapped onto and off of the CPU. */ for( ;; ) { #pragma asm ;Load known values into each register. LDI #0x11111111, R1 LDI #0x22222222, R2 INT #40H LDI #0x33333333, R3 LDI #0x44444444, R4 LDI #0x55555555, R5 LDI #0x66666666, R6 LDI #0x77777777, R7 LDI #0x88888888, R8 LDI #0x99999999, R9 INT #40H LDI #0xaaaaaaaa, R10 LDI #0xbbbbbbbb, R11 LDI #0xcccccccc, R12 LDI #0xdddddddd, R0 ;Check each register still contains the expected value. LDI #0x11111111, R13 CMP R13, R1 BNE Second_Set_Error LDI #0x22222222, R13 CMP R13, R2 BNE Second_Set_Error LDI #0x33333333, R13 CMP R13, R3 BNE Second_Set_Error LDI #0x44444444, R13 CMP R13, R4 BNE Second_Set_Error LDI #0x55555555, R13 CMP R13, R5 BNE Second_Set_Error INT #40H LDI #0x66666666, R13 CMP R13, R6 BNE Second_Set_Error LDI #0x77777777, R13 CMP R13, R7 BNE Second_Set_Error LDI #0x88888888, R13 CMP R13, R8 BNE Second_Set_Error LDI #0x99999999, R13 CMP R13, R9 BNE Second_Set_Error INT #40H LDI #0xaaaaaaaa, R13 CMP R13, R10 BNE Second_Set_Error LDI #0xbbbbbbbb, R13 CMP R13, R11 BNE Second_Set_Error LDI #0xcccccccc, R13 CMP R13, R12 BNE Second_Set_Error LDI #0xdddddddd, R13 CMP R13, R0 BNE Second_Set_Error BRA Second_Start_Next_Loop Second_Set_Error: ; Latch that an error has occurred. LDI #_ulRegTestError, R0 LDI #0x00000001, R1 ST R1, @R0 Second_Start_Next_Loop: #pragma endasm } } /*-----------------------------------------------------------*/