URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [freertos-6.1.1/] [Demo/] [MB96350_Softune_Dice_Kit/] [START.ASM] - Rev 844
Go to most recent revision | Compare with Previous | Blame | View Log
;====================================================================
; $Id: START.ASM 2 2011-07-17 20:13:17Z filepang@gmail.com $
;====================================================================
; THIS SAMPLE CODE IS PROVIDED AS IS AND IS SUBJECT TO ALTERATIONS.
; FUJITSU MICROELECTRONICS ACCEPTS NO RESPONSIBILITY OR LIABILITY
; FOR ANY ERRORS OR ELIGIBILITY FOR ANY PURPOSES.
;
; Startup file for memory and basic controller initialisation
;
; MB96300 Family C Compiler
;
; (C) FUJITSU MICROELECTRONICS EUROPE 1998-2008
;====================================================================
.PROGRAM STARTUP
.TITLE "STARTUP FILE FOR MEMORY INITIALISATION"
;====================================================================
; 1 Contents
;====================================================================
; 1 Contents
; 2 Disclaimer
; 3 History
;
; 4 SETTINGS (USER INTERFACE)
; 4.1 Controller Series, Device
; 4.2 C-language Memory model
; 4.3 Function-Call Interface
; 4.4 Constant Data Handling
; 4.5 Stack Type and Stack Size
; 4.6 General Register Bank
; 4.7 Low-Level Library Interface
; 4.8 Clock Selection
; 4.9 Clock Stabilization Time
; 4.10 External Bus Interface
; 4.11 ROM Mirror configuration
; 4.12 Flash Security
; 4.13 Flash Write Protection
; 4.14 Boot Vector
; 4.15 UART scanning
; 4.16 Enable RAMCODE Copying
; 4.17 Enable information stamp in ROM
; 4.18 Enable Background Debugging Mode
;
; 5 Section and Data Declaration
; 5.1 Several fixed addresses (fixed for MB963xx controllers)
; 5.2 Declaration of __near addressed data sections
; 5.3 Declaration of RAMCODE section and labels
; 5.4 Declaration of sections containing other sections description
; 5.5 Stack area and stack top definition/declaration
; 5.6 Direct page register dummy label definition
; 5.7 Set Flash Security
; 5.8 Set Flash write protection
; 5.9 Debug address specification
;
; 6 Start-Up Code
; 6.1 Import external symbols
; 6.2 Program start (the boot vector should point here)
; 6.3 "NOT RESET YET" WARNING
; 6.4 Initialisation of processor status
; 6.5 Set clock ratio (ignore subclock)
; 6.6 Set external bus configuration
; 6.7 Prepare stacks and set the active stack type
; 6.8 Copy initial values to data areas
; 6.9 Clear uninitialized data areas to zero
; 6.10 Set Data Bank Register (DTB) and Direct Page Register (DPR)
; 6.11 ICU register initialization workaround
; 6.12 Wait for PLL to stabilize
; 6.13 Initialise Low-Level Library Interface
; 6.14 Call C-language main function
; 6.15 Shut down library
; 6.16 Program end loop
;
;====================================================================
; 2 Disclaimer
;====================================================================
; FUJITSU MICROELECTRONICS EUROPE GMBH
; Pittlerstrasse 47, 63225 Langen, Germany
; Tel.:++49 6103 690-0, Fax -122
;
; The following software is for demonstration purposes only.
; It is not fully tested, nor validated in order to fulfil
; its task under all circumstances. Therefore, this software
; or any part of it must only be used in an evaluation
; laboratory environment.
; This software is subject to the rules of our standard
; DISCLAIMER, that is delivered with our SW-tools on the
; Fujitsu Microcontrollers DVD (V5.0 or higher "\START.HTM") or
; on our Internet Pages:
; http://www.fme.gsdc.de/gsdc.htm
; http://emea.fujitsu.com/microelectronics
;
;====================================================================
; 3 History
;====================================================================
; $Id: START.ASM 2 2011-07-17 20:13:17Z filepang@gmail.com $
#define VERSION "1.31"
/*
$Log: START.ASM,v $
Revision 1.31 2008/02/27 10:23:34 mcuae
- CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ clock setting added
Revision 1.30 2008/02/26 15:28:21 mcuae
- clock settings corrected
- Main/Satellite Flash term outdated, now: Flash A, Flash B
Revision 1.29 2008/02/11 15:26:33 mwilla
- device configuration for ext. bus i/f settings updated
Revision 1.28 2008/01/25 08:03:48 mwilla
- clock settings corrected and optimized
Revision 1.27 2008/01/04 12:26:08 mwilla
- device list expanded
- clock settings optimized
Revision 1.26 2007/10/17 11:53:34 mwilla
- device list expanded
- ICU initialization workaround added
- sections settings grouped
Revision 1.25 2007/09/28 07:33:18 mwilla
- Bug in BDM baudrate calculation corrected
Revision 1.24 2007/09/26 14:03:08 mwilla
- Device list for MB96340 series updated and expanded
Revision 1.23 2007/08/06 14:48:16 mwilla
- BDM section always reserved, filled with 0xFF, if not configured
Revision 1.22 2007/08/02 08:34:03 mwilla
- communication mode bits of BDM configuration grouped
Revision 1.21 2007/07/13 08:23:05 mwilla
- device selection for BDM baud rate improved
Revision 1.20 2007/06/12 10:43:57 mwilla
- BDM-Baud-Rate calculation includes crystal frequency
Revision 1.19 2007/06/06 07:46:55 mwilla
- add Background Debugging Configuration
- Stack initialization moved before variable initialization
- values of cystal frequency and device macros changed
Revision 1.18 2007/04/16 07:56:02 phuene
- update clock settings when crystal is 8 MHz so that the CLKVCO is low
Revision 1.17 2007/04/10 11:30:43 phuene
- add MB96320 Series
- Clock settings optimized for CPU_8MHZ_CLKP2_8MHZ, CPU_12MHZ_CLKP2_12MHZ, CPU_16MHZ_CLKP2_16MHZ, CPU_24MHZ_CLKP2_24MHZ, CPU_32MHZ_CLKP2_32MHZ
- make the selection for the individual devices also consider the selected Series
- support 8 MHz crystal
- add clock setting CPU_32MHZ_CLKP1_16MHZ_CLKP2_16MHZ
- prohibit CPU_32MHZ_CLKP2_16MHZ, CPU_CLKP1_16MHZ_CLKP2_16MHZ for MB96F348H and MB96F348T according to functional limitation 16FXFL0014
Revision 1.16 2007/02/07 12:38:10 phuene
- support disabling the UART scanning in Internal Vector Mode
- distinguish between Reset Vector and Boot Vector: the Boot Vector points to the start of the user application
Revision 1.15 2007/02/07 09:00:19 phuene
- add .SKIP instructions to occupy the whole ROM configuration block area
Revision 1.14 2007/01/29 13:15:06 phuene
- fix CPU_4MHZ_MAIN_CLKP2_4MHZ clock setting
Revision 1.13 2007/01/03 10:40:14 phuene
- change clock setting CPU_24MHZ_CLKP2_16MHZ to CPU_24MHZ_CLKP2_12MHZ; this allows for better performance of MB96F348H/T
- use additional preprocessor statements to avoid checking for PLL ready twice in some cases
Revision 1.12 2007/01/02 10:16:20 phuene
- correct CLKP2 (CAN) clock for CPU_32MHZ and MB96F348H/T
- correct CLKP2 (CAN) clock for CPU_24MHZ for all other devices than MB96F348H/T
Revision 1.11 2006/12/28 10:49:52 phuene
- corrected PLL setting for CPU_16MHZ for MB96348H, MB96348T
Revision 1.10 2006/12/28 08:41:57 phuene
- correct revision number at new location
Revision 1.1 2006/12/28 07:20:01 phuene
- new location in CVS
Revision 1.9 2006/12/27 13:00:45 phuene
- add support for ROM Mirror when using the Simulator
- add support for 16FXFL0022, 16FXFL0023
Revision 1.8 2006/12/11 16:43:37 phuene
- fix typo
Revision 1.7 2006/12/11 16:35:08 phuene
- add setting for Clock Stabilization Times
- modify clock settings:
- CLKP2 < 28 MHz
- remove clock settings using more wait cycles than absolutely required
Revision 1.6 2006/11/03 13:38:45 phuene
- modify clock settings to also set the Flash Memory Timing
- add support for both parameter passing models
Revision 1.5 2006/08/07 14:01:44 phuene
- change default clock setting to PLLx4 for CLKS1, CLKS2
- correct clock setting
- disable Flash Security by default for Main Flash, Satellite Flash
- disable availability of Satellite Flash by default
Revision 0.1 2006/01/25 15:37:46 phu
- initial version based on start.asm for MB90340 Series, version 3.8
Revision 0.2 2006/07/14 15:37:46 phu
- include PIER settings for External Bus operation
Revision 0.3 2006/07/14 15:37:46 phu
- add MB96350 Series
- correct PIER settings for HRQ and RDY signals
Revision 0.4 2006/08/07 15:35:35 phu
- change default clock setting to PLLx4 for CLKS1, CLKS2
- correct clock setting
- disable Flash Security by default for Main Flash, Satellite Flash
- disable availability of Satellite Flash by default
*/
;====================================================================
;====================================================================
; 4 Settings
;====================================================================
;
; CHECK ALL OPTIONS WHETHER THEY FIT TO THE APPLICATION
;
; Configure this startup file in the "Settings" section. Search for
; comments with leading "; <<<". This points to the items to be set.
;====================================================================
#set OFF 0
#set ON 1
;====================================================================
; 4.1 Controller Series, Device
;====================================================================
#set MB96320 0
#set MB96330 1
#set MB96340 2
#set MB96350 3
#set MB96360 4
#set MB96370 5
#set MB96380 6
#set MB96390 7
#set SERIES MB96350 ; <<< select Series
; Please specify the device according to the following selection;
; x = {W, S}.
; Note: Do not change order because of device number dependency in
; 6.5 Clock settings, 5.9 Debug address specification,
; and 6.11 ICU register initialization workaround!
; MB96320 series
#set MB96326RxA 1
#set MB96326YxA 2
; MB96330 series
#set MB96338RxA 1
#set MB96338UxA 2
; MB96340 series
#set MB96348HxA 1
#set MB96348TxA 2
#set MB96346RxA 3
#set MB96346YxA 4
#set MB96346AxA 5
#set MB96347RxA 6
#set MB96347YxA 7
#set MB96347AxA 8
#set MB96348RxA 9
#set MB96348YxA 10
#set MB96348AxA 11
#set MB96346RxB 12
#set MB96346AxB 13
#set MB96346YxB 14
#set MB96347RxB 15
#set MB96347AxB 16
#set MB96347YxB 17
#set MB96348CxA 18
#set MB96348HxB 19
#set MB96348TxB 20
#set MB96348RxB 21
#set MB96348AxB 22
#set MB96348YxB 23
#set MB96348CxC 24
#set MB96348HxC 25
#set MB96348TxC 26
; MB96350 series
#set MB96356RxA 1
#set MB96356YxA 2
; MB96360 series
#set MB96365RxA 1
#set MB96365YxA 2
; MB96370 series
#set MB96379RxA 1
#set MB96379YxA 2
; MB96380 series
#set MB96384RxA 1
#set MB96384YxA 2
#set MB96385RxA 3
#set MB96385YxA 4
#set MB96386RxA 5
#set MB96386YxA 6
#set MB96387RxA 7
#set MB96387YxA 8
#set MB96386RxB 9
#set MB96386YxB 10
#set MB96387RxB 11
#set MB96387YxB 12
; MB96390 series
#set MB96395RxA 1
#set DEVICE MB96356RxA ; <<< select device
;====================================================================
; 4.2 C-language Memory model
;====================================================================
; data code
#set SMALL 0 ; 16 Bit 16 Bit
#set MEDIUM 1 ; 16 Bit 24 Bit
#set COMPACT 2 ; 24 Bit 16 Bit
#set LARGE 3 ; 24 Bit 24 Bit
#set AUTOMODEL 4 ; works always, might occupy two
; additional bytes
#set MEMMODEL AUTOMODEL ; <<< C-memory model
; The selected memory model should be set in order to fit to the
; model selected for the compiler.
; Note, in this startup version AUTOMODEL will work for all
; C-models. However, if the compiler is configured for SMALL or
; COMPACT, two additional bytes on stack are occupied. If this is not
; acceptable, the above setting should be set to the correct model.
;====================================================================
; 4.3 Function-Call Interface
;====================================================================
#if __REG_PASS__
.REG_PASS
#endif
; Above statement informs Assembler on compatibility of start-up code
; to Function Call Interface as selected for the application. There
; is nothing to configure.
; The Function-Call Interface specifies the method of passing parame-
; ter from function caller to callee. The standard method of FCC907S
; compiler uses "stack argument passing". Alternatively, language
; tools can be configured for "register argument passing".
; For details see the compiler manual.
; This start-up file is compatible to both interfaces.
;====================================================================
; 4.4 Constant Data Handling
;====================================================================
#set ROMCONST 0 ; works only with compiler ROMCONST
#set RAMCONST 1 ; works with BOTH compiler settings
#set AUTOCONST RAMCONST ; works with BOTH compiler settings
#set CONSTDATA AUTOCONST ; <<< set RAM/ROM/AUTOCONST
; - AUTOCONST (default) is the same as RAMCONST
; - RAMCONST/AUTOCONST should always work, even if compiler is set to
; ROMCONST. If compiler is set to ROMCONST and this startup file is
; set to RAMCONST or AUTOCONST, this startup file will generate an
; empty section CINIT in RAM. However, the code, which copies from
; CONST to CINIT will not have any effect, because size of section is 0.
; - It is highly recommended to set the compiler to ROMCONST for
; single-chip mode or internal ROM+ext bus. The start-up file
; should be set to AUTOCONST.
; - ROMCONST setting on systems with full external bus requires exter-
; nal address mapping.
; Single-chip can be emulated by the emulator debugger.
; ROM mirror can also be used with simulator.
;
; see also ROM MIRROR options
;====================================================================
; 4.5 Stack Type and Stack Size
;====================================================================
#set USRSTACK 0 ; user stack: for main program
#set SYSSTACK 1 ; system stack: for main program and interrupts
#set STACKUSE SYSSTACK ; <<< set active stack
#set STACK_RESERVE ON ; <<< reserve stack area in this module
#set STACK_SYS_SIZE 200 ; <<< byte size of System stack
#set STACK_USR_SIZE 2 ; <<< byte size of User stack
#set STACK_FILL ON ; <<< fills the stack area with pattern
#set STACK_PATTERN 0x55AA ; <<< the pattern to write to stack
; - If the active stack is set to SYSSTACK, it is used for main program
; and interrupts. In this case, the user stack can be set to a dummy
; size.
; If the active stack is set to user stack, it is used for the main
; program but the system stack is automatically activated, if an inter-
; rupt is serviced. Both stack areas must have a reasonable size.
; - If STACK_RESERVE is ON, the sections USTACK and SSTACK are reserved
; in this module. Otherwise, they have to be reserved in other modules.
; If STACK_RESERVE is OFF, the size definitions STACK_SYS_SIZE and
; STACK_USR_SIZE have no meaning.
; - Even if they are reserved in other modules, they are still initialised
; in this start-up file.
; - Filling the stack with a pattern allows to dynamically check the stack
; area, which had already been used.
;
; - If only system stack is used and SSB is linked to a different bank
; than USB, make sure that all C-modules (which generate far pointers
; to stack data) have "#pragma SSB". Applies only to exclusive confi-
; gurations.
; - Note, several library functions require quite a big stack (due to
; ANSI). Check the stack information files (*.stk) in the LIB\907
; directory.
;====================================================================
; 4.6 General Register Bank
;====================================================================
#set REGBANK 0 ; <<< set default register bank
; set the General Register Bank that is to be used after startup.
; Usually, this is bank 0, which applies to address H'180..H'18F. Set
; in the range from 0 to 31.
; Note: All used register banks have to be reserved (linker options).
#if REGBANK > 31 || REGBANK < 0
# error REGBANK setting out of range
#endif
;====================================================================
; 4.7 Low-Level Library Interface
;====================================================================
#set CLIBINIT OFF ; <<< select extended library usage
; This option has only to be set, if stream-IO/standard-IO function of
; the C-library have to be used (printf(), fopen()...). This also
; requires low-level functions to be defined by the application
; software.
; For other library functions (like e.g. sprintf()) all this is not
; necessary. However, several functions consume a large amount of stack.
;====================================================================
; 4.8 Clock Selection
;====================================================================
; The clock selection requires that a 4 MHz external clock is provided
; as the Main Clock. If a different frequency is used, the Flash Memory
; Timing settings must be checked!
#set CLOCKWAIT ON ; <<< wait for stabilized clock, if
; Main Clock or PLL is used
; The clock is set quite early. However, if CLOCKWAIT is ON, polling
; for machine clock to be switched to Main Clock or PLL is done at
; the end of this file. Therefore, the stabilization time is not
; wasted. Main() will finally start at correct speed. Resources can
; be used immediately.
; Note: Some frequency settings (below) necessarily need a stabilized
; PLL for final settings. In these cases, the CLOCKWAIT setting above
; does not have any effect.
;
; This startup file version does not support subclock.
#set FREQ_4MHZ D'4000000L
#set FREQ_8MHZ D'8000000L
#set CRYSTAL FREQ_4MHZ ; <<< select external crystal frequency
#set CPU_4MHZ_MAIN_CLKP2_4MHZ 0x0004
#set CPU_4MHZ_PLL_CLKP2_4MHZ 0x0104
#set CPU_8MHZ_CLKP2_8MHZ 0x0108
#set CPU_12MHZ_CLKP2_12MHZ 0x010C
#set CPU_16MHZ_CLKP2_16MHZ 0x0110
#set CPU_24MHZ_CLKP2_12MHZ 0x0118
#set CPU_32MHZ_CLKP2_16MHZ 0x0120
#set CPU_32MHZ_CLKP1_16MHZ_CLKP2_16MHZ 0x0220
#set CPU_48MHZ_CLKP2_16MHZ 0x0130
#set CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ 0x0230
#set CPU_56MHZ_CLKP2_14MHZ 0x0138
#set CLOCK_SPEED CPU_56MHZ_CLKP2_14MHZ ; <<< set clock speeds
; The peripheral clock CLKP1 is set to the same frequency than the CPU.
; The peripheral clock CLKP2 has its setting. This is because it
; feeds only the CAN controllers and Sound Generators. These do not
; need high frequency clocks.
;====================================================================
; 4.9 Clock Stabilization Time
;====================================================================
#set MC_2_10_CYCLES 0
#set MC_2_12_CYCLES 1
#set MC_2_13_CYCLES 2
#set MC_2_14_CYCLES 3
#set MC_2_15_CYCLES 4
#set MC_2_16_CYCLES 5
#set MC_2_17_CYCLES 6
#set MC_2_18_CYCLES 7
#set MC_STAB_TIME MC_2_15_CYCLES ; <<< select Main Clock Stabilization Time
;====================================================================
; 4.10 External Bus Interface
;====================================================================
#set SINGLE_CHIP 0 ; all internal
#set INTROM_EXTBUS 1 ; mask ROM or FLASH memory used
#set EXTROM_EXTBUS 2 ; full external bus (INROM not used)
#set BUSMODE SINGLE_CHIP ; <<< set bus mode (see mode pins)
#set MULTIPLEXED 0 ;
#set NON_MULTIPLEXED 1 ; only if supported by the device
#set ADDRESSMODE MULTIPLEXED ; <<< set address-mode
; Some devices support multiplexed and/or non-multiplexed Bus mode
; please refer to the related datasheet/hardwaremanual
; If BUSMODE is "SINGLE_CHIP", ignore remaining bus settings.
; Select the used Chip Select areas
#set CHIP_SELECT0 OFF ; <<< enable chip select area
#set CHIP_SELECT1 OFF ; <<< enable chip select area
#set CHIP_SELECT2 OFF ; <<< enable chip select area
#set CHIP_SELECT3 OFF ; <<< enable chip select area
#set CHIP_SELECT4 OFF ; <<< enable chip select area
#set CHIP_SELECT5 OFF ; <<< enable chip select area
#set HOLD_REQ OFF ; <<< select Hold function
#set EXT_READY OFF ; <<< select external Ready function
#set EXT_CLOCK_ENABLE OFF ; <<< select external bus clock output
#set EXT_CLOCK_INVERT OFF ; <<< select clock inversion
#set EXT_CLOCK_SUSPEND OFF ; <<< select if external clock is suspended when no transfer in progress
; The external bus clock is derived from core clock CLKB. Select the divider for the external bus clock.
#set EXT_CLOCK_DIV1 0
#set EXT_CLOCK_DIV2 1
#set EXT_CLOCK_DIV4 2
#set EXT_CLOCK_DIV8 3
#set EXT_CLOCK_DIV16 4
#set EXT_CLOCK_DIV32 5
#set EXT_CLOCK_DIV64 6
#set EXT_CLOCK_DIV128 7
#set EXT_CLOCK_DIVISION EXT_CLOCK_DIV1 ; <<< select clock divider
#set ADDR_PINS_23_16 B'00000000 ; <<< select used address lines
; A23..A16 to be output.
#set ADDR_PINS_15_8 B'00000000 ; <<< select used address lines
; A15..A8 to be output.
#set ADDR_PINS_7_0 B'00000000 ; <<< select used address lines
; A7..A0 to be output.
#set LOW_BYTE_SIGNAL OFF ; <<< select low byte signal LBX
#set HIGH_BYTE_SIGNAL OFF ; <<< select high byte signal UBX
#set LOW_WRITE_STROBE OFF ; <<< select write strobe signal WRLX/WRX
#set HIGH_WRITE_STROBE OFF ; <<< select write strobe signal WRHX
#set READ_STROBE OFF ; <<< select read strobe signal RDX
#set ADDRESS_STROBE OFF ; <<< select address strobe signal ALE/ASX
#set ADDRESS_STROBE_LVL OFF ; <<< select address strobe function: OFF - active low; ON - active high
#set CS0_CONFIG B'0000000000000000 ; <<< select Chip Select Area 0 configuration
; |||||||||||||+++-- Automatic wait cycles (0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 8, 6: 16, 7: 32)
; ||||||||||||+----- Address Cycle Extension (0: not extended, 1: extension by 1 cycle)
; |||||||||||+------ Strobe timing (0: scheme 0, 1: scheme 1)
; ||||||||||+------- Write strobe function (0: WRLX strobe, 1: WRX strobe)
; |||||||||+-------- Endianess (0: little endian, 1: big endian)
; ||||||||+--------- Bus width (0: 16bit, 1: 8bit)
; |||||+++---------- ignored
; ||||+------------- Chip Select output enable (0: CS disabled, 1: CS enabled)
; |||+-------------- Chip Select level (0: low active, 1: high active)
; ||+--------------- Access type limitation (0: code and data, 1: data only)
; ++---------------- ignored
#set CS1_CONFIG B'0000000000000000 ; <<< select Chip Select Area 1 configuration
; |||||||||||||+++-- Automatic wait cycles (0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 8, 6: 16, 7: 32)
; ||||||||||||+----- Address Cycle Extension (0: not extended, 1: extension by 1 cycle)
; |||||||||||+------ Strobe timing (0: scheme 0, 1: scheme 1)
; ||||||||||+------- Write strobe function (0: WRLX strobe, 1: WRX strobe)
; |||||||||+-------- Endianess (0: little endian, 1: big endian)
; ||||||||+--------- Bus width (0: 16bit, 1: 8bit)
; |||||+++---------- ignored
; ||||+------------- Chip Select output enable (0: CS disabled, 1: CS enabled)
; |||+-------------- Chip Select level (0: low active, 1: high active)
; ||+--------------- Access type limitation (0: code and data, 1: data only)
; ++---------------- ignored
#set CS2_CONFIG B'0000011000000000 ; <<< select Chip Select Area 2 configuration
; |||||||||||||+++-- Automatic wait cycles (0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 8, 6: 16, 7: 32)
; ||||||||||||+----- Address Cycle Extension (0: not extended, 1: extension by 1 cycle)
; |||||||||||+------ Strobe timing (0: scheme 0, 1: scheme 1)
; ||||||||||+------- Write strobe function (0: WRLX strobe, 1: WRX strobe)
; |||||||||+-------- Endianess (0: little endian, 1: big endian)
; ||||||||+--------- Bus width (0: 16bit, 1: 8bit)
; |||||+++---------- External area size (0: 64kB, 1: 128kB, 2: 256kB, 3: 512kB, 4: 1MB, 5: 2MB, 6: 4MB, 7: 8MB)
; ||||+------------- Chip Select output enable (0: CS disabled, 1: CS enabled)
; |||+-------------- Chip Select level (0: low active, 1: high active)
; ||+--------------- Access type limitation (0: code and data, 1: data only)
; ++---------------- ignored
#set CS3_CONFIG B'0000011000000000 ; <<< select Chip Select Area 3 configuration
; |||||||||||||+++-- Automatic wait cycles (0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 8, 6: 16, 7: 32)
; ||||||||||||+----- Address Cycle Extension (0: not extended, 1: extension by 1 cycle)
; |||||||||||+------ Strobe timing (0: scheme 0, 1: scheme 1)
; ||||||||||+------- Write strobe function (0: WRLX strobe, 1: WRX strobe)
; |||||||||+-------- Endianess (0: little endian, 1: big endian)
; ||||||||+--------- Bus width (0: 16bit, 1: 8bit)
; |||||+++---------- External area size (0: 64kB, 1: 128kB, 2: 256kB, 3: 512kB, 4: 1MB, 5: 2MB, 6: 4MB, 7: 8MB)
; ||||+------------- Chip Select output enable (0: CS disabled, 1: CS enabled)
; |||+-------------- Chip Select level (0: low active, 1: high active)
; ||+--------------- Access type limitation (0: code and data, 1: data only)
; ++---------------- ignored
#set CS4_CONFIG B'0000011000000000 ; <<< select Chip Select Area 4 configuration
; |||||||||||||+++-- Automatic wait cycles (0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 8, 6: 16, 7: 32)
; ||||||||||||+----- Address Cycle Extension (0: not extended, 1: extension by 1 cycle)
; |||||||||||+------ Strobe timing (0: scheme 0, 1: scheme 1)
; ||||||||||+------- Write strobe function (0: WRLX strobe, 1: WRX strobe)
; |||||||||+-------- Endianess (0: little endian, 1: big endian)
; ||||||||+--------- Bus width (0: 16bit, 1: 8bit)
; |||||+++---------- External area size (0: 64kB, 1: 128kB, 2: 256kB, 3: 512kB, 4: 1MB, 5: 2MB, 6: 4MB, 7: 8MB)
; ||||+------------- Chip Select output enable (0: CS disabled, 1: CS enabled)
; |||+-------------- Chip Select level (0: low active, 1: high active)
; ||+--------------- Access type limitation (0: code and data, 1: data only)
; ++---------------- ignored
#set CS5_CONFIG B'0000011000000000 ; <<< select Chip Select Area 5 configuration
; |||||||||||||+++-- Automatic wait cycles (0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 8, 6: 16, 7: 32)
; ||||||||||||+----- Address Cycle Extension (0: not extended, 1: extension by 1 cycle)
; |||||||||||+------ Strobe timing (0: scheme 0, 1: scheme 1)
; ||||||||||+------- Write strobe function (0: WRLX strobe, 1: WRX strobe)
; |||||||||+-------- Endianess (0: little endian, 1: big endian)
; ||||||||+--------- Bus width (0: 16bit, 1: 8bit)
; |||||+++---------- External area size (0: 64kB, 1: 128kB, 2: 256kB, 3: 512kB, 4: 1MB, 5: 2MB, 6: 4MB, 7: 8MB)
; ||||+------------- Chip Select output enable (0: CS disabled, 1: CS enabled)
; |||+-------------- Chip Select level (0: low active, 1: high active)
; ||+--------------- Access type limitation (0: code and data, 1: data only)
; ++---------------- ignored
#set CS2_START 0x00 ; <<< select start bank of chip select area; valid values: 0x00..0xFF
#set CS3_START 0x40 ; <<< select start bank of chip select area; valid values: 0x00..0xFF
#set CS4_START 0x80 ; <<< select start bank of chip select area; valid values: 0x00..0xFF
#set CS5_START 0xC0 ; <<< select start bank of chip select area; valid values: 0x00..0xFF
;====================================================================
; 4.11 ROM Mirror configuration
;====================================================================
#set MIRROR_8KB 0
#set MIRROR_16KB 1
#set MIRROR_24KB 2
#set MIRROR_32KB 3
#set ROMMIRROR ON ; <<< ROM mirror function ON/OFF
#set MIRROR_BANK 0xF ; <<< ROM Mirror bank, allowed entries: 0x0..0xF for the banks 0xF0..0xFF
#set MIRROR_SIZE MIRROR_32KB ; <<< ROM Mirror size
; One can select which ROM area to mirror into the upper half of bank 00.
; If ROMMIRROR = OFF is selected, the address range 0x008000..0x00FFFF
; shows the contents of the respective area of bank 1: 0x018000..0x01FFFF.
; If ROMMIRROR = ON is selected, the memory bank to mirror can be selected.
; Available banks are 0xF0 to 0xFF. Furthermore, the ROM Mirror area size can
; be selected. 4 sizes are available: 8 kB, 16 kB, 24 kB, or 32 kB. The ROM Mirror
; from the highest address of the selected bank downwards, e.g. if bank 0xFF and
; mirror size 24 kB is selected, the memory range 0xFFA000..0xFFFFFF is mirrored
; to address range 0x00A000..0x00FFFF. The memory area not selected for
; ROM Mirror is still mirrored from bank 0x01.
; This is necessary to get the compiler ROMCONST option working. This is intended
; to increase performance, if a lot of dynamic data have to be accessed.
; In SMALL and MEDIUM model these data can be accessed within bank 0,
; which allows to use near addressing. Please make sure to have the linker
; setting adjusted accordingly!
;====================================================================
; 4.12 Flash Security
;====================================================================
#set FLASH_A_SECURITY_ENABLE OFF ; <<< enable Flash Security for Flash A (old "Main Flash")
#set FLASH_B_AVAILABLE OFF ; <<< select if Flash B is available
#set FLASH_B_SECURITY_ENABLE OFF ; <<< enable Flash Security for Flash B (old "Satellite Flash")
; set the Flash Security unlock key (16 bytes)
; all 0: unlock not possible
#set FLASH_A_UNLOCK_0 0x00
#set FLASH_A_UNLOCK_1 0x00
#set FLASH_A_UNLOCK_2 0x00
#set FLASH_A_UNLOCK_3 0x00
#set FLASH_A_UNLOCK_4 0x00
#set FLASH_A_UNLOCK_5 0x00
#set FLASH_A_UNLOCK_6 0x00
#set FLASH_A_UNLOCK_7 0x00
#set FLASH_A_UNLOCK_8 0x00
#set FLASH_A_UNLOCK_9 0x00
#set FLASH_A_UNLOCK_10 0x00
#set FLASH_A_UNLOCK_11 0x00
#set FLASH_A_UNLOCK_12 0x00
#set FLASH_A_UNLOCK_13 0x00
#set FLASH_A_UNLOCK_14 0x00
#set FLASH_A_UNLOCK_15 0x00
#set FLASH_B_UNLOCK_0 0x00
#set FLASH_B_UNLOCK_1 0x00
#set FLASH_B_UNLOCK_2 0x00
#set FLASH_B_UNLOCK_3 0x00
#set FLASH_B_UNLOCK_4 0x00
#set FLASH_B_UNLOCK_5 0x00
#set FLASH_B_UNLOCK_6 0x00
#set FLASH_B_UNLOCK_7 0x00
#set FLASH_B_UNLOCK_8 0x00
#set FLASH_B_UNLOCK_9 0x00
#set FLASH_B_UNLOCK_10 0x00
#set FLASH_B_UNLOCK_11 0x00
#set FLASH_B_UNLOCK_12 0x00
#set FLASH_B_UNLOCK_13 0x00
#set FLASH_B_UNLOCK_14 0x00
#set FLASH_B_UNLOCK_15 0x00
;====================================================================
; 4.13 Flash Write Protection
;====================================================================
#set FLASH_A_WRITE_PROTECT OFF ; <<< select Flash A write protection
#set PROTECT_SECTOR_SA0 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA1 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA2 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA3 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA32 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA33 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA34 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA35 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA36 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA37 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA38 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SA39 OFF ; <<< select individual sector to protect
#set FLASH_B_WRITE_PROTECT OFF ; <<< select Flash write protection
#set PROTECT_SECTOR_SB0 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SB1 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SB2 OFF ; <<< select individual sector to protect
#set PROTECT_SECTOR_SB3 OFF ; <<< select individual sector to protect
;====================================================================
; 4.14 Boot Vector
;====================================================================
#set BOOT_VECTOR_TABLE 1 ; enable boot vector
#set BOOT_VECTOR_FIXED 2 ; enable boot vector
#set BOOT_VECTOR BOOT_VECTOR_TABLE ; <<< select type of boot vector
; If boot vector generation is enabled (BOOT_VECTOR_TABLE, BOOT_VECTOR_FIXED),
; appropriate code is generated. If it is disabled (OFF), start-up file does
; not care about.
;
; BOOT_VECTOR_TABLE: - Create table entry at address oxFFFFDC.
; - Any start address can be set and start-up file will
; set address of this start code.
; BOOT_VECTOR_FIXED: - Instead of table entry, a special marker is set in
; ROM Configuration Block, which enables the fixed
; start address 0xDF0080. This is prefered setting
; for user boot loaders.
; OFF: - Do not set table entry and marker. This might be used
; for application to be loaded by boot loader.
;
; Note
; BOOT_VECTOR_TABLE setting can also be used, if all other interrupt vectors
; are specified via "pragma intvect". Only if interrupts 0..7 are specified
; via "pragma intvect", these will conflict with the vector in this module.
; The reason is the INTVECT section, which includes the whole area from the
; lowest to the highest specified vector.
#if BOOT_VECTOR == BOOT_VECTOR_TABLE
.SECTION RESVECT, CONST, LOCATE=H'FFFFDC
.DATA.E _start
.SECTION BOOT_SELECT, CONST, LOCATE=H'DF0030
.DATA.L 0xFFFFFFFF
#else
# if BOOT_VECTOR == BOOT_VECTOR_FIXED
.SECTION BOOT_SELECT, CONST, LOCATE=H'DF0030
.DATA.L 0x292D3A7B ; "Magic Word"
# else
.SECTION BOOT_SELECT, CONST, LOCATE=H'DF0030
.SKIP 4
# endif
#endif
;====================================================================
; 4.15 UART scanning
;====================================================================
#set UART_SCANNING OFF ; <<< enable UART scanning in
; Internal Vector Mode
;
; By default, the MCU scans in Internal Vector Mode for a UART
; communication after reset. This enables to establish a serial
; communication without switching to Serial Communication Mode.
; For the final application, set this switch to OFF to achieve the
; fastest start-up time.
#if UART_SCANNING == ON
# if ((SERIES == MB96340) && (DEVICE < 3))
# error Device does not support UART scanning on/off
# else
.SECTION UART_SCAN_SELECT, CONST, LOCATE=H'DF0034
.DATA.L 0xFFFFFFFF
# endif ; (SERIES == MB96340 && DEVICE < 3)
#else
.SECTION UART_SCAN_SELECT, CONST, LOCATE=H'DF0034
.DATA.L 0x292D3A7B ; Decativation "Magic Word"
#endif
.SKIP 0x08
;====================================================================
; 4.16 Enable RAMCODE Copying
;====================================================================
#set COPY_RAMCODE OFF ; <<< enable RAMCODE section to
; be copied from ROM to RAM
; To get this option properly working the code to be executed has to
; be linked to section RAMCODE (e.g. by #pragma section). The section
; RAMCODE has be located in RAM and the section @RAMCODE has to be
; located at a fixed address in ROM by linker settings.
;====================================================================
; 4.17 Enable information stamp in ROM
;====================================================================
#set VERSION_STAMP OFF ; <<< enable version number in
; separated section
#if VERSION_STAMP == ON
.SECTION VERSIONS, CONST ; change name, if necessary
.SDATA "Start ", VERSION, "\n\0"
#endif
;====================================================================
; 4.18 Enable Background Debugging Mode
;====================================================================
#set BACKGROUND_DEBUGGING ON ; <<< enable Background Debugging
; mode
#set BDM_CONFIGURATION B'0000000000010011 ; <<< set BDM configuration
; ||||||||++--- BdmUART
; |||||||| (0: A, 1: B, 2: C, 3: D)
; ||||||++----- BdmSynchMode
; |||||| (0: Async., 1: Sync.
; |||||| 2: BdmKLine, 3: res.)
; |||||+------- BdmAutoStart
; ||||+-------- BdmExtBreakpointCfg
; |||+--------- BdmKeepRClock
; ||+---------- BdmCaliRClock
; |+----------- BdmKeepBCD
; +------------ BdmUserKernel
#set BDM_BAUDRATE 115200 ; <<< set Baudrate in Bits/s for BDM
#set BDM_EXT_CONFIG 0xFFFFFF ; <<< set external Config/Kernel
#set BDM_WD_PATTERN 0x00 ; <<< set watchdog pattern
#set BDM_PFCS0 0x0000 ; <<< set default breakpoint
#set BDM_PFCS1 0x0000 ; configurations
#set BDM_PFCS2 0x0000
#set BDM_PFCS3 0x0000
#set BDM_PFA0 0xFFFFFF ; <<< set address
#set BDM_PFA1 0xFFFFFF ; configurations
#set BDM_PFA2 0xFFFFFF
#set BDM_PFA3 0xFFFFFF
#set BDM_PFA4 0xFFFFFF
#set BDM_PFA5 0xFFFFFF
#set BDM_PFA6 0xFFFFFF
#set BDM_PFA7 0xFFFFFF
#set BDM_PFD0 0xFFFF ; <<< set patch data
#set BDM_PFD1 0xFFFF ; configurations
#set BDM_PFD2 0xFFFF
#set BDM_PFD3 0xFFFF
#set BDM_PFD4 0xFFFF
#set BDM_PFD5 0xFFFF
#set BDM_PFD6 0xFFFF
#set BDM_PFD7 0xFFFF
; <<< END OF SETTINGS >>>
;====================================================================
; 5 Section and Data Declaration
;====================================================================
;====================================================================
; 5.1 Several fixed addresses (fixed for MB963xx controllers)
;====================================================================
MCSRA .EQU 0x03F1 ; Flash A Memory configuration register
MTCRA .EQU 0x03F2 ; Flash A Memory timing register
MCSRB .EQU 0x03F5 ; Flash B Memory configuration register
MTCRB .EQU 0x03F6 ; Flash B Memory timing register
ROMM .EQU 0x03AE ; ROM mirror control register
CKSR .EQU 0x0401 ; Clock select control register
CKSSR .EQU 0x0402 ; Clock stabilization select register
CKMR .EQU 0x0403 ; Clock monitor register
CKFCR .EQU 0x0404 ; Clock frequency control register
PLLCR .EQU 0x0406 ; PLL control register
VRCR .EQU 0x042C ; Voltage Regulator Control register
ICE01 .EQU 0x0041 ; Input capture 0/1 source
ICE67 .EQU 0x0053 ; Input capture 6/7 source
ICE89 .EQU 0x0515 ; Input capture 8/9 source
ICE1011 .EQU 0x051B ; Input capture 10/11 source
ICS89 .EQU 0x0514 ; Input capture 8/9 edge select
ICS1011 .EQU 0x051A ; Input capture 10/11 edge select
TCCSL2 .EQU 0x0502 ; Free running timer 2 control/status register
TCCSL3 .EQU 0x0506 ; Free running timer 3 control/status register
#if BUSMODE != SINGLE_CHIP ; only for devices with external bus
PIER00 .EQU 0x0444
PIER01 .EQU 0x0445
PIER02 .EQU 0x0446
PIER03 .EQU 0x0447
PIER12 .EQU 0x0450
EACL0 .EQU 0x06E0
EACH0 .EQU 0x06E1
EACL1 .EQU 0x06E2
EACH1 .EQU 0x06E3
EACL2 .EQU 0x06E4
EACH2 .EQU 0x06E5
EACL3 .EQU 0x06E6
EACH3 .EQU 0x06E7
EACL4 .EQU 0x06E8
EACH4 .EQU 0x06E9
EACL5 .EQU 0x06EA
EACH5 .EQU 0x06EB
EAS2 .EQU 0x06EC
EAS3 .EQU 0x06ED
EAS4 .EQU 0x06EE
EAS5 .EQU 0x06EF
EBM .EQU 0x06F0
EBCF .EQU 0x06F1
EBAE0 .EQU 0x06F2
EBAE1 .EQU 0x06F3
EBAE2 .EQU 0x06F4
EBCS .EQU 0x06F5
#endif ; BUSMODE != SINGLE_CHIP
;====================================================================
; 5.2 Declaration of __near addressed data sections
;====================================================================
; sections to be cleared
.SECTION DATA, DATA, ALIGN=2 ; zero clear area
.SECTION DATA2, DATA, ALIGN=2 ; zero clear area
.SECTION DIRDATA, DIR, ALIGN=2 ; zero clear direct
.SECTION LIBDATA, DATA, ALIGN=2 ; zero clear lib area
; sections to be initialised with start-up values
.SECTION INIT, DATA, ALIGN=2 ; initialised area
.SECTION INIT2, DATA, ALIGN=2 ; initialised area
.SECTION DIRINIT, DIR, ALIGN=2 ; initialised dir
.SECTION LIBINIT, DATA, ALIGN=2 ; initialised lib area
#if CONSTDATA == RAMCONST
.SECTION CINIT, DATA, ALIGN=2 ; initialised const
.SECTION CINIT2, DATA, ALIGN=2 ; initialised const
#endif
; sections containing start-up values for initialised sections above
.SECTION DCONST, CONST, ALIGN=2 ; DINIT initialisers
.SECTION DIRCONST, DIRCONST,ALIGN=2 ; DIRINIT initialisers
.SECTION LIBDCONST, CONST, ALIGN=2 ; LIBDCONST init val
; following section is either copied to CINIT (RAMCONST) or
; mapped by ROM-mirror function (ROMCONST)
.SECTION CONST, CONST, ALIGN=2 ; CINIT initialisers
.SECTION CONST2, CONST, ALIGN=2 ; CINIT initialisers
;====================================================================
; 5.3 Declaration of RAMCODE section and labels
;====================================================================
#if COPY_RAMCODE == ON
.SECTION RAMCODE, CODE, ALIGN=1
.IMPORT _RAM_RAMCODE ; provided by linker
.IMPORT _ROM_RAMCODE ; provided by linker
#endif
;====================================================================
; 5.4 Declaration of sections containing other sections description
;====================================================================
; DCLEAR contains start address and size of all sections to be cleared
; DTRANS contains source and destination address and size of all
; sections to be initialised with start-up values
; The compiler automatically adds a descriptor for each __far addressed
; data section to DCLEAR or DTRANS. These __far sections are separated
; for each C-module.
; In addition the start-up file adds the descriptors of the previously
; declared __near section here. This way the same code in the start-up
; file can be used for initialising all sections.
.SECTION DCLEAR, CONST, ALIGN=2 ; zero clear table
; Address Bank Size
.DATA.H DATA, BNKSEC DATA, SIZEOF(DATA )
.DATA.H DIRDATA, BNKSEC DIRDATA, SIZEOF(DIRDATA)
.DATA.H LIBDATA, BNKSEC LIBDATA, SIZEOF(LIBDATA)
.SECTION DTRANS, CONST, ALIGN=2 ; copy table
; Address Bank Address Bank Size
.DATA.H DCONST, BNKSEC DCONST, INIT, BNKSEC INIT, SIZEOF INIT
.DATA.H DIRCONST, BNKSEC DIRCONST, DIRINIT,BNKSEC DIRINIT,SIZEOF DIRINIT
.DATA.H LIBDCONST,BNKSEC LIBDCONST,LIBINIT,BNKSEC LIBINIT,SIZEOF LIBINIT
#if CONSTDATA == RAMCONST
.DATA.H CONST, BNKSEC CONST, CINIT, BNKSEC CINIT, SIZEOF CINIT
.DATA.H CONST2, BNKSEC CONST, CINIT2, BNKSEC CINIT2, SIZEOF CINIT2
#endif
#if COPY_RAMCODE == ON
.DATA.L _ROM_RAMCODE, _RAM_RAMCODE
.DATA.H SIZEOF RAMCODE
#endif
;====================================================================
; 5.5 Stack area and stack top definition/declaration
;====================================================================
#if STACK_RESERVE == ON
.SECTION SSTACK, STACK, ALIGN=2
.EXPORT __systemstack, __systemstack_top
__systemstack:
.RES.B (STACK_SYS_SIZE + 1) & 0xFFFE
__systemstack_top:
SSTACK_TOP:
.SECTION USTACK, STACK, ALIGN=2
.EXPORT __userstack, __userstack_top
__userstack:
.RES.B (STACK_USR_SIZE + 1) & 0xFFFE
__userstack_top:
USTACK_TOP:
#else
.SECTION SSTACK, STACK, ALIGN=2
.SECTION USTACK, STACK, ALIGN=2
.IMPORT __systemstack, __systemstack_top
.IMPORT __userstack, __userstack_top
#endif
;====================================================================
; 5.6 Direct page register dummy label definition
;====================================================================
.SECTION DIRDATA ; zero clear direct
DIRDATA_S: ; label for DPR init
; This label is used to get the page of the __direct data.
; Depending on the linkage order of this startup file the label is
; placed anywhere within the __direct data page. However, the
; statement "PAGE (DIRDATA_S)" is processed. Therefore, the lower
; 8 Bit of the address of DIRDATA_S are not relevant and this feature
; becomes linkage order independent.
; Note, the linker settings have to make sure that all __direct
; data are located within the same physical page (256 Byte block).
;====================================================================
; 5.7 Set Flash Security
;====================================================================
.SECTION FLASH_A_SECURITY, CONST, LOCATE=H'DF0000
#if FLASH_A_SECURITY_ENABLE == 0
.DATA.W 0xFFFF ; Security DISABLED
.SKIP 16
#else FLASH_A_SECURITY_ENABLE == 1
.DATA.W 0x0099 ; Security ENABLED
.DATA.W ((FLASH_A_UNLOCK_1 << 8) | FLASH_A_UNLOCK_0)
.DATA.W ((FLASH_A_UNLOCK_3 << 8) | FLASH_A_UNLOCK_2)
.DATA.W ((FLASH_A_UNLOCK_5 << 8) | FLASH_A_UNLOCK_4)
.DATA.W ((FLASH_A_UNLOCK_7 << 8) | FLASH_A_UNLOCK_6)
.DATA.W ((FLASH_A_UNLOCK_9 << 8) | FLASH_A_UNLOCK_8)
.DATA.W ((FLASH_A_UNLOCK_11 << 8) | FLASH_A_UNLOCK_10)
.DATA.W ((FLASH_A_UNLOCK_13 << 8) | FLASH_A_UNLOCK_12)
.DATA.W ((FLASH_A_UNLOCK_15 << 8) | FLASH_A_UNLOCK_14)
#endif
.SKIP 4
.SKIP 6
#if FLASH_B_AVAILABLE == ON
.SECTION FLASH_B_SECURITY, CONST, LOCATE=H'DE0000
# if FLASH_B_SECURITY_ENABLE == 0
.DATA.W 0xFFFF ; Security DISABLED
.SKIP 16
# else FLASH_B_SECURITY_ENABLE == 1
.DATA.W 0x0099 ; Security ENABLED
.DATA.W ((FLASH_B_UNLOCK_1 << 8) | FLASH_B_UNLOCK_0)
.DATA.W ((FLASH_B_UNLOCK_3 << 8) | FLASH_B_UNLOCK_2)
.DATA.W ((FLASH_B_UNLOCK_5 << 8) | FLASH_B_UNLOCK_4)
.DATA.W ((FLASH_B_UNLOCK_7 << 8) | FLASH_B_UNLOCK_6)
.DATA.W ((FLASH_B_UNLOCK_9 << 8) | FLASH_B_UNLOCK_8)
.DATA.W ((FLASH_B_UNLOCK_11 << 8) | FLASH_B_UNLOCK_10)
.DATA.W ((FLASH_B_UNLOCK_13 << 8) | FLASH_B_UNLOCK_12)
.DATA.W ((FLASH_B_UNLOCK_15 << 8) | FLASH_B_UNLOCK_14)
# endif
.SKIP 4
.SKIP 6
#endif ; FLASH_B_AVAILABLE == ON
;====================================================================
; 5.8 Set Flash write protection
;====================================================================
.SECTION FLASH_A_PROTECT, CONST, LOCATE=H'DF001C
#if FLASH_A_WRITE_PROTECT == ON
.DATA.L 0x292D3A7B
.DATA.B ~((PROTECT_SECTOR_SA3 << 3) | (PROTECT_SECTOR_SA2 << 2) | (PROTECT_SECTOR_SA1 << 1) | PROTECT_SECTOR_SA0)
.DATA.E 0xFFFFFF
.DATA.B ~((PROTECT_SECTOR_SA39 << 7) | (PROTECT_SECTOR_SA38 << 6) | (PROTECT_SECTOR_SA37 << 5) | (PROTECT_SECTOR_SA36 << 4) | (PROTECT_SECTOR_SA35 << 3) | (PROTECT_SECTOR_SA34 << 2) | (PROTECT_SECTOR_SA33 << 1) | PROTECT_SECTOR_SA32)
.SKIP 3
#else
.DATA.L 0xFFFFFFFF
.SKIP 8
#endif ; FLASH_A_WRITE_PROTECT
.SKIP 8
#if FLASH_B_AVAILABLE == ON
.SECTION FLASH_B_PROTECT, CONST, LOCATE=H'DE001C
# if FLASH_B_WRITE_PROTECT == ON
.DATA.L 0x292D3A7B
.DATA.B ~((PROTECT_SECTOR_SB3 << 3) | (PROTECT_SECTOR_SB2 << 2) | (PROTECT_SECTOR_SB1 << 1) | PROTECT_SECTOR_SB0)
.SKIP 7
# else
.DATA.L 0xFFFFFFFF
.SKIP 8
# endif ; FLASH_B_WRITE_PROTECT
.SKIP 8
#endif ; FLASH_B_AVAILABLE == ON
;====================================================================
; 5.9 Debug address specification
;====================================================================
;
; BDM configuration section should always be defined for later
; configuration by e.g. debugger tool or (special) programmer tool.
.SECTION BDM_CONFIG, CONST, LOCATE=H'DF0040
#if BACKGROUND_DEBUGGING == ON
.DATA.L 0x292D3A7B
.ORG H'DF0044
.DATA.W BDM_CONFIGURATION
.ORG H'DF0046
# if ((SERIES == MB96340) && (DEVICE < 3))
# error Device does not support background debugging
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
# if ((SERIES == MB96340) && (DEVICE < 12))
.DATA.W (D'16 * CRYSTAL + BDM_BAUDRATE) / BDM_BAUDRATE
# else
.DATA.W (D'32 * CRYSTAL + BDM_BAUDRATE) / BDM_BAUDRATE
# endif ; ((SERIES == MB96340) && (DEVICE < 12))
.ORG H'DF0048
.DATA.E BDM_EXT_CONFIG
.ORG H'DF004B
.DATA.B BDM_WD_PATTERN
.ORG H'DF0050
.DATA.W BDM_PFCS0
.DATA.W BDM_PFCS1
.DATA.W BDM_PFCS2
.DATA.W BDM_PFCS3
.DATA.E BDM_PFA0, BDM_PFA1
.DATA.E BDM_PFA2, BDM_PFA3
.DATA.E BDM_PFA4, BDM_PFA5
.DATA.E BDM_PFA6, BDM_PFA7
.DATA.W BDM_PFD0, BDM_PFD1
.DATA.W BDM_PFD2, BDM_PFD3
.DATA.W BDM_PFD4, BDM_PFD5
.DATA.W BDM_PFD6, BDM_PFD7
#else
.DATAB.B 64, 0xFF ; fill section with 0xFF
#endif ; BACKGROUND_DEBUGGING == ON
.ORG 0xDF0080
;====================================================================
; 6 Start-Up Code
;====================================================================
;====================================================================
; 6.1 Import external symbols
;====================================================================
.IMPORT _main ; user code entrance
#if CLIBINIT == ON
.IMPORT __stream_init
.IMPORT _exit
.EXPORT __exit
#endif
.EXPORT _start
;====================================================================
; ___ _____ __ ___ _____
; / | / \ | \ |
; \___ | | | |___/ |
; \ | |----| | \ |
; ___/ | | | | \ | Begin of actual code section
;
;====================================================================
.SECTION CODE_START, CODE, ALIGN=1
;====================================================================
; 6.2 Program start (the reset vector should point here)
;====================================================================
_start:
NOP ; This NOP is only for debugging. On debugger the IP
; (instruction pointer) should point here after reset
;====================================================================
; 6.3 "NOT RESET YET" WARNING
;====================================================================
notresetyet:
NOP ; read hint below!!!!!!!
; If the debugger stays at this NOP after download, the controller has
; not been reset yet. In order to reset all hardware registers it is
; highly recommended to reset the controller.
; However, if no reset vector has been defined on purpose, this start
; address can also be used.
; This mechanism is using the .END instruction at the end of this mo-
; dule. It is not necessary for controller operation but improves
; security during debugging (mainly emulator debugger).
; If the debugger stays here after a single step from label "_start"
; to label "notresetyet", this note can be ignored.
;====================================================================
; 6.4 Initialisation of processor status
;====================================================================
AND CCR, #0x80 ; disable interrupts
MOV ILM,#7 ; set interrupt level mask to ALL
MOV RP,#REGBANK ; set register bank pointer
;====================================================================
; 6.5 Set clock ratio (ignore subclock)
;====================================================================
MOVN A, #0 ; set bank 0 in DTB for the case that
MOV DTB, A ; start-up code was not jumped by reset
MOV CKSSR, #(0xF8 | MC_STAB_TIME) ; set clock stabilization time
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_4MHZ_MAIN_CLKP2_4MHZ)
MOV CKSR, #0xB5
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_4MHZ_MAIN_CLKP2_4MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_4MHZ_MAIN_CLKP2_4MHZ)
CLRB MCSRA:4
CLRB MCSRA:5
CLRB MCSRB:4
CLRB MCSRB:5
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xB5
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_4MHZ_MAIN_CLKP2_4MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_4MHZ_PLL_CLKP2_4MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x00E0
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x00A1
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_4MHZ_PLL_CLKP2_4MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_4MHZ_PLL_CLKP2_4MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0060
CLRB MCSRA:4
CLRB MCSRA:5
CLRB MCSRB:4
CLRB MCSRB:5
MOVW CKFCR, #0x1111
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0060
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_4MHZ_PLL_CLKP2_4MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_8MHZ_CLKP2_8MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x00A1
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0043
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_8MHZ_CLKP2_8MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_8MHZ_CLKP2_8MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0060
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0081
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_8MHZ_CLKP2_8MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_12MHZ_CLKP2_12MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0062
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0025
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_12MHZ_CLKP2_12MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_12MHZ_CLKP2_12MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0061
CLRB MCSRA:4
CLRB MCSRA:5
CLRB MCSRB:4
CLRB MCSRB:5
MOVW CKFCR, #0x1111
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0061
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_12MHZ_CLKP2_12MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_16MHZ_CLKP2_16MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0043
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0027
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_16MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_16MHZ_CLKP2_16MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0081
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0003
MOVW CKFCR, #0x1111
MOVW MTCRA, #0x2128
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2128
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_16MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_24MHZ_CLKP2_12MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0025
MOVW CKFCR, #0x1001
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x000B
MOVW CKFCR, #0x3111
MOVW MTCRA, #0x4C09
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x4C09
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_24MHZ_CLKP2_12MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_24MHZ_CLKP2_12MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
MOVW PLLCR, #0x0082
MOVW CKFCR, #0x1001
MOV CKSR, #0xFA
# else
MOVW PLLCR, #0x0005
MOVW CKFCR, #0x3111
MOVW MTCRA, #0x4C09
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x4C09
# endif ; FLASH_B_AVAILABLE == ON
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_24MHZ_CLKP2_12MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP2_16MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
# error Setting prohibited due to 16FXFL0014
# else
MOVW PLLCR, #0x0027
MOVW CKFCR, #0x1001
MOVW MTCRA, #0x2129
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2129
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP2_16MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
# error Setting prohibited due to 16FXFL0014
# else
MOVW PLLCR, #0x0003
MOVW CKFCR, #0x1001
MOVW MTCRA, #0x2129
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2129
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP1_16MHZ_CLKP2_16MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
# error Setting prohibited due to 16FXFL0014
# else
MOVW PLLCR, #0x0027
MOVW CKFCR, #0x1101
MOVW MTCRA, #0x2129
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2129
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP1_16MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP1_16MHZ_CLKP2_16MHZ)
# if ((SERIES == MB96340) && (DEVICE < 3))
# error Setting prohibited due to 16FXFL0014
# else
MOVW PLLCR, #0x0003
MOVW CKFCR, #0x1101
MOVW MTCRA, #0x2129
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2129
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
# endif ; ((SERIES == MB96340) && (DEVICE < 3))
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_32MHZ_CLKP1_16MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP2_16MHZ)
MOVW PLLCR, #0x0017
MOVW CKFCR, #0x5111
MOVW MTCRA, #0x6E3D
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x6E3D
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP2_16MHZ)
MOVW PLLCR, #0x000B
MOVW CKFCR, #0x5111
MOVW MTCRA, #0x6E3D
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x6E3D
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ)
MOVW PLLCR, #0x0017
MOVW CKFCR, #0x5211
MOVW MTCRA, #0x6E3D
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x6E3D
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ)
MOVW PLLCR, #0x000B
MOVW CKFCR, #0x5211
MOVW MTCRA, #0x6E3D
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x6E3D
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ)
#if (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_56MHZ_CLKP2_14MHZ)
MOVW PLLCR, #0x000D
MOVW CKFCR, #0x3001
MOVW MTCRA, #0x233A
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x233A
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
#endif ; (CRYSTAL == FREQ_4MHZ) && (CLOCK_SPEED == CPU_56MHZ_CLKP2_14MHZ)
#if (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_56MHZ_CLKP2_14MHZ)
MOVW PLLCR, #0x0006
MOVW CKFCR, #0x3001
MOVW MTCRA, #0x233A
MOV MCSRA, #0x70
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x233A
MOV MCSRB, #0x70
# endif ; FLASH_B_AVAILABLE == ON
MOV VRCR, #0xF6
MOV CKSR, #0xFA
#endif ; (CRYSTAL == FREQ_8MHZ) && (CLOCK_SPEED == CPU_56MHZ_CLKP2_14MHZ)
;====================================================================
; 6.6 Set external bus configuaration
;====================================================================
#if BUSMODE != SINGLE_CHIP ; ext bus used
MOV EBCF, #((HOLD_REQ << 7) | (EXT_READY << 6) | (EXT_CLOCK_ENABLE << 5) | (EXT_CLOCK_INVERT << 4) | (EXT_CLOCK_SUSPEND << 3) | EXT_CLOCK_DIVISION)
MOV EBAE0,#ADDR_PINS_7_0
MOV EBAE1,#ADDR_PINS_15_8
MOV EBAE2,#ADDR_PINS_23_16
MOV EBCS, #((ADDRESS_STROBE_LVL << 6) | (ADDRESS_STROBE << 5) | (READ_STROBE << 4) | (HIGH_WRITE_STROBE << 3) | (LOW_WRITE_STROBE << 2) | (HIGH_BYTE_SIGNAL << 1) | LOW_BYTE_SIGNAL)
MOVW EACL0,#CS0_CONFIG
MOVW EACL1,#CS1_CONFIG
MOVW EACL2,#CS2_CONFIG
MOVW EACL3,#CS3_CONFIG
MOVW EACL4,#CS4_CONFIG
MOVW EACL5,#CS5_CONFIG
MOV EAS2, #CS2_START
MOV EAS3, #CS3_START
MOV EAS4, #CS4_START
MOV EAS5, #CS5_START
MOV EBM, #((ADDRESSMODE << 7) | ((BUSMODE-1) << 6) | (CHIP_SELECT5 << 5) | (CHIP_SELECT4 << 4) | (CHIP_SELECT3 << 3) | (CHIP_SELECT2 << 2) | (CHIP_SELECT1 << 1) | CHIP_SELECT0) ; set address mode, ROM access
# if SERIES == MB96320 || SERIES == MB96330 || SERIES == MB96340 || SERIES == MB96350
MOV PIER00,#0xFF
# if (CS0_CONFIG & 0x0080) == 0 || (CS1_CONFIG & 0x0080) == 0 || (CS2_CONFIG & 0x0080) == 0 || (CS3_CONFIG & 0x0080) == 0 || (CS4_CONFIG & 0x0080) == 0 || (CS5_CONFIG & 0x0080) == 0
MOV PIER01,#0xFF
# endif
# if HOLD_REQ == ON
SETB PIER03:4
# endif
# if EXT_READY == ON
SETB PIER03:6
# endif
# else if SERIES == MB96370 || SERIES == MB96380
MOV PIER01,#0xFF
# if (CS0_CONFIG & 0x0080) == 0 || (CS1_CONFIG & 0x0080) == 0 || (CS2_CONFIG & 0x0080) == 0 || (CS3_CONFIG & 0x0080) == 0 || (CS4_CONFIG & 0x0080) == 0 || (CS5_CONFIG & 0x0080) == 0
MOV PIER02,#0xFF
# endif
# if HOLD_REQ == ON
SETB PIER12:7
# endif
# if EXT_READY == ON
SETB PIER00:2
# endif
# endif
#endif
#if BUSMODE == INTROM_EXTBUS ; EXTBUS and INTROM/EXTROM
# if ROMMIRROR == OFF && CONSTDATA == ROMCONST
# error Mirror function must be ON to mirror internal ROM
# endif
#endif
ROMM_CONFIG .EQU ((MIRROR_BANK << 4) | (MIRROR_SIZE << 1) | (ROMMIRROR))
MOV ROMM, #ROMM_CONFIG
;====================================================================
; 6.7 Prepare stacks and set the default stack type
;====================================================================
AND CCR,#H'DF ; clear system stack flag
MOVL A, #(__userstack_top) & ~1
MOVW SP,A ; load offset of stack top to pointer
SWAPW ; swap higher word to AL
MOV USB, A ; set bank
#if STACK_FILL == ON ; preset the stack
MOV ADB, A
MOVW A, #USTACK ; load start stack address to AL
MOVW A, #STACK_PATTERN ; AL -> AH, pattern in AL
MOVW RW0, #SIZEOF(USTACK) / 2 ; get byte count
FILSWI ADB ; write pattern to stack
#endif
OR CCR,#H'20 ; set System stack flag
MOVL A, #(__systemstack_top) & ~1
MOVW SP,A ; load offset of stack top to pointer
SWAPW ; swap higher word to AL
MOV SSB, A ; set bank
#if STACK_FILL == ON ; preset the stack
MOV ADB, A
MOVW A, #SSTACK ; load start stack address to AL
MOVW A, #STACK_PATTERN ; AL -> AH, pattern in AL
MOVW RW0, #SIZEOF(SSTACK) / 2; get byte count
FILSWI ADB ; write pattern to stack
#endif
#if STACKUSE == USRSTACK
AND CCR,#H'DF ; clear system stack flag
#endif
; The following macro is needed because of the AUTOMODEL option. If the
; model is not known while assembling the module, one has to expect
; completion of streaminit() by RET or RETP. Because RET removes 2 bytes
; from stack and RETP removes 4 bytes from stack, SP is reloaded.
# macro RELOAD_SP
#if STACKUSE == USRSTACK
MOVW A, #(__userstack_top) & ~1
#else
MOVW A, #(__systemstack_top) & ~1
#endif
MOVW SP,A
# endm
;====================================================================
; 6.8 Copy initial values to data areas.
;====================================================================
;
; Each C-module has its own __far INIT section. The names are generic.
; DCONST_module contains the initializers for the far data of the one
; module. INIT_module reserves the RAM area, which has to be loaded
; with the data from DCONST_module. ("module" is the name of the *.c
; file)
; All separated DCONST_module/INIT_module areas are described in
; DTRANS section by start addresses and length of each far section.
; 0000 1. source address (ROM)
; 0004 1. destination address (RAM)
; 0008 length of sections 1
; 000A 2. source address (ROM)
; 000E 2. destination address (RAM)
; 0012 length of sections 2
; 0014 3. source address ...
; In addition the start-up file adds the descriptors of the __near
; sections to this table. The order of the descriptors in this table
; depends on the linkage order.
;====================================================================
MOV A, #BNKSEC DTRANS ; get bank of table
MOV DTB, A ; store bank in DTB
MOVW RW1, #DTRANS ; get start offset of table
OR CCR, #H'20 ; System stack flag set (SSB used)
BRA LABEL2 ; branch to loop condition
LABEL1:
MOVW A, @RW1+6 ; get bank of destination
MOV SSB, A ; save dest bank in SSB
MOVW A, @RW1+2 ; get source bank
MOV ADB, A ; save source bank in ADB
MOVW A, @RW1+4 ; move destination addr in AL
MOVW A, @RW1 ; AL -> AH, src addr -> AL
MOVW RW0, @RW1+8 ; number of bytes to copy -> RW0
MOVSI SPB, ADB ; copy data
MOVN A, #10 ; length of one table entry is 10
ADDW RW1, A ; set pointer to next table entry
LABEL2:
MOVW A, RW1 ; get address of next block
SUBW A, #DTRANS ; sub address of first block
CMPW A, #SIZEOF (DTRANS) ; all blocks processed ?
BNE LABEL1 ; if not, branch
;====================================================================
; 6.9 Clear uninitialized data areas to zero
;====================================================================
;
; Each C-module has its own __far DATA section. The names are generic.
; DATA_module contains the reserved area (RAM) to be cleared.
; ("module" is the name of the *.c file)
; All separated DATA_module areas are described in DCLEAR section by
; start addresses and length of all far section.
; 0000 1. section address (RAM)
; 0004 length of section 1
; 0006 2. section address (RAM)
; 000A length of section 2
; 000C 3. section address (RAM)
; 0010 length of section 3 ...
; In addition the start-up file adds the descriptors of the __near
; sections to this table. The order of the descriptors in this table
; depends on the linkage order.
;====================================================================
MOV A, #BNKSEC DCLEAR ; get bank of table
MOV DTB, A ; store bank in DTB
MOVW RW1, #DCLEAR ; get start offset of table
BRA LABEL4 ; branch to loop condition
LABEL3:
MOV A, @RW1+2 ; get section bank
MOV ADB, A ; save section bank in ADB
MOVW RW0, @RW1+4 ; number of bytes to copy -> RW0
MOVW A, @RW1 ; move section addr in AL
MOVN A, #0 ; AL -> AH, init value -> AL
FILSI ADB ; write 0 to section
MOVN A, #6 ; length of one table entry is 6
ADDW RW1, A ; set pointer to next table entry
LABEL4:
MOVW A, RW1 ; get address of next block
SUBW A, #DCLEAR ; sub address of first block
CMPW A, #SIZEOF (DCLEAR) ; all blocks processed ?
BNE LABEL3 ; if not, branch
;====================================================================
; 6.10 Set Data Bank Register (DTB) and Direct Page Register (DPR)
;====================================================================
MOV A,#BNKSEC DATA ; User data bank offset
MOV DTB,A
MOV A,#PAGE DIRDATA_S ; User direct page
MOV DPR,A
;====================================================================
; 6.11 ICU register initialization workaround
;====================================================================
#if (UART_SCANNING == ON)
# if (((SERIES == MB96320) && (DEVICE < 3)) || \
((SERIES == MB96350) && (DEVICE < 3)))
MOVN A, #0
MOV TCCSL2, A
MOV TCCSL3, A
MOV ICE67, A
MOV ICE89, A
MOV ICE1011, A
MOV ICS89, A
MOV ICS1011, A
# endif ; ((SERIES == 96350) && ...
# if (((SERIES == MB96330) && (DEVICE < 2)) || \
((SERIES == MB96340) && (DEVICE < 27)) || \
((SERIES == MB96370) && (DEVICE < 3)) || \
((SERIES == MB96380) && (DEVICE < 13)))
MOVN A, #0
MOV ICE01, A
MOV ICE67, A
# endif ; (((SERIES == MB96330) && (DEVICE < 2)) || ...
#endif ; (UART_SCANNING == ON)
;====================================================================
; 6.12 Wait for clocks to stabilize
;====================================================================
#if (CLOCK_SPEED == CPU_4MHZ_MAIN_CLKP2_4MHZ) && (CLOCKWAIT == ON)
no_MC_yet:
BBC CKMR:5,no_MC_yet ; check MCM and wait for
; Main Clock to stabilize
#endif ; wait for Main Clock
#if (((CRYSTAL == FREQ_4MHZ) ||(CRYSTAL == FREQ_8MHZ)) && \
((CLOCK_SPEED == CPU_12MHZ_CLKP2_12MHZ) || \
(CLOCK_SPEED == CPU_16MHZ_CLKP2_16MHZ) || \
(CLOCK_SPEED == CPU_24MHZ_CLKP2_12MHZ)))
no_PLL_0WS:
BBC CKMR:6, no_PLL_0WS
# if ! ((SERIES == MB96340) && (DEVICE < 3))
MOVW MTCRA, #0x2208
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x2208
# endif ; FLASH_B_AVAILABLE == ON
# endif ; ! ((SERIES == MB96340) && (DEVICE < 3))
#endif
#if ((CRYSTAL == FREQ_4MHZ) || (CRYSTAL == FREQ_8MHZ)) && \
((CLOCK_SPEED == CPU_48MHZ_CLKP2_16MHZ) || \
(CLOCK_SPEED == CPU_48MHZ_CLKP1_32MHZ_CLKP2_16MHZ)) && \
! ((SERIES == MB96340) && (DEVICE < 3))
no_PLL_1WS:
BBC CKMR:6, no_PLL_1WS
MOVW MTCRA, #0x6B09
# if FLASH_B_AVAILABLE == ON
MOVW MTCRB, #0x6B09
# endif ; FLASH_B_AVAILABLE == ON
#endif
#if (CLOCKWAIT == ON) && \
((CLOCK_SPEED == CPU_4MHZ_PLL_CLKP2_4MHZ) || \
(CLOCK_SPEED == CPU_8MHZ_CLKP2_8MHZ) || \
(CLOCK_SPEED == CPU_56MHZ_CLKP2_14MHZ))
no_PLL_yet:
BBC CKMR:6,no_PLL_yet ; check PCM and wait for
; PLL to stabilize
#endif ; wait for PLL
;====================================================================
; 6.13 Initialise Low-Level Library Interface
;====================================================================
;
; Call lib init function and reload stack afterwards, if AUTOMODEL
;====================================================================
#if CLIBINIT == ON
# if MEMMODEL == SMALL || MEMMODEL == COMPACT
CALL __stream_init ; initialise library IO
# else ; MEDIUM, LARGE, AUTOMODEL
CALLP __stream_init ; initialise library IO
# if MEMMODEL == AUTOMODEL
RELOAD_SP ; reload stack since stream_init was
; possibly left by RET (not RETP)
# endif ; AUTOMODEL
# endif ; MEDIUM, LARGE, AUTOMODEL
#endif ; LIBINI
;====================================================================
; 6.14 Call C-language main function
;====================================================================
#if MEMMODEL == SMALL || MEMMODEL == COMPACT
CALL _main ; Start main function
#else ; MEDIUM, LARGE, AUTOMODEL
CALLP _main ; Start main function
; ignore remaining word on stack,
; if main was completed by RET
#endif
;====================================================================
; 6.15 Shut down library
;====================================================================
#if CLIBINIT == ON
# if MEMMODEL == SMALL || MEMMODEL == COMPACT
CALL _exit
# else ; MEDIUM, LARGE, AUTOMODEL
CALLP _exit ; ignore remaining word on stack,
; if main was completed by RET
# endif
__exit:
#endif
;====================================================================
; 6.16 Program end loop
;====================================================================
end: BRA end ; Loop
.END notresetyet ; define debugger start address
;====================================================================
; ----------------------- End of Start-up file ---------------------
;====================================================================
Go to most recent revision | Compare with Previous | Blame | View Log