URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [freertos-6.1.1/] [Demo/] [lwIP_MCF5235_GCC/] [lwip/] [src/] [core/] [tcp.c] - Rev 583
Compare with Previous | Blame | View Log
/** * @file * * Transmission Control Protocol for IP * * This file contains common functions for the TCP implementation, such as functinos * for manipulating the data structures and the TCP timer functions. TCP functions * related to input and output is found in tcp_in.c and tcp_out.c respectively. * */ /* * Copyright (c) 2001-2004 Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Adam Dunkels <adam@sics.se> * */ #include <string.h> #include "lwip/opt.h" #include "lwip/def.h" #include "lwip/mem.h" #include "lwip/memp.h" #include "lwip/tcp.h" #if LWIP_TCP /* Incremented every coarse grained timer shot (typically every 500 ms, determined by TCP_COARSE_TIMEOUT). */ u32_t tcp_ticks; const u8_t tcp_backoff[13] = { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7}; /* The TCP PCB lists. */ /** List of all TCP PCBs in LISTEN state */ union tcp_listen_pcbs_t tcp_listen_pcbs; /** List of all TCP PCBs that are in a state in which * they accept or send data. */ struct tcp_pcb *tcp_active_pcbs; /** List of all TCP PCBs in TIME-WAIT state */ struct tcp_pcb *tcp_tw_pcbs; struct tcp_pcb *tcp_tmp_pcb; static u8_t tcp_timer; static u16_t tcp_new_port(void); /** * Initializes the TCP layer. */ void tcp_init(void) { /* Clear globals. */ tcp_listen_pcbs.listen_pcbs = NULL; tcp_active_pcbs = NULL; tcp_tw_pcbs = NULL; tcp_tmp_pcb = NULL; /* initialize timer */ tcp_ticks = 0; tcp_timer = 0; } /** * Called periodically to dispatch TCP timers. * */ void tcp_tmr(void) { /* Call tcp_fasttmr() every 250 ms */ tcp_fasttmr(); if (++tcp_timer & 1) { /* Call tcp_tmr() every 500 ms, i.e., every other timer tcp_tmr() is called. */ tcp_slowtmr(); } } /** * Closes the connection held by the PCB. * */ err_t tcp_close(struct tcp_pcb *pcb) { err_t err; #if TCP_DEBUG LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in state ")); tcp_debug_print_state(pcb->state); LWIP_DEBUGF(TCP_DEBUG, ("\n")); #endif /* TCP_DEBUG */ switch (pcb->state) { case CLOSED: /* Closing a pcb in the CLOSED state might seem erroneous, * however, it is in this state once allocated and as yet unused * and the user needs some way to free it should the need arise. * Calling tcp_close() with a pcb that has already been closed, (i.e. twice) * or for a pcb that has been used and then entered the CLOSED state * is erroneous, but this should never happen as the pcb has in those cases * been freed, and so any remaining handles are bogus. */ err = ERR_OK; memp_free(MEMP_TCP_PCB, pcb); pcb = NULL; break; case LISTEN: err = ERR_OK; tcp_pcb_remove((struct tcp_pcb **)&tcp_listen_pcbs.pcbs, pcb); memp_free(MEMP_TCP_PCB_LISTEN, pcb); pcb = NULL; break; case SYN_SENT: err = ERR_OK; tcp_pcb_remove(&tcp_active_pcbs, pcb); memp_free(MEMP_TCP_PCB, pcb); pcb = NULL; break; case SYN_RCVD: case ESTABLISHED: err = tcp_send_ctrl(pcb, TCP_FIN); if (err == ERR_OK) { pcb->state = FIN_WAIT_1; } break; case CLOSE_WAIT: err = tcp_send_ctrl(pcb, TCP_FIN); if (err == ERR_OK) { pcb->state = LAST_ACK; } break; default: /* Has already been closed, do nothing. */ err = ERR_OK; pcb = NULL; break; } if (pcb != NULL && err == ERR_OK) { err = tcp_output(pcb); } return err; } /** * Aborts a connection by sending a RST to the remote host and deletes * the local protocol control block. This is done when a connection is * killed because of shortage of memory. * */ void tcp_abort(struct tcp_pcb *pcb) { u32_t seqno, ackno; u16_t remote_port, local_port; struct ip_addr remote_ip, local_ip; #if LWIP_CALLBACK_API void (* errf)(void *arg, err_t err); #endif /* LWIP_CALLBACK_API */ void *errf_arg; /* Figure out on which TCP PCB list we are, and remove us. If we are in an active state, call the receive function associated with the PCB with a NULL argument, and send an RST to the remote end. */ if (pcb->state == TIME_WAIT) { tcp_pcb_remove(&tcp_tw_pcbs, pcb); memp_free(MEMP_TCP_PCB, pcb); } else { seqno = pcb->snd_nxt; ackno = pcb->rcv_nxt; ip_addr_set(&local_ip, &(pcb->local_ip)); ip_addr_set(&remote_ip, &(pcb->remote_ip)); local_port = pcb->local_port; remote_port = pcb->remote_port; #if LWIP_CALLBACK_API errf = pcb->errf; #endif /* LWIP_CALLBACK_API */ errf_arg = pcb->callback_arg; tcp_pcb_remove(&tcp_active_pcbs, pcb); if (pcb->unacked != NULL) { tcp_segs_free(pcb->unacked); } if (pcb->unsent != NULL) { tcp_segs_free(pcb->unsent); } #if TCP_QUEUE_OOSEQ if (pcb->ooseq != NULL) { tcp_segs_free(pcb->ooseq); } #endif /* TCP_QUEUE_OOSEQ */ memp_free(MEMP_TCP_PCB, pcb); TCP_EVENT_ERR(errf, errf_arg, ERR_ABRT); LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abort: sending RST\n")); tcp_rst(seqno, ackno, &local_ip, &remote_ip, local_port, remote_port); } } /** * Binds the connection to a local portnumber and IP address. If the * IP address is not given (i.e., ipaddr == NULL), the IP address of * the outgoing network interface is used instead. * */ err_t tcp_bind(struct tcp_pcb *pcb, struct ip_addr *ipaddr, u16_t port) { struct tcp_pcb *cpcb; if (port == 0) { port = tcp_new_port(); } /* Check if the address already is in use. */ for(cpcb = (struct tcp_pcb *)tcp_listen_pcbs.pcbs; cpcb != NULL; cpcb = cpcb->next) { if (cpcb->local_port == port) { if (ip_addr_isany(&(cpcb->local_ip)) || ip_addr_isany(ipaddr) || ip_addr_cmp(&(cpcb->local_ip), ipaddr)) { return ERR_USE; } } } for(cpcb = tcp_active_pcbs; cpcb != NULL; cpcb = cpcb->next) { if (cpcb->local_port == port) { if (ip_addr_isany(&(cpcb->local_ip)) || ip_addr_isany(ipaddr) || ip_addr_cmp(&(cpcb->local_ip), ipaddr)) { return ERR_USE; } } } if (!ip_addr_isany(ipaddr)) { pcb->local_ip = *ipaddr; } pcb->local_port = port; LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port)); return ERR_OK; } #if LWIP_CALLBACK_API static err_t tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err) { (void)arg; (void)pcb; (void)err; return ERR_ABRT; } #endif /* LWIP_CALLBACK_API */ /** * Set the state of the connection to be LISTEN, which means that it * is able to accept incoming connections. The protocol control block * is reallocated in order to consume less memory. Setting the * connection to LISTEN is an irreversible process. * */ struct tcp_pcb * tcp_listen(struct tcp_pcb *pcb) { struct tcp_pcb_listen *lpcb; /* already listening? */ if (pcb->state == LISTEN) { return pcb; } lpcb = memp_malloc(MEMP_TCP_PCB_LISTEN); if (lpcb == NULL) { return NULL; } lpcb->callback_arg = pcb->callback_arg; lpcb->local_port = pcb->local_port; lpcb->state = LISTEN; lpcb->so_options = pcb->so_options; lpcb->so_options |= SOF_ACCEPTCONN; lpcb->ttl = pcb->ttl; lpcb->tos = pcb->tos; ip_addr_set(&lpcb->local_ip, &pcb->local_ip); memp_free(MEMP_TCP_PCB, pcb); #if LWIP_CALLBACK_API lpcb->accept = tcp_accept_null; #endif /* LWIP_CALLBACK_API */ TCP_REG(&tcp_listen_pcbs.listen_pcbs, lpcb); return (struct tcp_pcb *)lpcb; } /** * This function should be called by the application when it has * processed the data. The purpose is to advertise a larger window * when the data has been processed. * */ void tcp_recved(struct tcp_pcb *pcb, u16_t len) { if ((u32_t)pcb->rcv_wnd + len > TCP_WND) { pcb->rcv_wnd = TCP_WND; } else { pcb->rcv_wnd += len; } if (!(pcb->flags & TF_ACK_DELAY) && !(pcb->flags & TF_ACK_NOW)) { /* * We send an ACK here (if one is not already pending, hence * the above tests) as tcp_recved() implies that the application * has processed some data, and so we can open the receiver's * window to allow more to be transmitted. This could result in * two ACKs being sent for each received packet in some limited cases * (where the application is only receiving data, and is slow to * process it) but it is necessary to guarantee that the sender can * continue to transmit. */ tcp_ack(pcb); } else if (pcb->flags & TF_ACK_DELAY && pcb->rcv_wnd >= TCP_WND/2) { /* If we can send a window update such that there is a full * segment available in the window, do so now. This is sort of * nagle-like in its goals, and tries to hit a compromise between * sending acks each time the window is updated, and only sending * window updates when a timer expires. The "threshold" used * above (currently TCP_WND/2) can be tuned to be more or less * aggressive */ tcp_ack_now(pcb); } LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: recveived %"U16_F" bytes, wnd %"U16_F" (%"U16_F").\n", len, pcb->rcv_wnd, TCP_WND - pcb->rcv_wnd)); } /** * A nastly hack featuring 'goto' statements that allocates a * new TCP local port. */ static u16_t tcp_new_port(void) { struct tcp_pcb *pcb; #ifndef TCP_LOCAL_PORT_RANGE_START #define TCP_LOCAL_PORT_RANGE_START 4096 #define TCP_LOCAL_PORT_RANGE_END 0x7fff #endif static u16_t port = TCP_LOCAL_PORT_RANGE_START; again: if (++port > TCP_LOCAL_PORT_RANGE_END) { port = TCP_LOCAL_PORT_RANGE_START; } for(pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { if (pcb->local_port == port) { goto again; } } for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { if (pcb->local_port == port) { goto again; } } for(pcb = (struct tcp_pcb *)tcp_listen_pcbs.pcbs; pcb != NULL; pcb = pcb->next) { if (pcb->local_port == port) { goto again; } } return port; } /** * Connects to another host. The function given as the "connected" * argument will be called when the connection has been established. * */ err_t tcp_connect(struct tcp_pcb *pcb, struct ip_addr *ipaddr, u16_t port, err_t (* connected)(void *arg, struct tcp_pcb *tpcb, err_t err)) { u32_t optdata; err_t ret; u32_t iss; LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port)); if (ipaddr != NULL) { pcb->remote_ip = *ipaddr; } else { return ERR_VAL; } pcb->remote_port = port; if (pcb->local_port == 0) { pcb->local_port = tcp_new_port(); } iss = tcp_next_iss(); pcb->rcv_nxt = 0; pcb->snd_nxt = iss; pcb->lastack = iss - 1; pcb->snd_lbb = iss - 1; pcb->rcv_wnd = TCP_WND; pcb->snd_wnd = TCP_WND; pcb->mss = TCP_MSS; pcb->cwnd = 1; pcb->ssthresh = pcb->mss * 10; pcb->state = SYN_SENT; #if LWIP_CALLBACK_API pcb->connected = connected; #endif /* LWIP_CALLBACK_API */ TCP_REG(&tcp_active_pcbs, pcb); /* Build an MSS option */ optdata = htonl(((u32_t)2 << 24) | ((u32_t)4 << 16) | (((u32_t)pcb->mss / 256) << 8) | (pcb->mss & 255)); ret = tcp_enqueue(pcb, NULL, 0, TCP_SYN, 0, (u8_t *)&optdata, 4); if (ret == ERR_OK) { tcp_output(pcb); } return ret; } /** * Called every 500 ms and implements the retransmission timer and the timer that * removes PCBs that have been in TIME-WAIT for enough time. It also increments * various timers such as the inactivity timer in each PCB. */ void tcp_slowtmr(void) { struct tcp_pcb *pcb, *pcb2, *prev; u32_t eff_wnd; u8_t pcb_remove; /* flag if a PCB should be removed */ err_t err; err = ERR_OK; ++tcp_ticks; /* Steps through all of the active PCBs. */ prev = NULL; pcb = tcp_active_pcbs; if (pcb == NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n")); } while (pcb != NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n")); LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED\n", pcb->state != CLOSED); LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN\n", pcb->state != LISTEN); LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT\n", pcb->state != TIME_WAIT); pcb_remove = 0; if (pcb->state == SYN_SENT && pcb->nrtx == TCP_SYNMAXRTX) { ++pcb_remove; LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n")); } else if (pcb->nrtx == TCP_MAXRTX) { ++pcb_remove; LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n")); } else { ++pcb->rtime; if (pcb->unacked != NULL && pcb->rtime >= pcb->rto) { /* Time for a retransmission. */ LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"U16_F" pcb->rto %"U16_F"\n", pcb->rtime, pcb->rto)); /* Double retransmission time-out unless we are trying to * connect to somebody (i.e., we are in SYN_SENT). */ if (pcb->state != SYN_SENT) { pcb->rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[pcb->nrtx]; } /* Reduce congestion window and ssthresh. */ eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd); pcb->ssthresh = eff_wnd >> 1; if (pcb->ssthresh < pcb->mss) { pcb->ssthresh = pcb->mss * 2; } pcb->cwnd = pcb->mss; LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"U16_F" ssthresh %"U16_F"\n", pcb->cwnd, pcb->ssthresh)); /* The following needs to be called AFTER cwnd is set to one mss - STJ */ tcp_rexmit_rto(pcb); } } /* Check if this PCB has stayed too long in FIN-WAIT-2 */ if (pcb->state == FIN_WAIT_2) { if ((u32_t)(tcp_ticks - pcb->tmr) > TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) { ++pcb_remove; LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n")); } } /* Check if KEEPALIVE should be sent */ if((pcb->so_options & SOF_KEEPALIVE) && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) { if((u32_t)(tcp_ticks - pcb->tmr) > (pcb->keepalive + TCP_MAXIDLE) / TCP_SLOW_INTERVAL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to %"U16_F".%"U16_F".%"U16_F".%"U16_F".\n", ip4_addr1(&pcb->remote_ip), ip4_addr2(&pcb->remote_ip), ip4_addr3(&pcb->remote_ip), ip4_addr4(&pcb->remote_ip))); tcp_abort(pcb); } else if((u32_t)(tcp_ticks - pcb->tmr) > (pcb->keepalive + pcb->keep_cnt * TCP_KEEPINTVL) / TCP_SLOW_INTERVAL) { tcp_keepalive(pcb); pcb->keep_cnt++; } } /* If this PCB has queued out of sequence data, but has been inactive for too long, will drop the data (it will eventually be retransmitted). */ #if TCP_QUEUE_OOSEQ if (pcb->ooseq != NULL && (u32_t)tcp_ticks - pcb->tmr >= pcb->rto * TCP_OOSEQ_TIMEOUT) { tcp_segs_free(pcb->ooseq); pcb->ooseq = NULL; LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n")); } #endif /* TCP_QUEUE_OOSEQ */ /* Check if this PCB has stayed too long in SYN-RCVD */ if (pcb->state == SYN_RCVD) { if ((u32_t)(tcp_ticks - pcb->tmr) > TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) { ++pcb_remove; LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n")); } } /* Check if this PCB has stayed too long in LAST-ACK */ if (pcb->state == LAST_ACK) { if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) { ++pcb_remove; LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n")); } } /* If the PCB should be removed, do it. */ if (pcb_remove) { tcp_pcb_purge(pcb); /* Remove PCB from tcp_active_pcbs list. */ if (prev != NULL) { LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs); prev->next = pcb->next; } else { /* This PCB was the first. */ LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb); tcp_active_pcbs = pcb->next; } TCP_EVENT_ERR(pcb->errf, pcb->callback_arg, ERR_ABRT); pcb2 = pcb->next; memp_free(MEMP_TCP_PCB, pcb); pcb = pcb2; } else { /* We check if we should poll the connection. */ ++pcb->polltmr; if (pcb->polltmr >= pcb->pollinterval) { pcb->polltmr = 0; LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n")); TCP_EVENT_POLL(pcb, err); if (err == ERR_OK) { tcp_output(pcb); } } prev = pcb; pcb = pcb->next; } } /* Steps through all of the TIME-WAIT PCBs. */ prev = NULL; pcb = tcp_tw_pcbs; while (pcb != NULL) { LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT); pcb_remove = 0; /* Check if this PCB has stayed long enough in TIME-WAIT */ if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) { ++pcb_remove; } /* If the PCB should be removed, do it. */ if (pcb_remove) { tcp_pcb_purge(pcb); /* Remove PCB from tcp_tw_pcbs list. */ if (prev != NULL) { LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs); prev->next = pcb->next; } else { /* This PCB was the first. */ LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb); tcp_tw_pcbs = pcb->next; } pcb2 = pcb->next; memp_free(MEMP_TCP_PCB, pcb); pcb = pcb2; } else { prev = pcb; pcb = pcb->next; } } } /** * Is called every TCP_FAST_INTERVAL (250 ms) and sends delayed ACKs. */ void tcp_fasttmr(void) { struct tcp_pcb *pcb; /* send delayed ACKs */ for(pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { if (pcb->flags & TF_ACK_DELAY) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n")); tcp_ack_now(pcb); pcb->flags &= ~(TF_ACK_DELAY | TF_ACK_NOW); } } } /** * Deallocates a list of TCP segments (tcp_seg structures). * */ u8_t tcp_segs_free(struct tcp_seg *seg) { u8_t count = 0; struct tcp_seg *next; while (seg != NULL) { next = seg->next; count += tcp_seg_free(seg); seg = next; } return count; } /** * Frees a TCP segment. * */ u8_t tcp_seg_free(struct tcp_seg *seg) { u8_t count = 0; if (seg != NULL) { if (seg->p != NULL) { count = pbuf_free(seg->p); #if TCP_DEBUG seg->p = NULL; #endif /* TCP_DEBUG */ } memp_free(MEMP_TCP_SEG, seg); } return count; } /** * Sets the priority of a connection. * */ void tcp_setprio(struct tcp_pcb *pcb, u8_t prio) { pcb->prio = prio; } #if TCP_QUEUE_OOSEQ /** * Returns a copy of the given TCP segment. * */ struct tcp_seg * tcp_seg_copy(struct tcp_seg *seg) { struct tcp_seg *cseg; cseg = memp_malloc(MEMP_TCP_SEG); if (cseg == NULL) { return NULL; } memcpy((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg)); pbuf_ref(cseg->p); return cseg; } #endif #if LWIP_CALLBACK_API static err_t tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err) { arg = arg; if (p != NULL) { pbuf_free(p); } else if (err == ERR_OK) { return tcp_close(pcb); } return ERR_OK; } #endif /* LWIP_CALLBACK_API */ static void tcp_kill_prio(u8_t prio) { struct tcp_pcb *pcb, *inactive; u32_t inactivity; u8_t mprio; mprio = TCP_PRIO_MAX; /* We kill the oldest active connection that has lower priority than prio. */ inactivity = 0; inactive = NULL; for(pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { if (pcb->prio <= prio && pcb->prio <= mprio && (u32_t)(tcp_ticks - pcb->tmr) >= inactivity) { inactivity = tcp_ticks - pcb->tmr; inactive = pcb; mprio = pcb->prio; } } if (inactive != NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n", (void *)inactive, inactivity)); tcp_abort(inactive); } } static void tcp_kill_timewait(void) { struct tcp_pcb *pcb, *inactive; u32_t inactivity; inactivity = 0; inactive = NULL; for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) { inactivity = tcp_ticks - pcb->tmr; inactive = pcb; } } if (inactive != NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n", (void *)inactive, inactivity)); tcp_abort(inactive); } } struct tcp_pcb * tcp_alloc(u8_t prio) { struct tcp_pcb *pcb; u32_t iss; pcb = memp_malloc(MEMP_TCP_PCB); if (pcb == NULL) { /* Try killing oldest connection in TIME-WAIT. */ LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n")); tcp_kill_timewait(); pcb = memp_malloc(MEMP_TCP_PCB); if (pcb == NULL) { tcp_kill_prio(prio); pcb = memp_malloc(MEMP_TCP_PCB); } } if (pcb != NULL) { memset(pcb, 0, sizeof(struct tcp_pcb)); pcb->prio = TCP_PRIO_NORMAL; pcb->snd_buf = TCP_SND_BUF; pcb->snd_queuelen = 0; pcb->rcv_wnd = TCP_WND; pcb->tos = 0; pcb->ttl = TCP_TTL; pcb->mss = TCP_MSS; pcb->rto = 3000 / TCP_SLOW_INTERVAL; pcb->sa = 0; pcb->sv = 3000 / TCP_SLOW_INTERVAL; pcb->rtime = 0; pcb->cwnd = 1; iss = tcp_next_iss(); pcb->snd_wl2 = iss; pcb->snd_nxt = iss; pcb->snd_max = iss; pcb->lastack = iss; pcb->snd_lbb = iss; pcb->tmr = tcp_ticks; pcb->polltmr = 0; #if LWIP_CALLBACK_API pcb->recv = tcp_recv_null; #endif /* LWIP_CALLBACK_API */ /* Init KEEPALIVE timer */ pcb->keepalive = TCP_KEEPDEFAULT; pcb->keep_cnt = 0; } return pcb; } /** * Creates a new TCP protocol control block but doesn't place it on * any of the TCP PCB lists. * * @internal: Maybe there should be a idle TCP PCB list where these * PCBs are put on. We can then implement port reservation using * tcp_bind(). Currently, we lack this (BSD socket type of) feature. */ struct tcp_pcb * tcp_new(void) { return tcp_alloc(TCP_PRIO_NORMAL); } /* * tcp_arg(): * * Used to specify the argument that should be passed callback * functions. * */ void tcp_arg(struct tcp_pcb *pcb, void *arg) { pcb->callback_arg = arg; } #if LWIP_CALLBACK_API /** * Used to specify the function that should be called when a TCP * connection receives data. * */ void tcp_recv(struct tcp_pcb *pcb, err_t (* recv)(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err)) { pcb->recv = recv; } /** * Used to specify the function that should be called when TCP data * has been successfully delivered to the remote host. * */ void tcp_sent(struct tcp_pcb *pcb, err_t (* sent)(void *arg, struct tcp_pcb *tpcb, u16_t len)) { pcb->sent = sent; } /** * Used to specify the function that should be called when a fatal error * has occured on the connection. * */ void tcp_err(struct tcp_pcb *pcb, void (* errf)(void *arg, err_t err)) { pcb->errf = errf; } /** * Used for specifying the function that should be called when a * LISTENing connection has been connected to another host. * */ void tcp_accept(struct tcp_pcb *pcb, err_t (* accept)(void *arg, struct tcp_pcb *newpcb, err_t err)) { ((struct tcp_pcb_listen *)pcb)->accept = accept; } #endif /* LWIP_CALLBACK_API */ /** * Used to specify the function that should be called periodically * from TCP. The interval is specified in terms of the TCP coarse * timer interval, which is called twice a second. * */ void tcp_poll(struct tcp_pcb *pcb, err_t (* poll)(void *arg, struct tcp_pcb *tpcb), u8_t interval) { #if LWIP_CALLBACK_API pcb->poll = poll; #endif /* LWIP_CALLBACK_API */ pcb->pollinterval = interval; } /** * Purges a TCP PCB. Removes any buffered data and frees the buffer memory. * */ void tcp_pcb_purge(struct tcp_pcb *pcb) { if (pcb->state != CLOSED && pcb->state != TIME_WAIT && pcb->state != LISTEN) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n")); if (pcb->unsent != NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n")); } if (pcb->unacked != NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n")); } #if TCP_QUEUE_OOSEQ /* LW */ if (pcb->ooseq != NULL) { LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n")); } tcp_segs_free(pcb->ooseq); pcb->ooseq = NULL; #endif /* TCP_QUEUE_OOSEQ */ tcp_segs_free(pcb->unsent); tcp_segs_free(pcb->unacked); pcb->unacked = pcb->unsent = NULL; } } /** * Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first. * */ void tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb) { TCP_RMV(pcblist, pcb); tcp_pcb_purge(pcb); /* if there is an outstanding delayed ACKs, send it */ if (pcb->state != TIME_WAIT && pcb->state != LISTEN && pcb->flags & TF_ACK_DELAY) { pcb->flags |= TF_ACK_NOW; tcp_output(pcb); } pcb->state = CLOSED; LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane()); } /** * Calculates a new initial sequence number for new connections. * */ u32_t tcp_next_iss(void) { static u32_t iss = 6510; iss += tcp_ticks; /* XXX */ return iss; } #if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG void tcp_debug_print(struct tcp_hdr *tcphdr) { LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n")); LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); LWIP_DEBUGF(TCP_DEBUG, ("| %5"U16_F" | %5"U16_F" | (src port, dest port)\n", ntohs(tcphdr->src), ntohs(tcphdr->dest))); LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (seq no)\n", ntohl(tcphdr->seqno))); LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (ack no)\n", ntohl(tcphdr->ackno))); LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" | |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"| %5"U16_F" | (hdrlen, flags (", TCPH_HDRLEN(tcphdr), TCPH_FLAGS(tcphdr) >> 5 & 1, TCPH_FLAGS(tcphdr) >> 4 & 1, TCPH_FLAGS(tcphdr) >> 3 & 1, TCPH_FLAGS(tcphdr) >> 2 & 1, TCPH_FLAGS(tcphdr) >> 1 & 1, TCPH_FLAGS(tcphdr) & 1, ntohs(tcphdr->wnd))); tcp_debug_print_flags(TCPH_FLAGS(tcphdr)); LWIP_DEBUGF(TCP_DEBUG, ("), win)\n")); LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); LWIP_DEBUGF(TCP_DEBUG, ("| 0x%04"X16_F" | %5"U16_F" | (chksum, urgp)\n", ntohs(tcphdr->chksum), ntohs(tcphdr->urgp))); LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n")); } void tcp_debug_print_state(enum tcp_state s) { LWIP_DEBUGF(TCP_DEBUG, ("State: ")); switch (s) { case CLOSED: LWIP_DEBUGF(TCP_DEBUG, ("CLOSED\n")); break; case LISTEN: LWIP_DEBUGF(TCP_DEBUG, ("LISTEN\n")); break; case SYN_SENT: LWIP_DEBUGF(TCP_DEBUG, ("SYN_SENT\n")); break; case SYN_RCVD: LWIP_DEBUGF(TCP_DEBUG, ("SYN_RCVD\n")); break; case ESTABLISHED: LWIP_DEBUGF(TCP_DEBUG, ("ESTABLISHED\n")); break; case FIN_WAIT_1: LWIP_DEBUGF(TCP_DEBUG, ("FIN_WAIT_1\n")); break; case FIN_WAIT_2: LWIP_DEBUGF(TCP_DEBUG, ("FIN_WAIT_2\n")); break; case CLOSE_WAIT: LWIP_DEBUGF(TCP_DEBUG, ("CLOSE_WAIT\n")); break; case CLOSING: LWIP_DEBUGF(TCP_DEBUG, ("CLOSING\n")); break; case LAST_ACK: LWIP_DEBUGF(TCP_DEBUG, ("LAST_ACK\n")); break; case TIME_WAIT: LWIP_DEBUGF(TCP_DEBUG, ("TIME_WAIT\n")); break; } } void tcp_debug_print_flags(u8_t flags) { if (flags & TCP_FIN) { LWIP_DEBUGF(TCP_DEBUG, ("FIN ")); } if (flags & TCP_SYN) { LWIP_DEBUGF(TCP_DEBUG, ("SYN ")); } if (flags & TCP_RST) { LWIP_DEBUGF(TCP_DEBUG, ("RST ")); } if (flags & TCP_PSH) { LWIP_DEBUGF(TCP_DEBUG, ("PSH ")); } if (flags & TCP_ACK) { LWIP_DEBUGF(TCP_DEBUG, ("ACK ")); } if (flags & TCP_URG) { LWIP_DEBUGF(TCP_DEBUG, ("URG ")); } if (flags & TCP_ECE) { LWIP_DEBUGF(TCP_DEBUG, ("ECE ")); } if (flags & TCP_CWR) { LWIP_DEBUGF(TCP_DEBUG, ("CWR ")); } } void tcp_debug_print_pcbs(void) { struct tcp_pcb *pcb; LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n")); for(pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ", pcb->local_port, pcb->remote_port, pcb->snd_nxt, pcb->rcv_nxt)); tcp_debug_print_state(pcb->state); } LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n")); for(pcb = (struct tcp_pcb *)tcp_listen_pcbs.pcbs; pcb != NULL; pcb = pcb->next) { LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ", pcb->local_port, pcb->remote_port, pcb->snd_nxt, pcb->rcv_nxt)); tcp_debug_print_state(pcb->state); } LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n")); for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ", pcb->local_port, pcb->remote_port, pcb->snd_nxt, pcb->rcv_nxt)); tcp_debug_print_state(pcb->state); } } s16_t tcp_pcbs_sane(void) { struct tcp_pcb *pcb; for(pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) { LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED); LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN); LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT); } for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) { LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT); } return 1; } #endif /* TCP_DEBUG */ #endif /* LWIP_TCP */