URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [exec/] [score/] [cpu/] [hppa1.1/] [cpu_asm.S] - Rev 630
Go to most recent revision | Compare with Previous | Blame | View Log
/*
* TODO:
* Context_switch needs to only save callee save registers
* I think this means can skip: r1, r2, r19-29, r31
* Ref: p 3-2 of Procedure Calling Conventions Manual
* This should be #ifndef DEBUG so that debugger has
* accurate visibility into all registers
*
* This file contains the assembly code for the HPPA implementation
* of RTEMS.
*
* COPYRIGHT (c) 1994,95 by Division Incorporated
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id: cpu_asm.S,v 1.2 2001-09-27 11:59:24 chris Exp $
*/
#include <rtems/score/hppa.h>
#include <rtems/score/cpu_asm.h>
#include <rtems/score/cpu.h>
#include <rtems/score/offsets.h>
.SPACE $PRIVATE$
.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31
.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82
.SPACE $TEXT$
.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44
.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY
.SPACE $TEXT$
.SUBSPA $CODE$
/*
* Special register usage for context switch and interrupts
* Stay away from %cr28 which is used for TLB misses on 72000
*/
isr_arg0 .reg %cr24
isr_r9 .reg %cr25
isr_r8 .reg %cr26
/*
* Interrupt stack frame looks like this
*
* offset item
* -----------------------------------------------------------------
* INTEGER_CONTEXT_OFFSET Context_Control
* FP_CONTEXT_OFFSET Context_Control_fp
*
* It is padded out to a multiple of 64
*/
/*PAGE^L
* void _Generic_ISR_Handler()
*
* This routine provides the RTEMS interrupt management.
*
* We jump here from the interrupt vector.
* The HPPA hardware has done some stuff for us:
* PSW saved in IPSW
* PSW set to 0
* PSW[E] set to default (0)
* PSW[M] set to 1 iff this is HPMC
*
* IIA queue is frozen (since PSW[Q] is now 0)
* privilege level promoted to 0
* IIR, ISR, IOR potentially updated if PSW[Q] was 1 at trap
* registers GR 1,8,9,16,17,24,25 copied to shadow regs
* SHR 0 1 2 3 4 5 6
*
* Our vector stub (in the BSP) MUST have done the following:
*
* a) Saved the original %r9 into %isr_r9 (%cr25)
* b) Placed the vector number in %r9
* c) Was allowed to also destroy $isr_r8 (%cr26),
* but the stub was NOT allowed to destroy any other registers.
*
* The typical stub sequence (in the BSP) should look like this:
*
* a) mtctl %r9,isr_r9 ; (save r9 in cr25)
* b) ldi vector,%r9 ; (load constant vector number in r9)
* c) mtctl %r8,isr_r8 ; (save r8 in cr26)
* d) ldil L%MY_BSP_first_level_interrupt_handler,%r8
* e) ldo R%MY_BSP_first_level_interrupt_handler(%r8),%r8
* ; (point to BSP raw handler table)
* f) ldwx,s %r9(%r8),%r8 ; (load value from raw handler table)
* g) bv 0(%r8) ; (call raw handler: _Generic_ISR_Handler)
* h) mfctl isr_r8,%r8 ; (restore r8 from cr26 in delay slot)
*
* Optionally, steps (c) thru (h) _could_ be replaced with a single
* bl,n _Generic_ISR_Handler,%r0
*
*
*/
.EXPORT _Generic_ISR_Handler,ENTRY,PRIV_LEV=0
_Generic_ISR_Handler:
.PROC
.CALLINFO FRAME=0,NO_CALLS
.ENTRY
mtctl arg0, isr_arg0
/*
* save interrupt state
*/
mfctl ipsw, arg0
stw arg0, IPSW_OFFSET(sp)
mfctl iir, arg0
stw arg0, IIR_OFFSET(sp)
mfctl ior, arg0
stw arg0, IOR_OFFSET(sp)
mfctl pcoq, arg0
stw arg0, PCOQFRONT_OFFSET(sp)
mtctl %r0, pcoq
mfctl pcoq, arg0
stw arg0, PCOQBACK_OFFSET(sp)
mfctl %sar, arg0
stw arg0, SAR_OFFSET(sp)
/*
* Build an interrupt frame to hold the contexts we will need.
* We have already saved the interrupt items on the stack
*
* At this point the following registers are damaged wrt the interrupt
* reg current value saved value
* ------------------------------------------------
* arg0 scratch isr_arg0 (cr24)
* r9 vector number isr_r9 (cr25)
*
* Point to beginning of integer context and
* save the integer context
*/
stw %r1,R1_OFFSET(sp)
stw %r2,R2_OFFSET(sp)
stw %r3,R3_OFFSET(sp)
stw %r4,R4_OFFSET(sp)
stw %r5,R5_OFFSET(sp)
stw %r6,R6_OFFSET(sp)
stw %r7,R7_OFFSET(sp)
stw %r8,R8_OFFSET(sp)
/*
* skip r9
*/
stw %r10,R10_OFFSET(sp)
stw %r11,R11_OFFSET(sp)
stw %r12,R12_OFFSET(sp)
stw %r13,R13_OFFSET(sp)
stw %r14,R14_OFFSET(sp)
stw %r15,R15_OFFSET(sp)
stw %r16,R16_OFFSET(sp)
stw %r17,R17_OFFSET(sp)
stw %r18,R18_OFFSET(sp)
stw %r19,R19_OFFSET(sp)
stw %r20,R20_OFFSET(sp)
stw %r21,R21_OFFSET(sp)
stw %r22,R22_OFFSET(sp)
stw %r23,R23_OFFSET(sp)
stw %r24,R24_OFFSET(sp)
stw %r25,R25_OFFSET(sp)
/*
* skip arg0
*/
stw %r27,R27_OFFSET(sp)
stw %r28,R28_OFFSET(sp)
stw %r29,R29_OFFSET(sp)
stw %r30,R30_OFFSET(sp)
stw %r31,R31_OFFSET(sp)
/* Now most registers are available since they have been saved
*
* The following items are currently wrong in the integer context
* reg current value saved value
* ------------------------------------------------
* arg0 scratch isr_arg0 (cr24)
* r9 vector number isr_r9 (cr25)
*
* Fix them
*/
mfctl isr_arg0,%r3
stw %r3,ARG0_OFFSET(sp)
mfctl isr_r9,%r3
stw %r3,R9_OFFSET(sp)
/*
* At this point we are done with isr_arg0, and isr_r9 control registers
*
* Prepare to re-enter virtual mode
* We need Q in case the interrupt handler enables interrupts
*/
ldil L%CPU_PSW_DEFAULT, arg0
ldo R%CPU_PSW_DEFAULT(arg0), arg0
mtctl arg0, ipsw
/*
* Now jump to "rest_of_isr_handler" with the rfi
* We are assuming the space queues are all correct already
*/
ldil L%rest_of_isr_handler, arg0
ldo R%rest_of_isr_handler(arg0), arg0
mtctl arg0, pcoq
ldo 4(arg0), arg0
mtctl arg0, pcoq
rfi
nop
/*
* At this point we are back in virtual mode and all our
* normal addressing is once again ok.
*
* It is now ok to take an exception or trap
*/
rest_of_isr_handler:
/*
* Point to beginning of float context and
* save the floating point context -- doing whatever patches are necessary
*/
.call ARGW0=GR
bl _CPU_Save_float_context,%r2
ldo FP_CONTEXT_OFFSET(sp),arg0
/*
* save the ptr to interrupt frame as an argument for the interrupt handler
*/
copy sp, arg1
/*
* Advance the frame to point beyond all interrupt contexts (integer & float)
* this also includes the pad to align to 64byte stack boundary
*/
ldo CPU_INTERRUPT_FRAME_SIZE(sp), sp
/*
* r3 -- &_ISR_Nest_level
* r5 -- value _ISR_Nest_level
* r4 -- &_Thread_Dispatch_disable_level
* r6 -- value _Thread_Dispatch_disable_level
* r9 -- vector number
*/
.import _ISR_Nest_level,data
ldil L%_ISR_Nest_level,%r3
ldo R%_ISR_Nest_level(%r3),%r3
ldw 0(%r3),%r5
.import _Thread_Dispatch_disable_level,data
ldil L%_Thread_Dispatch_disable_level,%r4
ldo R%_Thread_Dispatch_disable_level(%r4),%r4
ldw 0(%r4),%r6
/*
* increment interrupt nest level counter. If outermost interrupt
* switch the stack and squirrel away the previous sp.
*/
addi 1,%r5,%r5
stw %r5, 0(%r3)
/*
* compute and save new stack (with frame)
* just in case we are nested -- simpler this way
*/
comibf,= 1,%r5,stack_done
ldo 128(sp),%r7
/*
* Switch to interrupt stack allocated by the interrupt manager (intr.c)
*/
.import _CPU_Interrupt_stack_low,data
ldil L%_CPU_Interrupt_stack_low,%r7
ldw R%_CPU_Interrupt_stack_low(%r7),%r7
ldo 128(%r7),%r7
stack_done:
/*
* save our current stack pointer where the "old sp" is supposed to be
*/
stw sp, -4(%r7)
/*
* and switch stacks (or advance old stack in nested case)
*/
copy %r7, sp
/*
* increment the dispatch disable level counter.
*/
addi 1,%r6,%r6
stw %r6, 0(%r4)
/*
* load address of user handler
* Note: No error checking is done, it is assumed that the
* vector table contains a valid address or a stub
* spurious handler.
*/
.import _ISR_Vector_table,data
ldil L%_ISR_Vector_table,%r8
ldo R%_ISR_Vector_table(%r8),%r8
ldwx,s %r9(%r8),%r8
/*
* invoke user interrupt handler
* Interrupts are currently disabled, as per RTEMS convention
* The handler has the option of re-enabling interrupts
* NOTE: can not use 'bl' since it uses "pc-relative" addressing
* and we are using a hard coded address from a table
* So... we fudge r2 ourselves (ala dynacall)
* arg0 = vector number, arg1 = ptr to rtems_interrupt_frame
*/
copy %r9, %r26
.call ARGW0=GR, ARGW1=GR
blr %r0, rp
bv,n 0(%r8)
post_user_interrupt_handler:
/*
* Back from user handler(s)
* Disable external interrupts (since the interrupt handler could
* have turned them on) and return to the interrupted task stack (assuming
* (_ISR_Nest_level == 0)
*/
rsm HPPA_PSW_I + HPPA_PSW_R, %r0
ldw -4(sp), sp
/*
* r3 -- (most of) &_ISR_Nest_level
* r5 -- value _ISR_Nest_level
* r4 -- (most of) &_Thread_Dispatch_disable_level
* r6 -- value _Thread_Dispatch_disable_level
* r7 -- (most of) &_ISR_Signals_to_thread_executing
* r8 -- value _ISR_Signals_to_thread_executing
*/
.import _ISR_Nest_level,data
ldil L%_ISR_Nest_level,%r3
ldw R%_ISR_Nest_level(%r3),%r5
.import _Thread_Dispatch_disable_level,data
ldil L%_Thread_Dispatch_disable_level,%r4
ldw R%_Thread_Dispatch_disable_level(%r4),%r6
.import _ISR_Signals_to_thread_executing,data
ldil L%_ISR_Signals_to_thread_executing,%r7
/*
* decrement isr nest level
*/
addi -1, %r5, %r5
stw %r5, R%_ISR_Nest_level(%r3)
/*
* decrement dispatch disable level counter and, if not 0, go on
*/
addi -1,%r6,%r6
comibf,= 0,%r6,isr_restore
stw %r6, R%_Thread_Dispatch_disable_level(%r4)
/*
* check whether or not a context switch is necessary
*/
.import _Context_Switch_necessary,data
ldil L%_Context_Switch_necessary,%r8
ldw R%_Context_Switch_necessary(%r8),%r8
comibf,=,n 0,%r8,ISR_dispatch
/*
* check whether or not a context switch is necessary because an ISR
* sent signals to the interrupted task
*/
ldw R%_ISR_Signals_to_thread_executing(%r7),%r8
comibt,=,n 0,%r8,isr_restore
/*
* OK, something happened while in ISR and we need to switch to a task
* other than the one which was interrupted or the
* ISR_Signals_to_thread_executing case
* We also turn on interrupts, since the interrupted task had them
* on (obviously :-) and Thread_Dispatch is happy to leave ints on.
*/
ISR_dispatch:
stw %r0, R%_ISR_Signals_to_thread_executing(%r7)
ssm HPPA_PSW_I, %r0
.import _Thread_Dispatch,code
.call
bl _Thread_Dispatch,%r2
ldo 128(sp),sp
ldo -128(sp),sp
isr_restore:
/*
* enable interrupts during most of restore
*/
ssm HPPA_PSW_I, %r0
/*
* Get a pointer to beginning of our stack frame
*/
ldo -CPU_INTERRUPT_FRAME_SIZE(sp), %arg1
/*
* restore float
*/
.call ARGW0=GR
bl _CPU_Restore_float_context,%r2
ldo FP_CONTEXT_OFFSET(%arg1), arg0
copy %arg1, %arg0
/*
* ********** FALL THRU **********
*/
/*
* Jump here from bottom of Context_Switch
* Also called directly by _CPU_Context_Restart_self via _Thread_Restart_self
* restore interrupt state
*/
.EXPORT _CPU_Context_restore
_CPU_Context_restore:
/*
* restore integer state
*/
ldw R1_OFFSET(arg0),%r1
ldw R2_OFFSET(arg0),%r2
ldw R3_OFFSET(arg0),%r3
ldw R4_OFFSET(arg0),%r4
ldw R5_OFFSET(arg0),%r5
ldw R6_OFFSET(arg0),%r6
ldw R7_OFFSET(arg0),%r7
ldw R8_OFFSET(arg0),%r8
ldw R9_OFFSET(arg0),%r9
ldw R10_OFFSET(arg0),%r10
ldw R11_OFFSET(arg0),%r11
ldw R12_OFFSET(arg0),%r12
ldw R13_OFFSET(arg0),%r13
ldw R14_OFFSET(arg0),%r14
ldw R15_OFFSET(arg0),%r15
ldw R16_OFFSET(arg0),%r16
ldw R17_OFFSET(arg0),%r17
ldw R18_OFFSET(arg0),%r18
ldw R19_OFFSET(arg0),%r19
ldw R20_OFFSET(arg0),%r20
ldw R21_OFFSET(arg0),%r21
ldw R22_OFFSET(arg0),%r22
ldw R23_OFFSET(arg0),%r23
ldw R24_OFFSET(arg0),%r24
/*
* skipping r25; used as scratch register below
* skipping r26 (arg0) until we are done with it
*/
ldw R27_OFFSET(arg0),%r27
ldw R28_OFFSET(arg0),%r28
ldw R29_OFFSET(arg0),%r29
/*
* skipping r30 (sp) until we turn off interrupts
*/
ldw R31_OFFSET(arg0),%r31
/*
* Turn off Q & R & I so we can write r30 and interrupt control registers
*/
rsm HPPA_PSW_Q + HPPA_PSW_R + HPPA_PSW_I, %r0
/*
* now safe to restore r30
*/
ldw R30_OFFSET(arg0),%r30
ldw IPSW_OFFSET(arg0), %r25
mtctl %r25, ipsw
ldw SAR_OFFSET(arg0), %r25
mtctl %r25, sar
ldw PCOQFRONT_OFFSET(arg0), %r25
mtctl %r25, pcoq
ldw PCOQBACK_OFFSET(arg0), %r25
mtctl %r25, pcoq
/*
* Load r25 with interrupts off
*/
ldw R25_OFFSET(arg0),%r25
/*
* Must load r26 (arg0) last
*/
ldw R26_OFFSET(arg0),%r26
isr_exit:
rfi
.EXIT
.PROCEND
/*
* This section is used to context switch floating point registers.
* Ref: 6-35 of Architecture 1.1
*
* NOTE: since integer multiply uses the floating point unit,
* we have to save/restore fp on every trap. We cannot
* just try to keep track of fp usage.
*/
.align 32
.EXPORT _CPU_Save_float_context,ENTRY,PRIV_LEV=0
_CPU_Save_float_context:
.PROC
.CALLINFO FRAME=0,NO_CALLS
.ENTRY
fstds,ma %fr0,8(%arg0)
fstds,ma %fr1,8(%arg0)
fstds,ma %fr2,8(%arg0)
fstds,ma %fr3,8(%arg0)
fstds,ma %fr4,8(%arg0)
fstds,ma %fr5,8(%arg0)
fstds,ma %fr6,8(%arg0)
fstds,ma %fr7,8(%arg0)
fstds,ma %fr8,8(%arg0)
fstds,ma %fr9,8(%arg0)
fstds,ma %fr10,8(%arg0)
fstds,ma %fr11,8(%arg0)
fstds,ma %fr12,8(%arg0)
fstds,ma %fr13,8(%arg0)
fstds,ma %fr14,8(%arg0)
fstds,ma %fr15,8(%arg0)
fstds,ma %fr16,8(%arg0)
fstds,ma %fr17,8(%arg0)
fstds,ma %fr18,8(%arg0)
fstds,ma %fr19,8(%arg0)
fstds,ma %fr20,8(%arg0)
fstds,ma %fr21,8(%arg0)
fstds,ma %fr22,8(%arg0)
fstds,ma %fr23,8(%arg0)
fstds,ma %fr24,8(%arg0)
fstds,ma %fr25,8(%arg0)
fstds,ma %fr26,8(%arg0)
fstds,ma %fr27,8(%arg0)
fstds,ma %fr28,8(%arg0)
fstds,ma %fr29,8(%arg0)
fstds,ma %fr30,8(%arg0)
fstds %fr31,0(%arg0)
bv 0(%r2)
addi -(31*8), %arg0, %arg0 ; restore arg0 just for fun
.EXIT
.PROCEND
.align 32
.EXPORT _CPU_Restore_float_context,ENTRY,PRIV_LEV=0
_CPU_Restore_float_context:
.PROC
.CALLINFO FRAME=0,NO_CALLS
.ENTRY
addi (31*8), %arg0, %arg0 ; point at last double
fldds 0(%arg0),%fr31
fldds,mb -8(%arg0),%fr30
fldds,mb -8(%arg0),%fr29
fldds,mb -8(%arg0),%fr28
fldds,mb -8(%arg0),%fr27
fldds,mb -8(%arg0),%fr26
fldds,mb -8(%arg0),%fr25
fldds,mb -8(%arg0),%fr24
fldds,mb -8(%arg0),%fr23
fldds,mb -8(%arg0),%fr22
fldds,mb -8(%arg0),%fr21
fldds,mb -8(%arg0),%fr20
fldds,mb -8(%arg0),%fr19
fldds,mb -8(%arg0),%fr18
fldds,mb -8(%arg0),%fr17
fldds,mb -8(%arg0),%fr16
fldds,mb -8(%arg0),%fr15
fldds,mb -8(%arg0),%fr14
fldds,mb -8(%arg0),%fr13
fldds,mb -8(%arg0),%fr12
fldds,mb -8(%arg0),%fr11
fldds,mb -8(%arg0),%fr10
fldds,mb -8(%arg0),%fr9
fldds,mb -8(%arg0),%fr8
fldds,mb -8(%arg0),%fr7
fldds,mb -8(%arg0),%fr6
fldds,mb -8(%arg0),%fr5
fldds,mb -8(%arg0),%fr4
fldds,mb -8(%arg0),%fr3
fldds,mb -8(%arg0),%fr2
fldds,mb -8(%arg0),%fr1
bv 0(%r2)
fldds,mb -8(%arg0),%fr0
.EXIT
.PROCEND
/*
* These 2 small routines are unused right now.
* Normally we just go thru _CPU_Save_float_context (and Restore)
*
* Here we just deref the ptr and jump up, letting _CPU_Save_float_context
* do the return for us.
*/
.EXPORT _CPU_Context_save_fp,ENTRY,PRIV_LEV=0
_CPU_Context_save_fp:
.PROC
.CALLINFO FRAME=0,NO_CALLS
.ENTRY
bl _CPU_Save_float_context, %r0
ldw 0(%arg0), %arg0
.EXIT
.PROCEND
.EXPORT _CPU_Context_restore_fp,ENTRY,PRIV_LEV=0
_CPU_Context_restore_fp:
.PROC
.CALLINFO FRAME=0,NO_CALLS
.ENTRY
bl _CPU_Restore_float_context, %r0
ldw 0(%arg0), %arg0
.EXIT
.PROCEND
/*
* void _CPU_Context_switch( run_context, heir_context )
*
* This routine performs a normal non-FP context switch.
*/
.align 32
.EXPORT _CPU_Context_switch,ENTRY,PRIV_LEV=0,ARGW0=GR,ARGW1=GR
_CPU_Context_switch:
.PROC
.CALLINFO FRAME=64
.ENTRY
/*
* Save the integer context
*/
stw %r1,R1_OFFSET(arg0)
stw %r2,R2_OFFSET(arg0)
stw %r3,R3_OFFSET(arg0)
stw %r4,R4_OFFSET(arg0)
stw %r5,R5_OFFSET(arg0)
stw %r6,R6_OFFSET(arg0)
stw %r7,R7_OFFSET(arg0)
stw %r8,R8_OFFSET(arg0)
stw %r9,R9_OFFSET(arg0)
stw %r10,R10_OFFSET(arg0)
stw %r11,R11_OFFSET(arg0)
stw %r12,R12_OFFSET(arg0)
stw %r13,R13_OFFSET(arg0)
stw %r14,R14_OFFSET(arg0)
stw %r15,R15_OFFSET(arg0)
stw %r16,R16_OFFSET(arg0)
stw %r17,R17_OFFSET(arg0)
stw %r18,R18_OFFSET(arg0)
stw %r19,R19_OFFSET(arg0)
stw %r20,R20_OFFSET(arg0)
stw %r21,R21_OFFSET(arg0)
stw %r22,R22_OFFSET(arg0)
stw %r23,R23_OFFSET(arg0)
stw %r24,R24_OFFSET(arg0)
stw %r25,R25_OFFSET(arg0)
stw %r26,R26_OFFSET(arg0)
stw %r27,R27_OFFSET(arg0)
stw %r28,R28_OFFSET(arg0)
stw %r29,R29_OFFSET(arg0)
stw %r30,R30_OFFSET(arg0)
stw %r31,R31_OFFSET(arg0)
/*
* fill in interrupt context section
*/
stw %r2, PCOQFRONT_OFFSET(%arg0)
ldo 4(%r2), %r2
stw %r2, PCOQBACK_OFFSET(%arg0)
/*
* Generate a suitable IPSW by using the system default psw
* with the current low bits added in.
*/
ldil L%CPU_PSW_DEFAULT, %r2
ldo R%CPU_PSW_DEFAULT(%r2), %r2
ssm 0, %arg2
dep %arg2, 31, 8, %r2
stw %r2, IPSW_OFFSET(%arg0)
/*
* at this point, the running task context is completely saved
* Now jump to the bottom of the interrupt handler to load the
* heirs context
*/
b _CPU_Context_restore
copy %arg1, %arg0
.EXIT
.PROCEND
/*
* Find first bit
* NOTE:
* This is used (and written) only for the ready chain code and
* priority bit maps.
* Any other use constitutes fraud.
* Returns first bit from the least significant side.
* Eg: if input is 0x8001
* output will indicate the '1' bit and return 0.
* This is counter to HPPA bit numbering which calls this
* bit 31. This way simplifies the macros _CPU_Priority_Mask
* and _CPU_Priority_Bits_index.
*
* NOTE:
* We just use 16 bit version
* does not handle zero case
*
* Based on the UTAH Mach libc version of ffs.
*/
.align 32
.EXPORT hppa_rtems_ffs,ENTRY,PRIV_LEV=0,ARGW0=GR
hppa_rtems_ffs:
.PROC
.CALLINFO FRAME=0,NO_CALLS
.ENTRY
#ifdef RETURN_ERROR_ON_ZERO
comb,= %arg0,%r0,ffsdone ; If arg0 is 0
ldi -1,%ret0 ; return -1
#endif
#if BITFIELD_SIZE == 32
ldi 31,%ret0 ; Set return to high bit
extru,= %arg0,31,16,%r0 ; If low 16 bits are non-zero
addi,tr -16,%ret0,%ret0 ; subtract 16 from bitpos
shd %r0,%arg0,16,%arg0 ; else shift right 16 bits
#else
ldi 15,%ret0 ; Set return to high bit
#endif
extru,= %arg0,31,8,%r0 ; If low 8 bits are non-zero
addi,tr -8,%ret0,%ret0 ; subtract 8 from bitpos
shd %r0,%arg0,8,%arg0 ; else shift right 8 bits
extru,= %arg0,31,4,%r0 ; If low 4 bits are non-zero
addi,tr -4,%ret0,%ret0 ; subtract 4 from bitpos
shd %r0,%arg0,4,%arg0 ; else shift right 4 bits
extru,= %arg0,31,2,%r0 ; If low 2 bits are non-zero
addi,tr -2,%ret0,%ret0 ; subtract 2 from bitpos
shd %r0,%arg0,2,%arg0 ; else shift right 2 bits
extru,= %arg0,31,1,%r0 ; If low bit is non-zero
addi -1,%ret0,%ret0 ; subtract 1 from bitpos
ffsdone:
bv,n 0(%r2)
nop
.EXIT
.PROCEND
Go to most recent revision | Compare with Previous | Blame | View Log