URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [exec/] [score/] [cpu/] [unix/] [cpu.c] - Rev 279
Go to most recent revision | Compare with Previous | Blame | View Log
/* * UNIX Simulator Dependent Source * * COPYRIGHT (c) 1994,95 by Division Incorporated * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.OARcorp.com/rtems/license.html. * * $Id: cpu.c,v 1.2 2001-09-27 11:59:31 chris Exp $ */ #include <rtems/system.h> #include <rtems/score/isr.h> #include <rtems/score/interr.h> #if defined(__linux__) #define _XOPEN_SOURCE #define MALLOC_0_RETURNS_NULL #endif #include <sys/types.h> #include <sys/times.h> #include <stdio.h> #include <stdlib.h> #include <setjmp.h> #include <signal.h> #include <time.h> #include <sys/time.h> #include <errno.h> #include <unistd.h> #if defined(RTEMS_MULTIPROCESSING) #include <sys/ipc.h> #include <sys/shm.h> #include <sys/sem.h> #endif #include <string.h> /* memset */ #ifndef SA_RESTART #define SA_RESTART 0 #endif typedef struct { jmp_buf regs; int isr_level; } Context_Control_overlay; void _CPU_Signal_initialize(void); void _CPU_Stray_signal(int); void _CPU_ISR_Handler(int); static sigset_t _CPU_Signal_mask; static Context_Control_overlay _CPU_Context_Default_with_ISRs_enabled; static Context_Control_overlay _CPU_Context_Default_with_ISRs_disabled; /* * Sync IO support, an entry for each fd that can be set */ void _CPU_Sync_io_Init(); static rtems_sync_io_handler _CPU_Sync_io_handlers[FD_SETSIZE]; static int sync_io_nfds; static fd_set sync_io_readfds; static fd_set sync_io_writefds; static fd_set sync_io_exceptfds; /* * Which cpu are we? Used by libcpu and libbsp. */ int cpu_number; /*PAGE * * _CPU_ISR_From_CPU_Init */ sigset_t posix_empty_mask; void _CPU_ISR_From_CPU_Init() { unsigned32 i; proc_ptr old_handler; /* * Generate an empty mask to be used by disable_support */ sigemptyset(&posix_empty_mask); /* * Block all the signals except SIGTRAP for the debugger * and fatal error signals. */ (void) sigfillset(&_CPU_Signal_mask); (void) sigdelset(&_CPU_Signal_mask, SIGTRAP); (void) sigdelset(&_CPU_Signal_mask, SIGABRT); #if !defined(__CYGWIN__) (void) sigdelset(&_CPU_Signal_mask, SIGIOT); #endif (void) sigdelset(&_CPU_Signal_mask, SIGCONT); (void) sigdelset(&_CPU_Signal_mask, SIGSEGV); (void) sigdelset(&_CPU_Signal_mask, SIGBUS); (void) sigdelset(&_CPU_Signal_mask, SIGFPE); _CPU_ISR_Enable(1); /* * Set the handler for all signals to be signal_handler * which will then vector out to the correct handler * for whichever signal actually happened. Initially * set the vectors to the stray signal handler. */ for (i = 0; i < CPU_INTERRUPT_NUMBER_OF_VECTORS; i++) (void)_CPU_ISR_install_vector(i, _CPU_Stray_signal, &old_handler); _CPU_Signal_initialize(); } void _CPU_Signal_initialize( void ) { struct sigaction act; sigset_t mask; /* mark them all active except for TraceTrap and Abort */ mask = _CPU_Signal_mask; sigprocmask(SIG_UNBLOCK, &mask, 0); act.sa_handler = _CPU_ISR_Handler; act.sa_mask = mask; act.sa_flags = SA_RESTART; sigaction(SIGHUP, &act, 0); sigaction(SIGINT, &act, 0); sigaction(SIGQUIT, &act, 0); sigaction(SIGILL, &act, 0); #ifdef SIGEMT sigaction(SIGEMT, &act, 0); #endif sigaction(SIGFPE, &act, 0); sigaction(SIGKILL, &act, 0); sigaction(SIGBUS, &act, 0); sigaction(SIGSEGV, &act, 0); #ifdef SIGSYS sigaction(SIGSYS, &act, 0); #endif sigaction(SIGPIPE, &act, 0); sigaction(SIGALRM, &act, 0); sigaction(SIGTERM, &act, 0); sigaction(SIGUSR1, &act, 0); sigaction(SIGUSR2, &act, 0); sigaction(SIGCHLD, &act, 0); #ifdef SIGCLD sigaction(SIGCLD, &act, 0); #endif #ifdef SIGPWR sigaction(SIGPWR, &act, 0); #endif sigaction(SIGVTALRM, &act, 0); sigaction(SIGPROF, &act, 0); sigaction(SIGIO, &act, 0); sigaction(SIGWINCH, &act, 0); sigaction(SIGSTOP, &act, 0); sigaction(SIGTTIN, &act, 0); sigaction(SIGTTOU, &act, 0); sigaction(SIGURG, &act, 0); #ifdef SIGLOST sigaction(SIGLOST, &act, 0); #endif } /*PAGE * * _CPU_Context_From_CPU_Init */ void _CPU_Context_From_CPU_Init() { #if defined(__hppa__) && defined(RTEMS_UNIXLIB_SETJMP) /* * HACK - set the _SYSTEM_ID to 0x20c so that setjmp/longjmp * will handle the full 32 floating point registers. */ { extern unsigned32 _SYSTEM_ID; _SYSTEM_ID = 0x20c; } #endif /* * get default values to use in _CPU_Context_Initialize() */ if ( sizeof(Context_Control_overlay) > sizeof(Context_Control) ) _CPU_Fatal_halt( 0xdeadf00d ); (void) memset( &_CPU_Context_Default_with_ISRs_enabled, 0, sizeof(Context_Control_overlay) ); (void) memset( &_CPU_Context_Default_with_ISRs_disabled, 0, sizeof(Context_Control_overlay) ); _CPU_ISR_Set_level( 0 ); _CPU_Context_switch( (Context_Control *) &_CPU_Context_Default_with_ISRs_enabled, (Context_Control *) &_CPU_Context_Default_with_ISRs_enabled ); _CPU_ISR_Set_level( 1 ); _CPU_Context_switch( (Context_Control *) &_CPU_Context_Default_with_ISRs_disabled, (Context_Control *) &_CPU_Context_Default_with_ISRs_disabled ); } /*PAGE * * _CPU_Sync_io_Init */ void _CPU_Sync_io_Init() { int fd; for (fd = 0; fd < FD_SETSIZE; fd++) _CPU_Sync_io_handlers[fd] = NULL; sync_io_nfds = 0; FD_ZERO(&sync_io_readfds); FD_ZERO(&sync_io_writefds); FD_ZERO(&sync_io_exceptfds); } /*PAGE * * _CPU_ISR_Get_level */ unsigned32 _CPU_ISR_Get_level( void ) { sigset_t old_mask; sigemptyset( &old_mask ); sigprocmask(SIG_BLOCK, 0, &old_mask); if (memcmp((void *)&posix_empty_mask, (void *)&old_mask, sizeof(sigset_t))) return 1; return 0; } /* _CPU_Initialize * * This routine performs processor dependent initialization. * * INPUT PARAMETERS: * cpu_table - CPU table to initialize * thread_dispatch - address of disptaching routine */ void _CPU_Initialize( rtems_cpu_table *cpu_table, void (*thread_dispatch) /* ignored on this CPU */ ) { /* * If something happened where the public Context_Control is not * at least as large as the private Context_Control_overlay, then * we are in trouble. */ if ( sizeof(Context_Control_overlay) > sizeof(Context_Control) ) _CPU_Fatal_error(0x100 + 1); /* * The thread_dispatch argument is the address of the entry point * for the routine called at the end of an ISR once it has been * decided a context switch is necessary. On some compilation * systems it is difficult to call a high-level language routine * from assembly. This allows us to trick these systems. * * If you encounter this problem save the entry point in a CPU * dependent variable. */ _CPU_Thread_dispatch_pointer = thread_dispatch; /* * XXX; If there is not an easy way to initialize the FP context * during Context_Initialize, then it is usually easier to * save an "uninitialized" FP context here and copy it to * the task's during Context_Initialize. */ /* XXX: FP context initialization support */ _CPU_Table = *cpu_table; _CPU_ISR_From_CPU_Init(); _CPU_Sync_io_Init(); _CPU_Context_From_CPU_Init(); } /*PAGE * * _CPU_ISR_install_raw_handler */ void _CPU_ISR_install_raw_handler( unsigned32 vector, proc_ptr new_handler, proc_ptr *old_handler ) { _CPU_Fatal_halt( 0xdeaddead ); } /*PAGE * * _CPU_ISR_install_vector * * This kernel routine installs the RTEMS handler for the * specified vector. * * Input parameters: * vector - interrupt vector number * old_handler - former ISR for this vector number * new_handler - replacement ISR for this vector number * * Output parameters: NONE * */ void _CPU_ISR_install_vector( unsigned32 vector, proc_ptr new_handler, proc_ptr *old_handler ) { *old_handler = _ISR_Vector_table[ vector ]; /* * If the interrupt vector table is a table of pointer to isr entry * points, then we need to install the appropriate RTEMS interrupt * handler for this vector number. */ /* * We put the actual user ISR address in '_ISR_vector_table'. This will * be used by the _CPU_ISR_Handler so the user gets control. */ _ISR_Vector_table[ vector ] = new_handler; } /*PAGE * * _CPU_Install_interrupt_stack */ void _CPU_Install_interrupt_stack( void ) { } /*PAGE * * _CPU_Thread_Idle_body * * Stop until we get a signal which is the logically the same thing * entering low-power or sleep mode on a real processor and waiting for * an interrupt. This significantly reduces the consumption of host * CPU cycles which is again similar to low power mode. */ void _CPU_Thread_Idle_body( void ) { #if CPU_SYNC_IO extern void _Thread_Dispatch(void); int fd; #endif while (1) { #ifdef RTEMS_DEBUG /* interrupts had better be enabled at this point! */ if (_CPU_ISR_Get_level() != 0) abort(); #endif /* * Block on a select statement, the CPU interface added allow the * user to add new descriptors which are to be blocked on */ #if CPU_SYNC_IO if (sync_io_nfds) { int result; fd_set readfds, writefds, exceptfds; readfds = sync_io_readfds; writefds = sync_io_writefds; exceptfds = sync_io_exceptfds; result = select(sync_io_nfds, &readfds, &writefds, &exceptfds, NULL); if (result < 0) { if (errno != EINTR) _CPU_Fatal_error(0x200); /* FIXME : what number should go here !! */ _Thread_Dispatch(); continue; } for (fd = 0; fd < sync_io_nfds; fd++) { boolean read = FD_ISSET(fd, &readfds); boolean write = FD_ISSET(fd, &writefds); boolean except = FD_ISSET(fd, &exceptfds); if (_CPU_Sync_io_handlers[fd] && (read || write || except)) _CPU_Sync_io_handlers[fd](fd, read, write, except); } _Thread_Dispatch(); } else pause(); #else pause(); #endif } } /*PAGE * * _CPU_Context_Initialize */ void _CPU_Context_Initialize( Context_Control *_the_context, unsigned32 *_stack_base, unsigned32 _size, unsigned32 _new_level, void *_entry_point, boolean _is_fp ) { unsigned32 *addr; unsigned32 jmp_addr; unsigned32 _stack_low; /* lowest "stack aligned" address */ unsigned32 _stack_high; /* highest "stack aligned" address */ unsigned32 _the_size; jmp_addr = (unsigned32) _entry_point; /* * On CPUs with stacks which grow down, we build the stack * based on the _stack_high address. On CPUs with stacks which * grow up, we build the stack based on the _stack_low address. */ _stack_low = (unsigned32)(_stack_base) + CPU_STACK_ALIGNMENT - 1; _stack_low &= ~(CPU_STACK_ALIGNMENT - 1); _stack_high = (unsigned32)(_stack_base) + _size; _stack_high &= ~(CPU_STACK_ALIGNMENT - 1); if (_stack_high > _stack_low) _the_size = _stack_high - _stack_low; else _the_size = _stack_low - _stack_high; /* * Slam our jmp_buf template into the context we are creating */ if ( _new_level == 0 ) *(Context_Control_overlay *)_the_context = _CPU_Context_Default_with_ISRs_enabled; else *(Context_Control_overlay *)_the_context = _CPU_Context_Default_with_ISRs_disabled; addr = (unsigned32 *)_the_context; #if defined(__hppa__) *(addr + RP_OFF) = jmp_addr; *(addr + SP_OFF) = (unsigned32)(_stack_low + CPU_FRAME_SIZE); /* * See if we are using shared libraries by checking * bit 30 in 24 off of newp. If bit 30 is set then * we are using shared libraries and the jump address * points to the pointer, so we put that into rp instead. */ if (jmp_addr & 0x40000000) { jmp_addr &= 0xfffffffc; *(addr + RP_OFF) = *(unsigned32 *)jmp_addr; } #elif defined(__sparc__) /* * See /usr/include/sys/stack.h in Solaris 2.3 for a nice * diagram of the stack. */ asm ("ta 0x03"); /* flush registers */ *(addr + RP_OFF) = jmp_addr + ADDR_ADJ_OFFSET; *(addr + SP_OFF) = (unsigned32)(_stack_high - CPU_FRAME_SIZE); *(addr + FP_OFF) = (unsigned32)(_stack_high); #elif defined(__i386__) /* * This information was gathered by disassembling setjmp(). */ { unsigned32 stack_ptr; stack_ptr = _stack_high - CPU_FRAME_SIZE; *(addr + EBX_OFF) = 0xFEEDFEED; *(addr + ESI_OFF) = 0xDEADDEAD; *(addr + EDI_OFF) = 0xDEAFDEAF; *(addr + EBP_OFF) = stack_ptr; *(addr + ESP_OFF) = stack_ptr; *(addr + RET_OFF) = jmp_addr; addr = (unsigned32 *) stack_ptr; addr[ 0 ] = jmp_addr; addr[ 1 ] = (unsigned32) stack_ptr; addr[ 2 ] = (unsigned32) stack_ptr; } #else #error "UNKNOWN CPU!!!" #endif } /*PAGE * * _CPU_Context_restore */ void _CPU_Context_restore( Context_Control *next ) { Context_Control_overlay *nextp = (Context_Control_overlay *)next; _CPU_ISR_Enable(nextp->isr_level); longjmp( nextp->regs, 0 ); } /*PAGE * * _CPU_Context_switch */ static void do_jump( Context_Control_overlay *currentp, Context_Control_overlay *nextp ); void _CPU_Context_switch( Context_Control *current, Context_Control *next ) { Context_Control_overlay *currentp = (Context_Control_overlay *)current; Context_Control_overlay *nextp = (Context_Control_overlay *)next; #if 0 int status; #endif currentp->isr_level = _CPU_ISR_Disable_support(); do_jump( currentp, nextp ); #if 0 if (sigsetjmp(currentp->regs, 1) == 0) { /* Save the current context */ siglongjmp(nextp->regs, 0); /* Switch to the new context */ _Internal_error_Occurred( INTERNAL_ERROR_CORE, TRUE, status ); } #endif #ifdef RTEMS_DEBUG if (_CPU_ISR_Get_level() == 0) abort(); #endif _CPU_ISR_Enable(currentp->isr_level); } static void do_jump( Context_Control_overlay *currentp, Context_Control_overlay *nextp ) { int status; if (setjmp(currentp->regs) == 0) { /* Save the current context */ longjmp(nextp->regs, 0); /* Switch to the new context */ _Internal_error_Occurred( INTERNAL_ERROR_CORE, TRUE, status ); } } /*PAGE * * _CPU_Save_float_context */ void _CPU_Save_float_context( Context_Control_fp *fp_context ) { } /*PAGE * * _CPU_Restore_float_context */ void _CPU_Restore_float_context( Context_Control_fp *fp_context ) { } /*PAGE * * _CPU_ISR_Disable_support */ unsigned32 _CPU_ISR_Disable_support(void) { int status; sigset_t old_mask; sigemptyset( &old_mask ); status = sigprocmask(SIG_BLOCK, &_CPU_Signal_mask, &old_mask); if ( status ) _Internal_error_Occurred( INTERNAL_ERROR_CORE, TRUE, status ); if (memcmp((void *)&posix_empty_mask, (void *)&old_mask, sizeof(sigset_t))) return 1; return 0; } /*PAGE * * _CPU_ISR_Enable */ void _CPU_ISR_Enable( unsigned32 level ) { int status; if (level == 0) status = sigprocmask(SIG_UNBLOCK, &_CPU_Signal_mask, 0); else status = sigprocmask(SIG_BLOCK, &_CPU_Signal_mask, 0); if ( status ) _Internal_error_Occurred( INTERNAL_ERROR_CORE, TRUE, status ); } /*PAGE * * _CPU_ISR_Handler * * External interrupt handler. * This is installed as a UNIX signal handler. * It vectors out to specific user interrupt handlers. */ void _CPU_ISR_Handler(int vector) { extern void _Thread_Dispatch(void); extern unsigned32 _Thread_Dispatch_disable_level; extern boolean _Context_Switch_necessary; if (_ISR_Nest_level++ == 0) { /* switch to interrupt stack */ } _Thread_Dispatch_disable_level++; if (_ISR_Vector_table[vector]) { _ISR_Vector_table[vector](vector); } else { _CPU_Stray_signal(vector); } if (_ISR_Nest_level-- == 0) { /* switch back to original stack */ } _Thread_Dispatch_disable_level--; if (_Thread_Dispatch_disable_level == 0 && (_Context_Switch_necessary || _ISR_Signals_to_thread_executing)) { _ISR_Signals_to_thread_executing = FALSE; _CPU_ISR_Enable(0); _Thread_Dispatch(); } } /*PAGE * * _CPU_Stray_signal */ void _CPU_Stray_signal(int sig_num) { char buffer[ 4 ]; /* * print "stray" msg about ones which that might mean something * Avoid using the stdio section of the library. * The following is generally safe. */ switch (sig_num) { #ifdef SIGCLD case SIGCLD: break; #endif default: { /* * We avoid using the stdio section of the library. * The following is generally safe */ int digit; int number = sig_num; int len = 0; digit = number / 100; number %= 100; if (digit) buffer[len++] = '0' + digit; digit = number / 10; number %= 10; if (digit || len) buffer[len++] = '0' + digit; digit = number; buffer[len++] = '0' + digit; buffer[ len++ ] = '\n'; write( 2, "Stray signal ", 13 ); write( 2, buffer, len ); } } /* * If it was a "fatal" signal, then exit here * If app code has installed a hander for one of these, then * we won't call _CPU_Stray_signal, so this is ok. */ switch (sig_num) { case SIGINT: case SIGHUP: case SIGQUIT: case SIGILL: #ifdef SIGEMT case SIGEMT: #endif case SIGKILL: case SIGBUS: case SIGSEGV: case SIGTERM: #if !defined(__CYGWIN__) case SIGIOT: #endif _CPU_Fatal_error(0x100 + sig_num); } } /*PAGE * * _CPU_Fatal_error */ void _CPU_Fatal_error(unsigned32 error) { setitimer(ITIMER_REAL, 0, 0); if ( error ) { #ifdef RTEMS_DEBUG abort(); #endif if (getenv("RTEMS_DEBUG")) abort(); } _exit(error); } /* * Special Purpose Routines to hide the use of UNIX system calls. */ int _CPU_Set_sync_io_handler( int fd, boolean read, boolean write, boolean except, rtems_sync_io_handler handler ) { if ((fd < FD_SETSIZE) && (_CPU_Sync_io_handlers[fd] == NULL)) { if (read) FD_SET(fd, &sync_io_readfds); else FD_CLR(fd, &sync_io_readfds); if (write) FD_SET(fd, &sync_io_writefds); else FD_CLR(fd, &sync_io_writefds); if (except) FD_SET(fd, &sync_io_exceptfds); else FD_CLR(fd, &sync_io_exceptfds); _CPU_Sync_io_handlers[fd] = handler; if ((fd + 1) > sync_io_nfds) sync_io_nfds = fd + 1; return 0; } return -1; } int _CPU_Clear_sync_io_handler( int fd ) { if ((fd < FD_SETSIZE) && _CPU_Sync_io_handlers[fd]) { FD_CLR(fd, &sync_io_readfds); FD_CLR(fd, &sync_io_writefds); FD_CLR(fd, &sync_io_exceptfds); _CPU_Sync_io_handlers[fd] = NULL; sync_io_nfds = 0; for (fd = 0; fd < FD_SETSIZE; fd++) if (FD_ISSET(fd, &sync_io_readfds) || FD_ISSET(fd, &sync_io_writefds) || FD_ISSET(fd, &sync_io_exceptfds)) sync_io_nfds = fd + 1; return 0; } return -1; } int _CPU_Get_clock_vector( void ) { return SIGALRM; } void _CPU_Start_clock( int microseconds ) { struct itimerval new; new.it_value.tv_sec = 0; new.it_value.tv_usec = microseconds; new.it_interval.tv_sec = 0; new.it_interval.tv_usec = microseconds; setitimer(ITIMER_REAL, &new, 0); } void _CPU_Stop_clock( void ) { struct itimerval new; struct sigaction act; /* * Set the SIGALRM signal to ignore any last * signals that might come in while we are * disarming the timer and removing the interrupt * vector. */ (void) memset(&act, 0, sizeof(act)); act.sa_handler = SIG_IGN; sigaction(SIGALRM, &act, 0); (void) memset(&new, 0, sizeof(new)); setitimer(ITIMER_REAL, &new, 0); } extern void fix_syscall_errno( void ); #if defined(RTEMS_MULTIPROCESSING) int _CPU_SHM_Semid; void _CPU_SHM_Init( unsigned32 maximum_nodes, boolean is_master_node, void **shm_address, unsigned32 *shm_length ) { int i; int shmid; char *shm_addr; key_t shm_key; key_t sem_key; int status = 0; /* to avoid unitialized warnings */ int shm_size; if (getenv("RTEMS_SHM_KEY")) shm_key = strtol(getenv("RTEMS_SHM_KEY"), 0, 0); else #ifdef RTEMS_SHM_KEY shm_key = RTEMS_SHM_KEY; #else shm_key = 0xa000; #endif if (getenv("RTEMS_SHM_SIZE")) shm_size = strtol(getenv("RTEMS_SHM_SIZE"), 0, 0); else #ifdef RTEMS_SHM_SIZE shm_size = RTEMS_SHM_SIZE; #else shm_size = 64 * 1024; #endif if (getenv("RTEMS_SHM_SEMAPHORE_KEY")) sem_key = strtol(getenv("RTEMS_SHM_SEMAPHORE_KEY"), 0, 0); else #ifdef RTEMS_SHM_SEMAPHORE_KEY sem_key = RTEMS_SHM_SEMAPHORE_KEY; #else sem_key = 0xa001; #endif shmid = shmget(shm_key, shm_size, IPC_CREAT | 0660); if ( shmid == -1 ) { fix_syscall_errno(); /* in case of newlib */ perror( "shmget" ); _CPU_Fatal_halt( 0xdead0001 ); } shm_addr = shmat(shmid, (char *)0, SHM_RND); if ( shm_addr == (void *)-1 ) { fix_syscall_errno(); /* in case of newlib */ perror( "shmat" ); _CPU_Fatal_halt( 0xdead0002 ); } _CPU_SHM_Semid = semget(sem_key, maximum_nodes + 1, IPC_CREAT | 0660); if ( _CPU_SHM_Semid == -1 ) { fix_syscall_errno(); /* in case of newlib */ perror( "semget" ); _CPU_Fatal_halt( 0xdead0003 ); } if ( is_master_node ) { for ( i=0 ; i <= maximum_nodes ; i++ ) { #if !HAS_UNION_SEMUN union semun { int val; struct semid_ds *buf; unsigned short int *array; #if defined(__linux__) struct seminfo *__buf; #endif } ; #endif union semun help ; help.val = 1; status = semctl( _CPU_SHM_Semid, i, SETVAL, help ); fix_syscall_errno(); /* in case of newlib */ if ( status == -1 ) { _CPU_Fatal_halt( 0xdead0004 ); } } } *shm_address = shm_addr; *shm_length = shm_size; } #endif int _CPU_Get_pid( void ) { return getpid(); } #if defined(RTEMS_MULTIPROCESSING) /* * Define this to use signals for MPCI shared memory driver. * If undefined, the shared memory driver will poll from the * clock interrupt. * Ref: ../shmsupp/getcfg.c * * BEWARE:: many UN*X kernels and debuggers become severely confused when * debugging programs which use signals. The problem is *much* * worse when using multiple signals, since ptrace(2) tends to * drop all signals except 1 in the case of multiples. * On hpux9, this problem was so bad, we couldn't use interrupts * with the shared memory driver if we ever hoped to debug * RTEMS programs. * Maybe systems that use /proc don't have this problem... */ int _CPU_SHM_Get_vector( void ) { #ifdef CPU_USE_SHM_INTERRUPTS return SIGUSR1; #else return 0; #endif } void _CPU_SHM_Send_interrupt( int pid, int vector ) { kill((pid_t) pid, vector); } void _CPU_SHM_Lock( int semaphore ) { struct sembuf sb; sb.sem_num = semaphore; sb.sem_op = -1; sb.sem_flg = 0; while (1) { int status = -1; status = semop(_CPU_SHM_Semid, &sb, 1); if ( status >= 0 ) break; if ( status == -1 ) { fix_syscall_errno(); /* in case of newlib */ if (errno == EINTR) continue; perror("shm lock"); _CPU_Fatal_halt( 0xdead0005 ); } } } void _CPU_SHM_Unlock( int semaphore ) { struct sembuf sb; int status; sb.sem_num = semaphore; sb.sem_op = 1; sb.sem_flg = 0; while (1) { status = semop(_CPU_SHM_Semid, &sb, 1); if ( status >= 0 ) break; if ( status == -1 ) { fix_syscall_errno(); /* in case of newlib */ if (errno == EINTR) continue; perror("shm unlock"); _CPU_Fatal_halt( 0xdead0006 ); } } } #endif
Go to most recent revision | Compare with Previous | Blame | View Log