URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [decbin.S] - Rev 173
Compare with Previous | Blame | View Log
//// $Id: decbin.S,v 1.2 2001-09-27 12:01:22 chris Exp $//// decbin.sa 3.3 12/19/90//// Description: Converts normalized packed bcd value pointed to by// register A6 to extended-precision value in FP0.//// Input: Normalized packed bcd value in ETEMP(a6).//// Output: Exact floating-point representation of the packed bcd value.//// Saves and Modifies: D2-D5//// Speed: The program decbin takes ??? cycles to execute.//// Object Size://// External Reference(s): None.//// Algorithm:// Expected is a normal bcd (i.e. non-exceptional; all inf, zero,// and NaN operands are dispatched without entering this routine)// value in 68881/882 format at location ETEMP(A6).//// A1. Convert the bcd exponent to binary by successive adds and muls.// Set the sign according to SE. Subtract 16 to compensate// for the mantissa which is to be interpreted as 17 integer// digits, rather than 1 integer and 16 fraction digits.// Note: this operation can never overflow.//// A2. Convert the bcd mantissa to binary by successive// adds and muls in FP0. Set the sign according to SM.// The mantissa digits will be converted with the decimal point// assumed following the least-significant digit.// Note: this operation can never overflow.//// A3. Count the number of leading/trailing zeros in the// bcd string. If SE is positive, count the leading zeros;// if negative, count the trailing zeros. Set the adjusted// exponent equal to the exponent from A1 and the zero count// added if SM = 1 and subtracted if SM = 0. Scale the// mantissa the equivalent of forcing in the bcd value://// SM = 0 a non-zero digit in the integer position// SM = 1 a non-zero digit in Mant0, lsd of the fraction//// this will insure that any value, regardless of its// representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted// consistently.//// A4. Calculate the factor 10^exp in FP1 using a table of// 10^(2^n) values. To reduce the error in forming factors// greater than 10^27, a directed rounding scheme is used with// tables rounded to RN, RM, and RP, according to the table// in the comments of the pwrten section.//// A5. Form the final binary number by scaling the mantissa by// the exponent factor. This is done by multiplying the// mantissa in FP0 by the factor in FP1 if the adjusted// exponent sign is positive, and dividing FP0 by FP1 if// it is negative.//// Clean up and return. Check if the final mul or div resulted// in an inex2 exception. If so, set inex1 in the fpsr and// check if the inex1 exception is enabled. If so, set d7 upper// word to $0100. This will signal unimp.sa that an enabled inex1// exception occurred. Unimp will fix the stack.//// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA// The copyright notice above does not evidence any// actual or intended publication of such source code.//DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package|section 8#include "fpsp.defs"//// PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded// to nearest, minus, and plus, respectively. The tables include// 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding// is required until the power is greater than 27, however, all// tables include the first 5 for ease of indexing.//|xref PTENRN|xref PTENRM|xref PTENRPRTABLE: .byte 0,0,0,0.byte 2,3,2,3.byte 2,3,3,2.byte 3,2,2,3.global decbin.global calc_e.global pwrten.global calc_m.global norm.global ap_st_z.global ap_st_n//.set FNIBS,7.set FSTRT,0//.set ESTRT,4.set EDIGITS,2 ////// Constants in single precisionFZERO: .long 0x00000000FONE: .long 0x3F800000FTEN: .long 0x41200000.set TEN,10//decbin:| fmovel #0,FPCR ;clr real fpcrmoveml %d2-%d5,-(%a7)//// Calculate exponent:// 1. Copy bcd value in memory for use as a working copy.// 2. Calculate absolute value of exponent in d1 by mul and add.// 3. Correct for exponent sign.// 4. Subtract 16 to compensate for interpreting the mant as all integer digits.// (i.e., all digits assumed left of the decimal point.)//// Register usage://// calc_e:// (*) d0: temp digit storage// (*) d1: accumulator for binary exponent// (*) d2: digit count// (*) d3: offset pointer// ( ) d4: first word of bcd// ( ) a0: pointer to working bcd value// ( ) a6: pointer to original bcd value// (*) FP_SCR1: working copy of original bcd value// (*) L_SCR1: copy of original exponent word//calc_e:movel #EDIGITS,%d2 //# of nibbles (digits) in fraction partmoveql #ESTRT,%d3 //counter to pick up digitsleal FP_SCR1(%a6),%a0 //load tmp bcd storage addressmovel ETEMP(%a6),(%a0) //save input bcd valuemovel ETEMP_HI(%a6),4(%a0) //save words 2 and 3movel ETEMP_LO(%a6),8(%a0) //and work with thesemovel (%a0),%d4 //get first word of bcdclrl %d1 //zero d1 for accumulatore_gd:mulul #TEN,%d1 //mul partial product by one digit placebfextu %d4{%d3:#4},%d0 //get the digit and zero extend into d0addl %d0,%d1 //d1 = d1 + d0addqb #4,%d3 //advance d3 to the next digitdbf %d2,e_gd //if we have used all 3 digits, exit loopbtst #30,%d4 //get SEbeqs e_pos //don't negate if posnegl %d1 //negate before subtractinge_pos:subl #16,%d1 //sub to compensate for shift of mantbges e_save //if still pos, do not negnegl %d1 //now negative, make pos and set SEorl #0x40000000,%d4 //set SE in d4,orl #0x40000000,(%a0) //and in working bcde_save:movel %d1,L_SCR1(%a6) //save exp in memory////// Calculate mantissa:// 1. Calculate absolute value of mantissa in fp0 by mul and add.// 2. Correct for mantissa sign.// (i.e., all digits assumed left of the decimal point.)//// Register usage://// calc_m:// (*) d0: temp digit storage// (*) d1: lword counter// (*) d2: digit count// (*) d3: offset pointer// ( ) d4: words 2 and 3 of bcd// ( ) a0: pointer to working bcd value// ( ) a6: pointer to original bcd value// (*) fp0: mantissa accumulator// ( ) FP_SCR1: working copy of original bcd value// ( ) L_SCR1: copy of original exponent word//calc_m:moveql #1,%d1 //word counter, init to 1fmoves FZERO,%fp0 //accumulator////// Since the packed number has a long word between the first & second parts,// get the integer digit then skip down & get the rest of the// mantissa. We will unroll the loop once.//bfextu (%a0){#28:#4},%d0 //integer part is ls digit in long wordfaddb %d0,%fp0 //add digit to sum in fp0////// Get the rest of the mantissa.//loadlw:movel (%a0,%d1.L*4),%d4 //load mantissa longword into d4moveql #FSTRT,%d3 //counter to pick up digitsmoveql #FNIBS,%d2 //reset number of digits per a0 ptrmd2b:fmuls FTEN,%fp0 //fp0 = fp0 * 10bfextu %d4{%d3:#4},%d0 //get the digit and zero extendfaddb %d0,%fp0 //fp0 = fp0 + digit////// If all the digits (8) in that long word have been converted (d2=0),// then inc d1 (=2) to point to the next long word and reset d3 to 0// to initialize the digit offset, and set d2 to 7 for the digit count;// else continue with this long word.//addqb #4,%d3 //advance d3 to the next digitdbf %d2,md2b //check for last digit in this lwnextlw:addql #1,%d1 //inc lw pointer in mantissacmpl #2,%d1 //test for last lwble loadlw //if not, get last one//// Check the sign of the mant and make the value in fp0 the same sign.//m_sign:btst #31,(%a0) //test sign of the mantissabeq ap_st_z //if clear, go to append/strip zerosfnegx %fp0 //if set, negate fp0//// Append/strip zeros://// For adjusted exponents which have an absolute value greater than 27*,// this routine calculates the amount needed to normalize the mantissa// for the adjusted exponent. That number is subtracted from the exp// if the exp was positive, and added if it was negative. The purpose// of this is to reduce the value of the exponent and the possibility// of error in calculation of pwrten.//// 1. Branch on the sign of the adjusted exponent.// 2p.(positive exp)// 2. Check M16 and the digits in lwords 2 and 3 in descending order.// 3. Add one for each zero encountered until a non-zero digit.// 4. Subtract the count from the exp.// 5. Check if the exp has crossed zero in #3 above; make the exp abs// and set SE.// 6. Multiply the mantissa by 10**count.// 2n.(negative exp)// 2. Check the digits in lwords 3 and 2 in descending order.// 3. Add one for each zero encountered until a non-zero digit.// 4. Add the count to the exp.// 5. Check if the exp has crossed zero in #3 above; clear SE.// 6. Divide the mantissa by 10**count.//// *Why 27? If the adjusted exponent is within -28 < expA < 28, than// any adjustment due to append/strip zeros will drive the resultant// exponent towards zero. Since all pwrten constants with a power// of 27 or less are exact, there is no need to use this routine to// attempt to lessen the resultant exponent.//// Register usage://// ap_st_z:// (*) d0: temp digit storage// (*) d1: zero count// (*) d2: digit count// (*) d3: offset pointer// ( ) d4: first word of bcd// (*) d5: lword counter// ( ) a0: pointer to working bcd value// ( ) FP_SCR1: working copy of original bcd value// ( ) L_SCR1: copy of original exponent word////// First check the absolute value of the exponent to see if this// routine is necessary. If so, then check the sign of the exponent// and do append (+) or strip (-) zeros accordingly.// This section handles a positive adjusted exponent.//ap_st_z:movel L_SCR1(%a6),%d1 //load expA for range testcmpl #27,%d1 //test is with 27ble pwrten //if abs(expA) <28, skip ap/st zerosbtst #30,(%a0) //check sign of expbne ap_st_n //if neg, go to neg sideclrl %d1 //zero count regmovel (%a0),%d4 //load lword 1 to d4bfextu %d4{#28:#4},%d0 //get M16 in d0bnes ap_p_fx //if M16 is non-zero, go fix expaddql #1,%d1 //inc zero countmoveql #1,%d5 //init lword countermovel (%a0,%d5.L*4),%d4 //get lword 2 to d4bnes ap_p_cl //if lw 2 is zero, skip itaddql #8,%d1 //and inc count by 8addql #1,%d5 //inc lword countermovel (%a0,%d5.L*4),%d4 //get lword 3 to d4ap_p_cl:clrl %d3 //init offset regmoveql #7,%d2 //init digit counterap_p_gd:bfextu %d4{%d3:#4},%d0 //get digitbnes ap_p_fx //if non-zero, go to fix expaddql #4,%d3 //point to next digitaddql #1,%d1 //inc digit counterdbf %d2,ap_p_gd //get next digitap_p_fx:movel %d1,%d0 //copy counter to d2movel L_SCR1(%a6),%d1 //get adjusted exp from memorysubl %d0,%d1 //subtract count from expbges ap_p_fm //if still pos, go to pwrtennegl %d1 //now its neg; get absmovel (%a0),%d4 //load lword 1 to d4orl #0x40000000,%d4 // and set SE in d4orl #0x40000000,(%a0) // and in memory//// Calculate the mantissa multiplier to compensate for the striping of// zeros from the mantissa.//ap_p_fm:movel #PTENRN,%a1 //get address of power-of-ten tableclrl %d3 //init table indexfmoves FONE,%fp1 //init fp1 to 1moveql #3,%d2 //init d2 to count bits in counterap_p_el:asrl #1,%d0 //shift lsb into carrybccs ap_p_en //if 1, mul fp1 by pwrten factorfmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)ap_p_en:addl #12,%d3 //inc d3 to next rtable entrytstl %d0 //check if d0 is zerobnes ap_p_el //if not, get next bitfmulx %fp1,%fp0 //mul mantissa by 10**(no_bits_shifted)bra pwrten //go calc pwrten//// This section handles a negative adjusted exponent.//ap_st_n:clrl %d1 //clr countermoveql #2,%d5 //set up d5 to point to lword 3movel (%a0,%d5.L*4),%d4 //get lword 3bnes ap_n_cl //if not zero, check digitssubl #1,%d5 //dec d5 to point to lword 2addql #8,%d1 //inc counter by 8movel (%a0,%d5.L*4),%d4 //get lword 2ap_n_cl:movel #28,%d3 //point to last digitmoveql #7,%d2 //init digit counterap_n_gd:bfextu %d4{%d3:#4},%d0 //get digitbnes ap_n_fx //if non-zero, go to exp fixsubql #4,%d3 //point to previous digitaddql #1,%d1 //inc digit counterdbf %d2,ap_n_gd //get next digitap_n_fx:movel %d1,%d0 //copy counter to d0movel L_SCR1(%a6),%d1 //get adjusted exp from memorysubl %d0,%d1 //subtract count from expbgts ap_n_fm //if still pos, go fix mantissanegl %d1 //take abs of exp and clr SEmovel (%a0),%d4 //load lword 1 to d4andl #0xbfffffff,%d4 // and clr SE in d4andl #0xbfffffff,(%a0) // and in memory//// Calculate the mantissa multiplier to compensate for the appending of// zeros to the mantissa.//ap_n_fm:movel #PTENRN,%a1 //get address of power-of-ten tableclrl %d3 //init table indexfmoves FONE,%fp1 //init fp1 to 1moveql #3,%d2 //init d2 to count bits in counterap_n_el:asrl #1,%d0 //shift lsb into carrybccs ap_n_en //if 1, mul fp1 by pwrten factorfmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)ap_n_en:addl #12,%d3 //inc d3 to next rtable entrytstl %d0 //check if d0 is zerobnes ap_n_el //if not, get next bitfdivx %fp1,%fp0 //div mantissa by 10**(no_bits_shifted)////// Calculate power-of-ten factor from adjusted and shifted exponent.//// Register usage://// pwrten:// (*) d0: temp// ( ) d1: exponent// (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp// (*) d3: FPCR work copy// ( ) d4: first word of bcd// (*) a1: RTABLE pointer// calc_p:// (*) d0: temp// ( ) d1: exponent// (*) d3: PWRTxx table index// ( ) a0: pointer to working copy of bcd// (*) a1: PWRTxx pointer// (*) fp1: power-of-ten accumulator//// Pwrten calculates the exponent factor in the selected rounding mode// according to the following table://// Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode//// ANY ANY RN RN//// + + RP RP// - + RP RM// + - RP RM// - - RP RP//// + + RM RM// - + RM RP// + - RM RP// - - RM RM//// + + RZ RM// - + RZ RM// + - RZ RP// - - RZ RP////pwrten:movel USER_FPCR(%a6),%d3 //get user's FPCRbfextu %d3{#26:#2},%d2 //isolate rounding mode bitsmovel (%a0),%d4 //reload 1st bcd word to d4asll #2,%d2 //format d2 to bebfextu %d4{#0:#2},%d0 // {FPCR[6],FPCR[5],SM,SE}addl %d0,%d2 //in d2 as index into RTABLEleal RTABLE,%a1 //load rtable basemoveb (%a1,%d2),%d0 //load new rounding bits from tableclrl %d3 //clear d3 to force no exc and extendedbfins %d0,%d3{#26:#2} //stuff new rounding bits in FPCRfmovel %d3,%FPCR //write new FPCRasrl #1,%d0 //write correct PTENxx tablebccs not_rp //to a1leal PTENRP,%a1 //it is RPbras calc_p //go to init sectionnot_rp:asrl #1,%d0 //keep checkingbccs not_rmleal PTENRM,%a1 //it is RMbras calc_p //go to init sectionnot_rm:leal PTENRN,%a1 //it is RNcalc_p:movel %d1,%d0 //copy exp to d0;use d0bpls no_neg //if exp is negative,negl %d0 //invert itorl #0x40000000,(%a0) //and set SE bitno_neg:clrl %d3 //table indexfmoves FONE,%fp1 //init fp1 to 1e_loop:asrl #1,%d0 //shift next bit into carrybccs e_next //if zero, skip the mulfmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)e_next:addl #12,%d3 //inc d3 to next rtable entrytstl %d0 //check if d0 is zerobnes e_loop //not zero, continue shifting////// Check the sign of the adjusted exp and make the value in fp0 the// same sign. If the exp was pos then multiply fp1*fp0;// else divide fp0/fp1.//// Register Usage:// norm:// ( ) a0: pointer to working bcd value// (*) fp0: mantissa accumulator// ( ) fp1: scaling factor - 10**(abs(exp))//norm:btst #30,(%a0) //test the sign of the exponentbeqs mul //if clear, go to multiplydiv:fdivx %fp1,%fp0 //exp is negative, so divide mant by expbras end_decmul:fmulx %fp1,%fp0 //exp is positive, so multiply by exp////// Clean up and return with result in fp0.//// If the final mul/div in decbin incurred an inex exception,// it will be inex2, but will be reported as inex1 by get_op.//end_dec:fmovel %FPSR,%d0 //get status registerbclrl #inex2_bit+8,%d0 //test for inex2 and clear itfmovel %d0,%FPSR //return status reg w/o inex2beqs no_exc //skip this if no excorl #inx1a_mask,USER_FPSR(%a6) //set inex1/ainexno_exc:moveml (%a7)+,%d2-%d5rts|end
