URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [get_op.S] - Rev 173
Compare with Previous | Blame | View Log
//
// $Id: get_op.S,v 1.2 2001-09-27 12:01:22 chris Exp $
//
// get_op.sa 3.6 5/19/92
//
// get_op.sa 3.5 4/26/91
//
// Description: This routine is called by the unsupported format/data
// type exception handler ('unsupp' - vector 55) and the unimplemented
// instruction exception handler ('unimp' - vector 11). 'get_op'
// determines the opclass (0, 2, or 3) and branches to the
// opclass handler routine. See 68881/2 User's Manual table 4-11
// for a description of the opclasses.
//
// For UNSUPPORTED data/format (exception vector 55) and for
// UNIMPLEMENTED instructions (exception vector 11) the following
// applies:
//
// - For unnormalized numbers (opclass 0, 2, or 3) the
// number(s) is normalized and the operand type tag is updated.
//
// - For a packed number (opclass 2) the number is unpacked and the
// operand type tag is updated.
//
// - For denormalized numbers (opclass 0 or 2) the number(s) is not
// changed but passed to the next module. The next module for
// unimp is do_func, the next module for unsupp is res_func.
//
// For UNSUPPORTED data/format (exception vector 55) only the
// following applies:
//
// - If there is a move out with a packed number (opclass 3) the
// number is packed and written to user memory. For the other
// opclasses the number(s) are written back to the fsave stack
// and the instruction is then restored back into the '040. The
// '040 is then able to complete the instruction.
//
// For example:
// fadd.x fpm,fpn where the fpm contains an unnormalized number.
// The '040 takes an unsupported data trap and gets to this
// routine. The number is normalized, put back on the stack and
// then an frestore is done to restore the instruction back into
// the '040. The '040 then re-executes the fadd.x fpm,fpn with
// a normalized number in the source and the instruction is
// successful.
//
// Next consider if in the process of normalizing the un-
// normalized number it becomes a denormalized number. The
// routine which converts the unnorm to a norm (called mk_norm)
// detects this and tags the number as a denorm. The routine
// res_func sees the denorm tag and converts the denorm to a
// norm. The instruction is then restored back into the '040
// which re_executes the instruction.
//
//
// Copyright (C) Motorola, Inc. 1990
// All Rights Reserved
//
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
// The copyright notice above does not evidence any
// actual or intended publication of such source code.
GET_OP: //idnt 2,1 | Motorola 040 Floating Point Software Package
|section 8
#include "fpsp.defs"
.global PIRN,PIRZRM,PIRP
.global SMALRN,SMALRZRM,SMALRP
.global BIGRN,BIGRZRM,BIGRP
PIRN:
.long 0x40000000,0xc90fdaa2,0x2168c235 //pi
PIRZRM:
.long 0x40000000,0xc90fdaa2,0x2168c234 //pi
PIRP:
.long 0x40000000,0xc90fdaa2,0x2168c235 //pi
//round to nearest
SMALRN:
.long 0x3ffd0000,0x9a209a84,0xfbcff798 //log10(2)
.long 0x40000000,0xadf85458,0xa2bb4a9a //e
.long 0x3fff0000,0xb8aa3b29,0x5c17f0bc //log2(e)
.long 0x3ffd0000,0xde5bd8a9,0x37287195 //log10(e)
.long 0x00000000,0x00000000,0x00000000 //0.0
// round to zero;round to negative infinity
SMALRZRM:
.long 0x3ffd0000,0x9a209a84,0xfbcff798 //log10(2)
.long 0x40000000,0xadf85458,0xa2bb4a9a //e
.long 0x3fff0000,0xb8aa3b29,0x5c17f0bb //log2(e)
.long 0x3ffd0000,0xde5bd8a9,0x37287195 //log10(e)
.long 0x00000000,0x00000000,0x00000000 //0.0
// round to positive infinity
SMALRP:
.long 0x3ffd0000,0x9a209a84,0xfbcff799 //log10(2)
.long 0x40000000,0xadf85458,0xa2bb4a9b //e
.long 0x3fff0000,0xb8aa3b29,0x5c17f0bc //log2(e)
.long 0x3ffd0000,0xde5bd8a9,0x37287195 //log10(e)
.long 0x00000000,0x00000000,0x00000000 //0.0
//round to nearest
BIGRN:
.long 0x3ffe0000,0xb17217f7,0xd1cf79ac //ln(2)
.long 0x40000000,0x935d8ddd,0xaaa8ac17 //ln(10)
.long 0x3fff0000,0x80000000,0x00000000 //10 ^ 0
.global PTENRN
PTENRN:
.long 0x40020000,0xA0000000,0x00000000 //10 ^ 1
.long 0x40050000,0xC8000000,0x00000000 //10 ^ 2
.long 0x400C0000,0x9C400000,0x00000000 //10 ^ 4
.long 0x40190000,0xBEBC2000,0x00000000 //10 ^ 8
.long 0x40340000,0x8E1BC9BF,0x04000000 //10 ^ 16
.long 0x40690000,0x9DC5ADA8,0x2B70B59E //10 ^ 32
.long 0x40D30000,0xC2781F49,0xFFCFA6D5 //10 ^ 64
.long 0x41A80000,0x93BA47C9,0x80E98CE0 //10 ^ 128
.long 0x43510000,0xAA7EEBFB,0x9DF9DE8E //10 ^ 256
.long 0x46A30000,0xE319A0AE,0xA60E91C7 //10 ^ 512
.long 0x4D480000,0xC9767586,0x81750C17 //10 ^ 1024
.long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 //10 ^ 2048
.long 0x75250000,0xC4605202,0x8A20979B //10 ^ 4096
//round to minus infinity
BIGRZRM:
.long 0x3ffe0000,0xb17217f7,0xd1cf79ab //ln(2)
.long 0x40000000,0x935d8ddd,0xaaa8ac16 //ln(10)
.long 0x3fff0000,0x80000000,0x00000000 //10 ^ 0
.global PTENRM
PTENRM:
.long 0x40020000,0xA0000000,0x00000000 //10 ^ 1
.long 0x40050000,0xC8000000,0x00000000 //10 ^ 2
.long 0x400C0000,0x9C400000,0x00000000 //10 ^ 4
.long 0x40190000,0xBEBC2000,0x00000000 //10 ^ 8
.long 0x40340000,0x8E1BC9BF,0x04000000 //10 ^ 16
.long 0x40690000,0x9DC5ADA8,0x2B70B59D //10 ^ 32
.long 0x40D30000,0xC2781F49,0xFFCFA6D5 //10 ^ 64
.long 0x41A80000,0x93BA47C9,0x80E98CDF //10 ^ 128
.long 0x43510000,0xAA7EEBFB,0x9DF9DE8D //10 ^ 256
.long 0x46A30000,0xE319A0AE,0xA60E91C6 //10 ^ 512
.long 0x4D480000,0xC9767586,0x81750C17 //10 ^ 1024
.long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 //10 ^ 2048
.long 0x75250000,0xC4605202,0x8A20979A //10 ^ 4096
//round to positive infinity
BIGRP:
.long 0x3ffe0000,0xb17217f7,0xd1cf79ac //ln(2)
.long 0x40000000,0x935d8ddd,0xaaa8ac17 //ln(10)
.long 0x3fff0000,0x80000000,0x00000000 //10 ^ 0
.global PTENRP
PTENRP:
.long 0x40020000,0xA0000000,0x00000000 //10 ^ 1
.long 0x40050000,0xC8000000,0x00000000 //10 ^ 2
.long 0x400C0000,0x9C400000,0x00000000 //10 ^ 4
.long 0x40190000,0xBEBC2000,0x00000000 //10 ^ 8
.long 0x40340000,0x8E1BC9BF,0x04000000 //10 ^ 16
.long 0x40690000,0x9DC5ADA8,0x2B70B59E //10 ^ 32
.long 0x40D30000,0xC2781F49,0xFFCFA6D6 //10 ^ 64
.long 0x41A80000,0x93BA47C9,0x80E98CE0 //10 ^ 128
.long 0x43510000,0xAA7EEBFB,0x9DF9DE8E //10 ^ 256
.long 0x46A30000,0xE319A0AE,0xA60E91C7 //10 ^ 512
.long 0x4D480000,0xC9767586,0x81750C18 //10 ^ 1024
.long 0x5A920000,0x9E8B3B5D,0xC53D5DE6 //10 ^ 2048
.long 0x75250000,0xC4605202,0x8A20979B //10 ^ 4096
|xref nrm_zero
|xref decbin
|xref round
.global get_op
.global uns_getop
.global uni_getop
get_op:
clrb DY_MO_FLG(%a6)
tstb UFLG_TMP(%a6) //test flag for unsupp/unimp state
beq uni_getop
uns_getop:
btstb #direction_bit,CMDREG1B(%a6)
bne opclass3 //branch if a fmove out (any kind)
btstb #6,CMDREG1B(%a6)
beqs uns_notpacked
bfextu CMDREG1B(%a6){#3:#3},%d0
cmpb #3,%d0
beq pack_source //check for a packed src op, branch if so
uns_notpacked:
bsr chk_dy_mo //set the dyadic/monadic flag
tstb DY_MO_FLG(%a6)
beqs src_op_ck //if monadic, go check src op
// ;else, check dst op (fall through)
btstb #7,DTAG(%a6)
beqs src_op_ck //if dst op is norm, check src op
bras dst_ex_dnrm //else, handle destination unnorm/dnrm
uni_getop:
bfextu CMDREG1B(%a6){#0:#6},%d0 //get opclass and src fields
cmpil #0x17,%d0 //if op class and size fields are $17,
// ;it is FMOVECR; if not, continue
//
// If the instruction is fmovecr, exit get_op. It is handled
// in do_func and smovecr.sa.
//
bne not_fmovecr //handle fmovecr as an unimplemented inst
rts
not_fmovecr:
btstb #E1,E_BYTE(%a6) //if set, there is a packed operand
bne pack_source //check for packed src op, branch if so
// The following lines of are coded to optimize on normalized operands
moveb STAG(%a6),%d0
orb DTAG(%a6),%d0 //check if either of STAG/DTAG msb set
bmis dest_op_ck //if so, some op needs to be fixed
rts
dest_op_ck:
btstb #7,DTAG(%a6) //check for unsupported data types in
beqs src_op_ck //the destination, if not, check src op
bsr chk_dy_mo //set dyadic/monadic flag
tstb DY_MO_FLG(%a6) //
beqs src_op_ck //if monadic, check src op
//
// At this point, destination has an extended denorm or unnorm.
//
dst_ex_dnrm:
movew FPTEMP_EX(%a6),%d0 //get destination exponent
andiw #0x7fff,%d0 //mask sign, check if exp = 0000
beqs src_op_ck //if denorm then check source op.
// ;denorms are taken care of in res_func
// ;(unsupp) or do_func (unimp)
// ;else unnorm fall through
leal FPTEMP(%a6),%a0 //point a0 to dop - used in mk_norm
bsr mk_norm //go normalize - mk_norm returns:
// ;L_SCR1{7:5} = operand tag
// ; (000 = norm, 100 = denorm)
// ;L_SCR1{4} = fpte15 or ete15
// ; 0 = exp > $3fff
// ; 1 = exp <= $3fff
// ;and puts the normalized num back
// ;on the fsave stack
//
moveb L_SCR1(%a6),DTAG(%a6) //write the new tag & fpte15
// ;to the fsave stack and fall
// ;through to check source operand
//
src_op_ck:
btstb #7,STAG(%a6)
beq end_getop //check for unsupported data types on the
// ;source operand
btstb #5,STAG(%a6)
bnes src_sd_dnrm //if bit 5 set, handle sgl/dbl denorms
//
// At this point only unnorms or extended denorms are possible.
//
src_ex_dnrm:
movew ETEMP_EX(%a6),%d0 //get source exponent
andiw #0x7fff,%d0 //mask sign, check if exp = 0000
beq end_getop //if denorm then exit, denorms are
// ;handled in do_func
leal ETEMP(%a6),%a0 //point a0 to sop - used in mk_norm
bsr mk_norm //go normalize - mk_norm returns:
// ;L_SCR1{7:5} = operand tag
// ; (000 = norm, 100 = denorm)
// ;L_SCR1{4} = fpte15 or ete15
// ; 0 = exp > $3fff
// ; 1 = exp <= $3fff
// ;and puts the normalized num back
// ;on the fsave stack
//
moveb L_SCR1(%a6),STAG(%a6) //write the new tag & ete15
rts //end_getop
//
// At this point, only single or double denorms are possible.
// If the inst is not fmove, normalize the source. If it is,
// do nothing to the input.
//
src_sd_dnrm:
btstb #4,CMDREG1B(%a6) //differentiate between sgl/dbl denorm
bnes is_double
is_single:
movew #0x3f81,%d1 //write bias for sgl denorm
bras common //goto the common code
is_double:
movew #0x3c01,%d1 //write the bias for a dbl denorm
common:
btstb #sign_bit,ETEMP_EX(%a6) //grab sign bit of mantissa
beqs pos
bset #15,%d1 //set sign bit because it is negative
pos:
movew %d1,ETEMP_EX(%a6)
// ;put exponent on stack
movew CMDREG1B(%a6),%d1
andw #0xe3ff,%d1 //clear out source specifier
orw #0x0800,%d1 //set source specifier to extended prec
movew %d1,CMDREG1B(%a6) //write back to the command word in stack
// ;this is needed to fix unsupp data stack
leal ETEMP(%a6),%a0 //point a0 to sop
bsr mk_norm //convert sgl/dbl denorm to norm
moveb L_SCR1(%a6),STAG(%a6) //put tag into source tag reg - d0
rts //end_getop
//
// At this point, the source is definitely packed, whether
// instruction is dyadic or monadic is still unknown
//
pack_source:
movel FPTEMP_LO(%a6),ETEMP(%a6) //write ms part of packed
// ;number to etemp slot
bsr chk_dy_mo //set dyadic/monadic flag
bsr unpack
tstb DY_MO_FLG(%a6)
beqs end_getop //if monadic, exit
// ;else, fix FPTEMP
pack_dya:
bfextu CMDREG1B(%a6){#6:#3},%d0 //extract dest fp reg
movel #7,%d1
subl %d0,%d1
clrl %d0
bsetl %d1,%d0 //set up d0 as a dynamic register mask
fmovemx %d0,FPTEMP(%a6) //write to FPTEMP
btstb #7,DTAG(%a6) //check dest tag for unnorm or denorm
bne dst_ex_dnrm //else, handle the unnorm or ext denorm
//
// Dest is not denormalized. Check for norm, and set fpte15
// accordingly.
//
moveb DTAG(%a6),%d0
andib #0xf0,%d0 //strip to only dtag:fpte15
tstb %d0 //check for normalized value
bnes end_getop //if inf/nan/zero leave get_op
movew FPTEMP_EX(%a6),%d0
andiw #0x7fff,%d0
cmpiw #0x3fff,%d0 //check if fpte15 needs setting
bges end_getop //if >= $3fff, leave fpte15=0
orb #0x10,DTAG(%a6)
bras end_getop
//
// At this point, it is either an fmoveout packed, unnorm or denorm
//
opclass3:
clrb DY_MO_FLG(%a6) //set dyadic/monadic flag to monadic
bfextu CMDREG1B(%a6){#4:#2},%d0
cmpib #3,%d0
bne src_ex_dnrm //if not equal, must be unnorm or denorm
// ;else it is a packed move out
// ;exit
end_getop:
rts
//
// Sets the DY_MO_FLG correctly. This is used only on if it is an
// unsupported data type exception. Set if dyadic.
//
chk_dy_mo:
movew CMDREG1B(%a6),%d0
btstl #5,%d0 //testing extension command word
beqs set_mon //if bit 5 = 0 then monadic
btstl #4,%d0 //know that bit 5 = 1
beqs set_dya //if bit 4 = 0 then dyadic
andiw #0x007f,%d0 //get rid of all but extension bits {6:0}
cmpiw #0x0038,%d0 //if extension = $38 then fcmp (dyadic)
bnes set_mon
set_dya:
st DY_MO_FLG(%a6) //set the inst flag type to dyadic
rts
set_mon:
clrb DY_MO_FLG(%a6) //set the inst flag type to monadic
rts
//
// MK_NORM
//
// Normalizes unnormalized numbers, sets tag to norm or denorm, sets unfl
// exception if denorm.
//
// CASE opclass 0x0 unsupp
// mk_norm till msb set
// set tag = norm
//
// CASE opclass 0x0 unimp
// mk_norm till msb set or exp = 0
// if integer bit = 0
// tag = denorm
// else
// tag = norm
//
// CASE opclass 011 unsupp
// mk_norm till msb set or exp = 0
// if integer bit = 0
// tag = denorm
// set unfl_nmcexe = 1
// else
// tag = norm
//
// if exp <= $3fff
// set ete15 or fpte15 = 1
// else set ete15 or fpte15 = 0
// input:
// a0 = points to operand to be normalized
// output:
// L_SCR1{7:5} = operand tag (000 = norm, 100 = denorm)
// L_SCR1{4} = fpte15 or ete15 (0 = exp > $3fff, 1 = exp <=$3fff)
// the normalized operand is placed back on the fsave stack
mk_norm:
clrl L_SCR1(%a6)
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0) //transform into internal extended format
cmpib #0x2c,1+EXC_VEC(%a6) //check if unimp
bnes uns_data //branch if unsupp
bsr uni_inst //call if unimp (opclass 0x0)
bras reload
uns_data:
btstb #direction_bit,CMDREG1B(%a6) //check transfer direction
bnes bit_set //branch if set (opclass 011)
bsr uns_opx //call if opclass 0x0
bras reload
bit_set:
bsr uns_op3 //opclass 011
reload:
cmpw #0x3fff,LOCAL_EX(%a0) //if exp > $3fff
bgts end_mk // fpte15/ete15 already set to 0
bsetb #4,L_SCR1(%a6) //else set fpte15/ete15 to 1
// ;calling routine actually sets the
// ;value on the stack (along with the
// ;tag), since this routine doesn't
// ;know if it should set ete15 or fpte15
// ;ie, it doesn't know if this is the
// ;src op or dest op.
end_mk:
bfclr LOCAL_SGN(%a0){#0:#8}
beqs end_mk_pos
bsetb #sign_bit,LOCAL_EX(%a0) //convert back to IEEE format
end_mk_pos:
rts
//
// CASE opclass 011 unsupp
//
uns_op3:
bsr nrm_zero //normalize till msb = 1 or exp = zero
btstb #7,LOCAL_HI(%a0) //if msb = 1
bnes no_unfl //then branch
set_unfl:
orw #dnrm_tag,L_SCR1(%a6) //set denorm tag
bsetb #unfl_bit,FPSR_EXCEPT(%a6) //set unfl exception bit
no_unfl:
rts
//
// CASE opclass 0x0 unsupp
//
uns_opx:
bsr nrm_zero //normalize the number
btstb #7,LOCAL_HI(%a0) //check if integer bit (j-bit) is set
beqs uns_den //if clear then now have a denorm
uns_nrm:
orb #norm_tag,L_SCR1(%a6) //set tag to norm
rts
uns_den:
orb #dnrm_tag,L_SCR1(%a6) //set tag to denorm
rts
//
// CASE opclass 0x0 unimp
//
uni_inst:
bsr nrm_zero
btstb #7,LOCAL_HI(%a0) //check if integer bit (j-bit) is set
beqs uni_den //if clear then now have a denorm
uni_nrm:
orb #norm_tag,L_SCR1(%a6) //set tag to norm
rts
uni_den:
orb #dnrm_tag,L_SCR1(%a6) //set tag to denorm
rts
//
// Decimal to binary conversion
//
// Special cases of inf and NaNs are completed outside of decbin.
// If the input is an snan, the snan bit is not set.
//
// input:
// ETEMP(a6) - points to packed decimal string in memory
// output:
// fp0 - contains packed string converted to extended precision
// ETEMP - same as fp0
unpack:
movew CMDREG1B(%a6),%d0 //examine command word, looking for fmove's
andw #0x3b,%d0
beq move_unpack //special handling for fmove: must set FPSR_CC
movew ETEMP(%a6),%d0 //get word with inf information
bfextu %d0{#20:#12},%d1 //get exponent into d1
cmpiw #0x0fff,%d1 //test for inf or NaN
bnes try_zero //if not equal, it is not special
bfextu %d0{#17:#3},%d1 //get SE and y bits into d1
cmpiw #7,%d1 //SE and y bits must be on for special
bnes try_zero //if not on, it is not special
//input is of the special cases of inf and NaN
tstl ETEMP_HI(%a6) //check ms mantissa
bnes fix_nan //if non-zero, it is a NaN
tstl ETEMP_LO(%a6) //check ls mantissa
bnes fix_nan //if non-zero, it is a NaN
bra finish //special already on stack
fix_nan:
btstb #signan_bit,ETEMP_HI(%a6) //test for snan
bne finish
orl #snaniop_mask,USER_FPSR(%a6) //always set snan if it is so
bra finish
try_zero:
movew ETEMP_EX+2(%a6),%d0 //get word 4
andiw #0x000f,%d0 //clear all but last ni(y)bble
tstw %d0 //check for zero.
bne not_spec
tstl ETEMP_HI(%a6) //check words 3 and 2
bne not_spec
tstl ETEMP_LO(%a6) //check words 1 and 0
bne not_spec
tstl ETEMP(%a6) //test sign of the zero
bges pos_zero
movel #0x80000000,ETEMP(%a6) //write neg zero to etemp
clrl ETEMP_HI(%a6)
clrl ETEMP_LO(%a6)
bra finish
pos_zero:
clrl ETEMP(%a6)
clrl ETEMP_HI(%a6)
clrl ETEMP_LO(%a6)
bra finish
not_spec:
fmovemx %fp0-%fp1,-(%a7) //save fp0 - decbin returns in it
bsr decbin
fmovex %fp0,ETEMP(%a6) //put the unpacked sop in the fsave stack
fmovemx (%a7)+,%fp0-%fp1
fmovel #0,%FPSR //clr fpsr from decbin
bra finish
//
// Special handling for packed move in: Same results as all other
// packed cases, but we must set the FPSR condition codes properly.
//
move_unpack:
movew ETEMP(%a6),%d0 //get word with inf information
bfextu %d0{#20:#12},%d1 //get exponent into d1
cmpiw #0x0fff,%d1 //test for inf or NaN
bnes mtry_zero //if not equal, it is not special
bfextu %d0{#17:#3},%d1 //get SE and y bits into d1
cmpiw #7,%d1 //SE and y bits must be on for special
bnes mtry_zero //if not on, it is not special
//input is of the special cases of inf and NaN
tstl ETEMP_HI(%a6) //check ms mantissa
bnes mfix_nan //if non-zero, it is a NaN
tstl ETEMP_LO(%a6) //check ls mantissa
bnes mfix_nan //if non-zero, it is a NaN
//input is inf
orl #inf_mask,USER_FPSR(%a6) //set I bit
tstl ETEMP(%a6) //check sign
bge finish
orl #neg_mask,USER_FPSR(%a6) //set N bit
bra finish //special already on stack
mfix_nan:
orl #nan_mask,USER_FPSR(%a6) //set NaN bit
moveb #nan_tag,STAG(%a6) //set stag to NaN
btstb #signan_bit,ETEMP_HI(%a6) //test for snan
bnes mn_snan
orl #snaniop_mask,USER_FPSR(%a6) //set snan bit
btstb #snan_bit,FPCR_ENABLE(%a6) //test for snan enabled
bnes mn_snan
bsetb #signan_bit,ETEMP_HI(%a6) //force snans to qnans
mn_snan:
tstl ETEMP(%a6) //check for sign
bge finish //if clr, go on
orl #neg_mask,USER_FPSR(%a6) //set N bit
bra finish
mtry_zero:
movew ETEMP_EX+2(%a6),%d0 //get word 4
andiw #0x000f,%d0 //clear all but last ni(y)bble
tstw %d0 //check for zero.
bnes mnot_spec
tstl ETEMP_HI(%a6) //check words 3 and 2
bnes mnot_spec
tstl ETEMP_LO(%a6) //check words 1 and 0
bnes mnot_spec
tstl ETEMP(%a6) //test sign of the zero
bges mpos_zero
orl #neg_mask+z_mask,USER_FPSR(%a6) //set N and Z
movel #0x80000000,ETEMP(%a6) //write neg zero to etemp
clrl ETEMP_HI(%a6)
clrl ETEMP_LO(%a6)
bras finish
mpos_zero:
orl #z_mask,USER_FPSR(%a6) //set Z
clrl ETEMP(%a6)
clrl ETEMP_HI(%a6)
clrl ETEMP_LO(%a6)
bras finish
mnot_spec:
fmovemx %fp0-%fp1,-(%a7) //save fp0 ,fp1 - decbin returns in fp0
bsr decbin
fmovex %fp0,ETEMP(%a6)
// ;put the unpacked sop in the fsave stack
fmovemx (%a7)+,%fp0-%fp1
finish:
movew CMDREG1B(%a6),%d0 //get the command word
andw #0xfbff,%d0 //change the source specifier field to
// ;extended (was packed).
movew %d0,CMDREG1B(%a6) //write command word back to fsave stack
// ;we need to do this so the 040 will
// ;re-execute the inst. without taking
// ;another packed trap.
fix_stag:
//Converted result is now in etemp on fsave stack, now set the source
//tag (stag)
// if (ete =$7fff) then INF or NAN
// if (etemp = $x.0----0) then
// stag = INF
// else
// stag = NAN
// else
// if (ete = $0000) then
// stag = ZERO
// else
// stag = NORM
//
// Note also that the etemp_15 bit (just right of the stag) must
// be set accordingly.
//
movew ETEMP_EX(%a6),%d1
andiw #0x7fff,%d1 //strip sign
cmpw #0x7fff,%d1
bnes z_or_nrm
movel ETEMP_HI(%a6),%d1
bnes is_nan
movel ETEMP_LO(%a6),%d1
bnes is_nan
is_inf:
moveb #0x40,STAG(%a6)
movel #0x40,%d0
rts
is_nan:
moveb #0x60,STAG(%a6)
movel #0x60,%d0
rts
z_or_nrm:
tstw %d1
bnes is_nrm
is_zro:
// For a zero, set etemp_15
moveb #0x30,STAG(%a6)
movel #0x20,%d0
rts
is_nrm:
// For a norm, check if the exp <= $3fff; if so, set etemp_15
cmpiw #0x3fff,%d1
bles set_bit15
moveb #0,STAG(%a6)
bras end_is_nrm
set_bit15:
moveb #0x10,STAG(%a6)
end_is_nrm:
movel #0,%d0
end_fix:
rts
end_get:
rts
|end