URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [satan.S] - Rev 173
Compare with Previous | Blame | View Log
//// $Id: satan.S,v 1.2 2001-09-27 12:01:22 chris Exp $//// satan.sa 3.3 12/19/90//// The entry point satan computes the arctangent of an// input value. satand does the same except the input value is a// denormalized number.//// Input: Double-extended value in memory location pointed to by address// register a0.//// Output: Arctan(X) returned in floating-point register Fp0.//// Accuracy and Monotonicity: The returned result is within 2 ulps in// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the// result is subsequently rounded to double precision. The// result is provably monotonic in double precision.//// Speed: The program satan takes approximately 160 cycles for input// argument X such that 1/16 < |X| < 16. For the other arguments,// the program will run no worse than 10% slower.//// Algorithm:// Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.//// Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.// Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits// of X with a bit-1 attached at the 6-th bit position. Define u// to be u = (X-F) / (1 + X*F).//// Step 3. Approximate arctan(u) by a polynomial poly.//// Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values// calculated beforehand. Exit.//// Step 5. If |X| >= 16, go to Step 7.//// Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.//// Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.// Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.//// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA// The copyright notice above does not evidence any// actual or intended publication of such source code.//satan idnt 2,1 | Motorola 040 Floating Point Software Package|section 8#include "fpsp.defs"BOUNDS1: .long 0x3FFB8000,0x4002FFFFONE: .long 0x3F800000.long 0x00000000ATANA3: .long 0xBFF6687E,0x314987D8ATANA2: .long 0x4002AC69,0x34A26DB3ATANA1: .long 0xBFC2476F,0x4E1DA28EATANB6: .long 0x3FB34444,0x7F876989ATANB5: .long 0xBFB744EE,0x7FAF45DBATANB4: .long 0x3FBC71C6,0x46940220ATANB3: .long 0xBFC24924,0x921872F9ATANB2: .long 0x3FC99999,0x99998FA9ATANB1: .long 0xBFD55555,0x55555555ATANC5: .long 0xBFB70BF3,0x98539E6AATANC4: .long 0x3FBC7187,0x962D1D7DATANC3: .long 0xBFC24924,0x827107B8ATANC2: .long 0x3FC99999,0x9996263EATANC1: .long 0xBFD55555,0x55555536PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000NPIBY2: .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000PTINY: .long 0x00010000,0x80000000,0x00000000,0x00000000NTINY: .long 0x80010000,0x80000000,0x00000000,0x00000000ATANTBL:.long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000.long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000.long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000.long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000.long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000.long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000.long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000.long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000.long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000.long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000.long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000.long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000.long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000.long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000.long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000.long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000.long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000.long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000.long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000.long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000.long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000.long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000.long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000.long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000.long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000.long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000.long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000.long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000.long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000.long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000.long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000.long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000.long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000.long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000.long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000.long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000.long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000.long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000.long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000.long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000.long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000.long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000.long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000.long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000.long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000.long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000.long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000.long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000.long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000.long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000.long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000.long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000.long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000.long 0x3FFE0000,0x97731420,0x365E538C,0x00000000.long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000.long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000.long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000.long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000.long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000.long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000.long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000.long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000.long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000.long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000.long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000.long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000.long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000.long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000.long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000.long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000.long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000.long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000.long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000.long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000.long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000.long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000.long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000.long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000.long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000.long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000.long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000.long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000.long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000.long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000.long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000.long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000.long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000.long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000.long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000.long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000.long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000.long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000.long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000.long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000.long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000.long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000.long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000.long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000.long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000.long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000.long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000.long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000.long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000.long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000.long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000.long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000.long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000.long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000.long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000.long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000.long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000.long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000.long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000.long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000.long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000.long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000.long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000.long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000.long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000.long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000.long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000.long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000.long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000.long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000.long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000.long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000.long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000.long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000.set X,FP_SCR1.set XDCARE,X+2.set XFRAC,X+4.set XFRACLO,X+8.set ATANF,FP_SCR2.set ATANFHI,ATANF+4.set ATANFLO,ATANF+8| xref t_frcinx|xref t_extdnrm.global satandsatand://--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENTbra t_extdnrm.global satansatan://--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'Sfmovex (%a0),%fp0 // ...LOAD INPUTmovel (%a0),%d0movew 4(%a0),%d0fmovex %fp0,X(%a6)andil #0x7FFFFFFF,%d0cmpil #0x3FFB8000,%d0 // ...|X| >= 1/16?bges ATANOK1bra ATANSMATANOK1:cmpil #0x4002FFFF,%d0 // ...|X| < 16 ?bles ATANMAINbra ATANBIG//--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE//--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).//--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN//--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE//--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS//--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR//--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO//--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE//--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL//--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE//--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION//--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION//--WILL INVOLVE A VERY LONG POLYNOMIAL.//--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS//--WE CHOSE F TO BE +-2^K * 1.BBBB1//--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE//--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE//--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS//-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).ATANMAIN:movew #0x0000,XDCARE(%a6) // ...CLEAN UP X JUST IN CASEandil #0xF8000000,XFRAC(%a6) // ...FIRST 5 BITSoril #0x04000000,XFRAC(%a6) // ...SET 6-TH BIT TO 1movel #0x00000000,XFRACLO(%a6) // ...LOCATION OF X IS NOW Ffmovex %fp0,%fp1 // ...FP1 IS Xfmulx X(%a6),%fp1 // ...FP1 IS X*F, NOTE THAT X*F > 0fsubx X(%a6),%fp0 // ...FP0 IS X-Ffadds #0x3F800000,%fp1 // ...FP1 IS 1 + X*Ffdivx %fp1,%fp0 // ...FP0 IS U = (X-F)/(1+X*F)//--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)//--CREATE ATAN(F) AND STORE IT IN ATANF, AND//--SAVE REGISTERS FP2.movel %d2,-(%a7) // ...SAVE d2 TEMPORARILYmovel %d0,%d2 // ...THE EXPO AND 16 BITS OF Xandil #0x00007800,%d0 // ...4 VARYING BITS OF F'S FRACTIONandil #0x7FFF0000,%d2 // ...EXPONENT OF Fsubil #0x3FFB0000,%d2 // ...K+4asrl #1,%d2addl %d2,%d0 // ...THE 7 BITS IDENTIFYING Fasrl #7,%d0 // ...INDEX INTO TBL OF ATAN(|F|)lea ATANTBL,%a1addal %d0,%a1 // ...ADDRESS OF ATAN(|F|)movel (%a1)+,ATANF(%a6)movel (%a1)+,ATANFHI(%a6)movel (%a1)+,ATANFLO(%a6) // ...ATANF IS NOW ATAN(|F|)movel X(%a6),%d0 // ...LOAD SIGN AND EXPO. AGAINandil #0x80000000,%d0 // ...SIGN(F)orl %d0,ATANF(%a6) // ...ATANF IS NOW SIGN(F)*ATAN(|F|)movel (%a7)+,%d2 // ...RESTORE d2//--THAT'S ALL I HAVE TO DO FOR NOW,//--BUT ALAS, THE DIVIDE IS STILL CRANKING!//--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS//--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U//--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.//--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))//--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.//--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT//--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCEDfmovex %fp0,%fp1fmulx %fp1,%fp1fmoved ATANA3,%fp2faddx %fp1,%fp2 // ...A3+Vfmulx %fp1,%fp2 // ...V*(A3+V)fmulx %fp0,%fp1 // ...U*Vfaddd ATANA2,%fp2 // ...A2+V*(A3+V)fmuld ATANA1,%fp1 // ...A1*U*Vfmulx %fp2,%fp1 // ...A1*U*V*(A2+V*(A3+V))faddx %fp1,%fp0 // ...ATAN(U), FP1 RELEASEDfmovel %d1,%FPCR //restore users exceptionsfaddx ATANF(%a6),%fp0 // ...ATAN(X)bra t_frcinxATANBORS://--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.//--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.cmpil #0x3FFF8000,%d0bgt ATANBIG // ...I.E. |X| >= 16ATANSM://--|X| <= 1/16//--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE//--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))//--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )//--WHERE Y = X*X, AND Z = Y*Y.cmpil #0x3FD78000,%d0blt ATANTINY//--COMPUTE POLYNOMIALfmulx %fp0,%fp0 // ...FP0 IS Y = X*Xmovew #0x0000,XDCARE(%a6)fmovex %fp0,%fp1fmulx %fp1,%fp1 // ...FP1 IS Z = Y*Yfmoved ATANB6,%fp2fmoved ATANB5,%fp3fmulx %fp1,%fp2 // ...Z*B6fmulx %fp1,%fp3 // ...Z*B5faddd ATANB4,%fp2 // ...B4+Z*B6faddd ATANB3,%fp3 // ...B3+Z*B5fmulx %fp1,%fp2 // ...Z*(B4+Z*B6)fmulx %fp3,%fp1 // ...Z*(B3+Z*B5)faddd ATANB2,%fp2 // ...B2+Z*(B4+Z*B6)faddd ATANB1,%fp1 // ...B1+Z*(B3+Z*B5)fmulx %fp0,%fp2 // ...Y*(B2+Z*(B4+Z*B6))fmulx X(%a6),%fp0 // ...X*Yfaddx %fp2,%fp1 // ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]fmulx %fp1,%fp0 // ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])fmovel %d1,%FPCR //restore users exceptionsfaddx X(%a6),%fp0bra t_frcinxATANTINY://--|X| < 2^(-40), ATAN(X) = Xmovew #0x0000,XDCARE(%a6)fmovel %d1,%FPCR //restore users exceptionsfmovex X(%a6),%fp0 //last inst - possible exception setbra t_frcinxATANBIG://--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,//--RETURN SIGN(X)*PI/2 + ATAN(-1/X).cmpil #0x40638000,%d0bgt ATANHUGE//--APPROXIMATE ATAN(-1/X) BY//--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'//--THIS CAN BE RE-WRITTEN AS//--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.fmoves #0xBF800000,%fp1 // ...LOAD -1fdivx %fp0,%fp1 // ...FP1 IS -1/X//--DIVIDE IS STILL CRANKINGfmovex %fp1,%fp0 // ...FP0 IS X'fmulx %fp0,%fp0 // ...FP0 IS Y = X'*X'fmovex %fp1,X(%a6) // ...X IS REALLY X'fmovex %fp0,%fp1fmulx %fp1,%fp1 // ...FP1 IS Z = Y*Yfmoved ATANC5,%fp3fmoved ATANC4,%fp2fmulx %fp1,%fp3 // ...Z*C5fmulx %fp1,%fp2 // ...Z*B4faddd ATANC3,%fp3 // ...C3+Z*C5faddd ATANC2,%fp2 // ...C2+Z*C4fmulx %fp3,%fp1 // ...Z*(C3+Z*C5), FP3 RELEASEDfmulx %fp0,%fp2 // ...Y*(C2+Z*C4)faddd ATANC1,%fp1 // ...C1+Z*(C3+Z*C5)fmulx X(%a6),%fp0 // ...X'*Yfaddx %fp2,%fp1 // ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]fmulx %fp1,%fp0 // ...X'*Y*([B1+Z*(B3+Z*B5)]// ... +[Y*(B2+Z*(B4+Z*B6))])faddx X(%a6),%fp0fmovel %d1,%FPCR //restore users exceptionsbtstb #7,(%a0)beqs pos_bigneg_big:faddx NPIBY2,%fp0bra t_frcinxpos_big:faddx PPIBY2,%fp0bra t_frcinxATANHUGE://--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINYbtstb #7,(%a0)beqs pos_hugeneg_huge:fmovex NPIBY2,%fp0fmovel %d1,%fpcrfsubx NTINY,%fp0bra t_frcinxpos_huge:fmovex PPIBY2,%fp0fmovel %d1,%fpcrfsubx PTINY,%fp0bra t_frcinx|end
