URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [slogn.S] - Rev 173
Compare with Previous | Blame | View Log
//// $Id: slogn.S,v 1.2 2001-09-27 12:01:22 chris Exp $//// slogn.sa 3.1 12/10/90//// slogn computes the natural logarithm of an// input value. slognd does the same except the input value is a// denormalized number. slognp1 computes log(1+X), and slognp1d// computes log(1+X) for denormalized X.//// Input: Double-extended value in memory location pointed to by address// register a0.//// Output: log(X) or log(1+X) returned in floating-point register Fp0.//// Accuracy and Monotonicity: The returned result is within 2 ulps in// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the// result is subsequently rounded to double precision. The// result is provably monotonic in double precision.//// Speed: The program slogn takes approximately 190 cycles for input// argument X such that |X-1| >= 1/16, which is the the usual// situation. For those arguments, slognp1 takes approximately// 210 cycles. For the less common arguments, the program will// run no worse than 10% slower.//// Algorithm:// LOGN:// Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in// u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.//// Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven// significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base// 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7).//// Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,// log(1+u) = poly.//// Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)// by k*log(2) + (log(F) + poly). The values of log(F) are calculated// beforehand and stored in the program.//// lognp1:// Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in// u where u = 2X/(2+X). Otherwise, move on to Step 2.//// Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2// of the algorithm for LOGN and compute log(1+X) as// k*log(2) + log(F) + poly where poly approximates log(1+u),// u = (Y-F)/F.//// Implementation Notes:// Note 1. There are 64 different possible values for F, thus 64 log(F)'s// need to be tabulated. Moreover, the values of 1/F are also// tabulated so that the division in (Y-F)/F can be performed by a// multiplication.//// Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value// Y-F has to be calculated carefully when 1/2 <= X < 3/2.//// Note 3. To fully exploit the pipeline, polynomials are usually separated// into two parts evaluated independently before being added up.//// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA// The copyright notice above does not evidence any// actual or intended publication of such source code.//slogn idnt 2,1 | Motorola 040 Floating Point Software Package|section 8#include "fpsp.defs"BOUNDS1: .long 0x3FFEF07D,0x3FFF8841BOUNDS2: .long 0x3FFE8000,0x3FFFC000LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000one: .long 0x3F800000zero: .long 0x00000000infty: .long 0x7F800000negone: .long 0xBF800000LOGA6: .long 0x3FC2499A,0xB5E4040BLOGA5: .long 0xBFC555B5,0x848CB7DBLOGA4: .long 0x3FC99999,0x987D8730LOGA3: .long 0xBFCFFFFF,0xFF6F7E97LOGA2: .long 0x3FD55555,0x555555a4LOGA1: .long 0xBFE00000,0x00000008LOGB5: .long 0x3F175496,0xADD7DAD6LOGB4: .long 0x3F3C71C2,0xFE80C7E0LOGB3: .long 0x3F624924,0x928BCCFFLOGB2: .long 0x3F899999,0x999995ECLOGB1: .long 0x3FB55555,0x55555555TWO: .long 0x40000000,0x00000000LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000LOGTBL:.long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000.long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000.long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000.long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000.long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000.long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000.long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000.long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000.long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000.long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000.long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000.long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000.long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000.long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000.long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000.long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000.long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000.long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000.long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000.long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000.long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000.long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000.long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000.long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000.long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000.long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000.long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000.long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000.long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000.long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000.long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000.long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000.long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000.long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000.long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000.long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000.long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000.long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000.long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000.long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000.long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000.long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000.long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000.long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000.long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000.long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000.long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000.long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000.long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000.long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000.long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000.long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000.long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000.long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000.long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000.long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000.long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000.long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000.long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000.long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000.long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000.long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000.long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000.long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000.long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000.long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000.long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000.long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000.long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000.long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000.long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000.long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000.long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000.long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000.long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000.long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000.long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000.long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000.long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000.long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000.long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000.long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000.long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000.long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000.long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000.long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000.long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000.long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000.long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000.long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000.long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000.long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000.long 0x3FFE0000,0x94458094,0x45809446,0x00000000.long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000.long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000.long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000.long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000.long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000.long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000.long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000.long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000.long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000.long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000.long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000.long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000.long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000.long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000.long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000.long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000.long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000.long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000.long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000.long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000.long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000.long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000.long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000.long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000.long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000.long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000.long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000.long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000.long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000.long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000.long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000.long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000.long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000.long 0x3FFE0000,0x80808080,0x80808081,0x00000000.long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000.set ADJK,L_SCR1.set X,FP_SCR1.set XDCARE,X+2.set XFRAC,X+4.set F,FP_SCR2.set FFRAC,F+4.set KLOG2,FP_SCR3.set SAVEU,FP_SCR4| xref t_frcinx|xref t_extdnrm|xref t_operr|xref t_dz.global slogndslognd://--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUTmovel #-100,ADJK(%a6) // ...INPUT = 2^(ADJK) * FP0//----normalize the input value by left shifting k bits (k to be determined//----below), adjusting exponent and storing -k to ADJK//----the value TWOTO100 is no longer needed.//----Note that this code assumes the denormalized input is NON-ZERO.moveml %d2-%d7,-(%a7) // ...save some registersmovel #0x00000000,%d3 // ...D3 is exponent of smallest norm. #movel 4(%a0),%d4movel 8(%a0),%d5 // ...(D4,D5) is (Hi_X,Lo_X)clrl %d2 // ...D2 used for holding Ktstl %d4bnes HiX_not0HiX_0:movel %d5,%d4clrl %d5movel #32,%d2clrl %d6bfffo %d4{#0:#32},%d6lsll %d6,%d4addl %d6,%d2 // ...(D3,D4,D5) is normalizedmovel %d3,X(%a6)movel %d4,XFRAC(%a6)movel %d5,XFRAC+4(%a6)negl %d2movel %d2,ADJK(%a6)fmovex X(%a6),%fp0moveml (%a7)+,%d2-%d7 // ...restore registerslea X(%a6),%a0bras LOGBGN // ...begin regular log(X)HiX_not0:clrl %d6bfffo %d4{#0:#32},%d6 // ...find first 1movel %d6,%d2 // ...get klsll %d6,%d4movel %d5,%d7 // ...a copy of D5lsll %d6,%d5negl %d6addil #32,%d6lsrl %d6,%d7orl %d7,%d4 // ...(D3,D4,D5) normalizedmovel %d3,X(%a6)movel %d4,XFRAC(%a6)movel %d5,XFRAC+4(%a6)negl %d2movel %d2,ADJK(%a6)fmovex X(%a6),%fp0moveml (%a7)+,%d2-%d7 // ...restore registerslea X(%a6),%a0bras LOGBGN // ...begin regular log(X).global slognslogn://--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'Sfmovex (%a0),%fp0 // ...LOAD INPUTmovel #0x00000000,ADJK(%a6)LOGBGN://--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS//--A FINITE, NON-ZERO, NORMALIZED NUMBER.movel (%a0),%d0movew 4(%a0),%d0movel (%a0),X(%a6)movel 4(%a0),X+4(%a6)movel 8(%a0),X+8(%a6)cmpil #0,%d0 // ...CHECK IF X IS NEGATIVEblt LOGNEG // ...LOG OF NEGATIVE ARGUMENT IS INVALIDcmp2l BOUNDS1,%d0 // ...X IS POSITIVE, CHECK IF X IS NEAR 1bcc LOGNEAR1 // ...BOUNDS IS ROUGHLY [15/16, 17/16]LOGMAIN://--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1//--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.//--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.//--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)//-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).//--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING//--LOG(1+U) CAN BE VERY EFFICIENT.//--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO//--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.//--GET K, Y, F, AND ADDRESS OF 1/F.asrl #8,%d0asrl #8,%d0 // ...SHIFTED 16 BITS, BIASED EXPO. OF Xsubil #0x3FFF,%d0 // ...THIS IS Kaddl ADJK(%a6),%d0 // ...ADJUST K, ORIGINAL INPUT MAY BE DENORM.lea LOGTBL,%a0 // ...BASE ADDRESS OF 1/F AND LOG(F)fmovel %d0,%fp1 // ...CONVERT K TO FLOATING-POINT FORMAT//--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/Fmovel #0x3FFF0000,X(%a6) // ...X IS NOW Y, I.E. 2^(-K)*Xmovel XFRAC(%a6),FFRAC(%a6)andil #0xFE000000,FFRAC(%a6) // ...FIRST 7 BITS OF Yoril #0x01000000,FFRAC(%a6) // ...GET F: ATTACH A 1 AT THE EIGHTH BITmovel FFRAC(%a6),%d0 // ...READY TO GET ADDRESS OF 1/Fandil #0x7E000000,%d0asrl #8,%d0asrl #8,%d0asrl #4,%d0 // ...SHIFTED 20, D0 IS THE DISPLACEMENTaddal %d0,%a0 // ...A0 IS THE ADDRESS FOR 1/Ffmovex X(%a6),%fp0movel #0x3fff0000,F(%a6)clrl F+8(%a6)fsubx F(%a6),%fp0 // ...Y-Ffmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2 WHILE FP0 IS NOT READY//--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K//--REGISTERS SAVED: FPCR, FP1, FP2LP1CONT1://--AN RE-ENTRY POINT FOR LOGNP1fmulx (%a0),%fp0 // ...FP0 IS U = (Y-F)/Ffmulx LOGOF2,%fp1 // ...GET K*LOG2 WHILE FP0 IS NOT READYfmovex %fp0,%fp2fmulx %fp2,%fp2 // ...FP2 IS V=U*Ufmovex %fp1,KLOG2(%a6) // ...PUT K*LOG2 IN MEMORY, FREE FP1//--LOG(1+U) IS APPROXIMATED BY//--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS//--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]fmovex %fp2,%fp3fmovex %fp2,%fp1fmuld LOGA6,%fp1 // ...V*A6fmuld LOGA5,%fp2 // ...V*A5faddd LOGA4,%fp1 // ...A4+V*A6faddd LOGA3,%fp2 // ...A3+V*A5fmulx %fp3,%fp1 // ...V*(A4+V*A6)fmulx %fp3,%fp2 // ...V*(A3+V*A5)faddd LOGA2,%fp1 // ...A2+V*(A4+V*A6)faddd LOGA1,%fp2 // ...A1+V*(A3+V*A5)fmulx %fp3,%fp1 // ...V*(A2+V*(A4+V*A6))addal #16,%a0 // ...ADDRESS OF LOG(F)fmulx %fp3,%fp2 // ...V*(A1+V*(A3+V*A5)), FP3 RELEASEDfmulx %fp0,%fp1 // ...U*V*(A2+V*(A4+V*A6))faddx %fp2,%fp0 // ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASEDfaddx (%a0),%fp1 // ...LOG(F)+U*V*(A2+V*(A4+V*A6))fmovemx (%sp)+,%fp2-%fp2/%fp3 // ...RESTORE FP2faddx %fp1,%fp0 // ...FP0 IS LOG(F) + LOG(1+U)fmovel %d1,%fpcrfaddx KLOG2(%a6),%fp0 // ...FINAL ADDbra t_frcinxLOGNEAR1://--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.fmovex %fp0,%fp1fsubs one,%fp1 // ...FP1 IS X-1fadds one,%fp0 // ...FP0 IS X+1faddx %fp1,%fp1 // ...FP1 IS 2(X-1)//--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL//--IN U, U = 2(X-1)/(X+1) = FP1/FP0LP1CONT2://--THIS IS AN RE-ENTRY POINT FOR LOGNP1fdivx %fp0,%fp1 // ...FP1 IS Ufmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2//--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3//--LET V=U*U, W=V*V, CALCULATE//--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY//--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )fmovex %fp1,%fp0fmulx %fp0,%fp0 // ...FP0 IS Vfmovex %fp1,SAVEU(%a6) // ...STORE U IN MEMORY, FREE FP1fmovex %fp0,%fp1fmulx %fp1,%fp1 // ...FP1 IS Wfmoved LOGB5,%fp3fmoved LOGB4,%fp2fmulx %fp1,%fp3 // ...W*B5fmulx %fp1,%fp2 // ...W*B4faddd LOGB3,%fp3 // ...B3+W*B5faddd LOGB2,%fp2 // ...B2+W*B4fmulx %fp3,%fp1 // ...W*(B3+W*B5), FP3 RELEASEDfmulx %fp0,%fp2 // ...V*(B2+W*B4)faddd LOGB1,%fp1 // ...B1+W*(B3+W*B5)fmulx SAVEU(%a6),%fp0 // ...FP0 IS U*Vfaddx %fp2,%fp1 // ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASEDfmovemx (%sp)+,%fp2-%fp2/%fp3 // ...FP2 RESTOREDfmulx %fp1,%fp0 // ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )fmovel %d1,%fpcrfaddx SAVEU(%a6),%fp0bra t_frcinxrtsLOGNEG://--REGISTERS SAVED FPCR. LOG(-VE) IS INVALIDbra t_operr.global slognp1dslognp1d://--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT// Simply return the denormbra t_extdnrm.global slognp1slognp1://--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'Sfmovex (%a0),%fp0 // ...LOAD INPUTfabsx %fp0 //test magnitudefcmpx LTHOLD,%fp0 //compare with min thresholdfbgt LP1REAL //if greater, continuefmovel #0,%fpsr //clr N flag from comparefmovel %d1,%fpcrfmovex (%a0),%fp0 //return signed argumentbra t_frcinxLP1REAL:fmovex (%a0),%fp0 // ...LOAD INPUTmovel #0x00000000,ADJK(%a6)fmovex %fp0,%fp1 // ...FP1 IS INPUT Zfadds one,%fp0 // ...X := ROUND(1+Z)fmovex %fp0,X(%a6)movew XFRAC(%a6),XDCARE(%a6)movel X(%a6),%d0cmpil #0,%d0ble LP1NEG0 // ...LOG OF ZERO OR -VEcmp2l BOUNDS2,%d0bcs LOGMAIN // ...BOUNDS2 IS [1/2,3/2]//--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,//--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,//--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).LP1NEAR1://--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)cmp2l BOUNDS1,%d0bcss LP1CARELP1ONE16://--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)//--WHERE U = 2Z/(2+Z) = 2Z/(1+X).faddx %fp1,%fp1 // ...FP1 IS 2Zfadds one,%fp0 // ...FP0 IS 1+X//--U = FP1/FP0bra LP1CONT2LP1CARE://--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE//--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST//--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],//--THERE ARE ONLY TWO CASES.//--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z//--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z//--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF//--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.movel XFRAC(%a6),FFRAC(%a6)andil #0xFE000000,FFRAC(%a6)oril #0x01000000,FFRAC(%a6) // ...F OBTAINEDcmpil #0x3FFF8000,%d0 // ...SEE IF 1+Z > 1bges KISZEROKISNEG1:fmoves TWO,%fp0movel #0x3fff0000,F(%a6)clrl F+8(%a6)fsubx F(%a6),%fp0 // ...2-Fmovel FFRAC(%a6),%d0andil #0x7E000000,%d0asrl #8,%d0asrl #8,%d0asrl #4,%d0 // ...D0 CONTAINS DISPLACEMENT FOR 1/Ffaddx %fp1,%fp1 // ...GET 2Zfmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2faddx %fp1,%fp0 // ...FP0 IS Y-F = (2-F)+2Zlea LOGTBL,%a0 // ...A0 IS ADDRESS OF 1/Faddal %d0,%a0fmoves negone,%fp1 // ...FP1 IS K = -1bra LP1CONT1KISZERO:fmoves one,%fp0movel #0x3fff0000,F(%a6)clrl F+8(%a6)fsubx F(%a6),%fp0 // ...1-Fmovel FFRAC(%a6),%d0andil #0x7E000000,%d0asrl #8,%d0asrl #8,%d0asrl #4,%d0faddx %fp1,%fp0 // ...FP0 IS Y-Ffmovemx %fp2-%fp2/%fp3,-(%sp) // ...FP2 SAVEDlea LOGTBL,%a0addal %d0,%a0 // ...A0 IS ADDRESS OF 1/Ffmoves zero,%fp1 // ...FP1 IS K = 0bra LP1CONT1LP1NEG0://--FPCR SAVED. D0 IS X IN COMPACT FORM.cmpil #0,%d0blts LP1NEGLP1ZERO:fmoves negone,%fp0fmovel %d1,%fpcrbra t_dzLP1NEG:fmoves zero,%fp0fmovel %d1,%fpcrbra t_operr|end
