URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [ssin.S] - Rev 173
Compare with Previous | Blame | View Log
//// $Id: ssin.S,v 1.2 2001-09-27 12:01:22 chris Exp $//// ssin.sa 3.3 7/29/91//// The entry point sSIN computes the sine of an input argument// sCOS computes the cosine, and sSINCOS computes both. The// corresponding entry points with a "d" computes the same// corresponding function values for denormalized inputs.//// Input: Double-extended number X in location pointed to// by address register a0.//// Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or// COS is requested. Otherwise, for SINCOS, sin(X) is returned// in Fp0, and cos(X) is returned in Fp1.//// Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.//// Accuracy and Monotonicity: The returned result is within 1 ulp in// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the// result is subsequently rounded to double precision. The// result is provably monotonic in double precision.//// Speed: The programs sSIN and sCOS take approximately 150 cycles for// input argument X such that |X| < 15Pi, which is the the usual// situation. The speed for sSINCOS is approximately 190 cycles.//// Algorithm://// SIN and COS:// 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.//// 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.//// 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let// k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite// k by k := k + AdjN.//// 4. If k is even, go to 6.//// 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)// where cos(r) is approximated by an even polynomial in r,// 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.// Exit.//// 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)// where sin(r) is approximated by an odd polynomial in r// r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.// Exit.//// 7. If |X| > 1, go to 9.//// 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.//// 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.//// SINCOS:// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.//// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let// k = N mod 4, so in particular, k = 0,1,2,or 3.//// 3. If k is even, go to 5.//// 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.// j1 exclusive or with the l.s.b. of k.// sgn1 := (-1)**j1, sgn2 := (-1)**j2.// SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where// sin(r) and cos(r) are computed as odd and even polynomials// in r, respectively. Exit//// 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.// SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where// sin(r) and cos(r) are computed as odd and even polynomials// in r, respectively. Exit//// 6. If |X| > 1, go to 8.//// 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.//// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.//// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA// The copyright notice above does not evidence any// actual or intended publication of such source code.//SSIN idnt 2,1 | Motorola 040 Floating Point Software Package|section 8#include "fpsp.defs"BOUNDS1: .long 0x3FD78000,0x4004BC7ETWOBYPI: .long 0x3FE45F30,0x6DC9C883SINA7: .long 0xBD6AAA77,0xCCC994F5SINA6: .long 0x3DE61209,0x7AAE8DA1SINA5: .long 0xBE5AE645,0x2A118AE4SINA4: .long 0x3EC71DE3,0xA5341531SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000COSB8: .long 0x3D2AC4D0,0xD6011EE3COSB7: .long 0xBDA9396F,0x9F45AC19COSB6: .long 0x3E21EED9,0x0612C972COSB5: .long 0xBE927E4F,0xB79D9FCFCOSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5ECOSB1: .long 0xBF000000INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152ATWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000|xref PITBL.set INARG,FP_SCR4.set X,FP_SCR5.set XDCARE,X+2.set XFRAC,X+4.set RPRIME,FP_SCR1.set SPRIME,FP_SCR2.set POSNEG1,L_SCR1.set TWOTO63,L_SCR1.set ENDFLAG,L_SCR2.set N,L_SCR2.set ADJN,L_SCR3| xref t_frcinx|xref t_extdnrm|xref sto_cos.global ssindssind://--SIN(X) = X FOR DENORMALIZED Xbra t_extdnrm.global scosdscosd://--COS(X) = 1 FOR DENORMALIZED Xfmoves #0x3F800000,%fp0//// 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits//fmovel #0,%fpsr//bra t_frcinx.global ssinssin://--SET ADJN TO 0movel #0,ADJN(%a6)bras SINBGN.global scosscos://--SET ADJN TO 1movel #1,ADJN(%a6)SINBGN://--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGEfmovex (%a0),%fp0 // ...LOAD INPUTmovel (%a0),%d0movew 4(%a0),%d0fmovex %fp0,X(%a6)andil #0x7FFFFFFF,%d0 // ...COMPACTIFY Xcmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)?bges SOK1bra SINSMSOK1:cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI?blts SINMAINbra REDUCEXSINMAIN://--THIS IS THE USUAL CASE, |X| <= 15 PI.//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.fmovex %fp0,%fp1fmuld TWOBYPI,%fp1 // ...X*2/PI//--HIDE THE NEXT THREE INSTRUCTIONSlea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32//--FP1 IS NOW READYfmovel %fp1,N(%a6) // ...CONVERT TO INTEGERmovel N(%a6),%d0asll #4,%d0addal %d0,%a1 // ...A1 IS THE ADDRESS OF N*PIBY2// ...WHICH IS IN TWO PIECES Y1 & Y2fsubx (%a1)+,%fp0 // ...X-Y1//--HIDE THE NEXT ONEfsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2SINCONT://--continuation from REDUCEX//--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDEDmovel N(%a6),%d0addl ADJN(%a6),%d0 // ...SEE IF D0 IS ODD OR EVENrorl #1,%d0 // ...D0 WAS ODD IFF D0 IS NEGATIVEcmpil #0,%d0blt COSPOLYSINPOLY://--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.//--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY//--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE//--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS//--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])//--WHERE T=S*S.//--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION//--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.fmovex %fp0,X(%a6) // ...X IS Rfmulx %fp0,%fp0 // ...FP0 IS S//---HIDE THE NEXT TWO WHILE WAITING FOR FP0fmoved SINA7,%fp3fmoved SINA6,%fp2//--FP0 IS NOW READYfmovex %fp0,%fp1fmulx %fp1,%fp1 // ...FP1 IS T//--HIDE THE NEXT TWO WHILE WAITING FOR FP1rorl #1,%d0andil #0x80000000,%d0// ...LEAST SIG. BIT OF D0 IN SIGN POSITIONeorl %d0,X(%a6) // ...X IS NOW R'= SGN*Rfmulx %fp1,%fp3 // ...TA7fmulx %fp1,%fp2 // ...TA6faddd SINA5,%fp3 // ...A5+TA7faddd SINA4,%fp2 // ...A4+TA6fmulx %fp1,%fp3 // ...T(A5+TA7)fmulx %fp1,%fp2 // ...T(A4+TA6)faddd SINA3,%fp3 // ...A3+T(A5+TA7)faddx SINA2,%fp2 // ...A2+T(A4+TA6)fmulx %fp3,%fp1 // ...T(A3+T(A5+TA7))fmulx %fp0,%fp2 // ...S(A2+T(A4+TA6))faddx SINA1,%fp1 // ...A1+T(A3+T(A5+TA7))fmulx X(%a6),%fp0 // ...R'*Sfaddx %fp2,%fp1 // ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING//--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDINGfmulx %fp1,%fp0 // ...SIN(R')-R'//--FP1 RELEASED.fmovel %d1,%FPCR //restore users exceptionsfaddx X(%a6),%fp0 //last inst - possible exception setbra t_frcinxCOSPOLY://--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.//--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY//--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE//--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS//--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])//--WHERE T=S*S.//--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION//--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2//--AND IS THEREFORE STORED AS SINGLE PRECISION.fmulx %fp0,%fp0 // ...FP0 IS S//---HIDE THE NEXT TWO WHILE WAITING FOR FP0fmoved COSB8,%fp2fmoved COSB7,%fp3//--FP0 IS NOW READYfmovex %fp0,%fp1fmulx %fp1,%fp1 // ...FP1 IS T//--HIDE THE NEXT TWO WHILE WAITING FOR FP1fmovex %fp0,X(%a6) // ...X IS Srorl #1,%d0andil #0x80000000,%d0// ...LEAST SIG. BIT OF D0 IN SIGN POSITIONfmulx %fp1,%fp2 // ...TB8//--HIDE THE NEXT TWO WHILE WAITING FOR THE XUeorl %d0,X(%a6) // ...X IS NOW S'= SGN*Sandil #0x80000000,%d0fmulx %fp1,%fp3 // ...TB7//--HIDE THE NEXT TWO WHILE WAITING FOR THE XUoril #0x3F800000,%d0 // ...D0 IS SGN IN SINGLEmovel %d0,POSNEG1(%a6)faddd COSB6,%fp2 // ...B6+TB8faddd COSB5,%fp3 // ...B5+TB7fmulx %fp1,%fp2 // ...T(B6+TB8)fmulx %fp1,%fp3 // ...T(B5+TB7)faddd COSB4,%fp2 // ...B4+T(B6+TB8)faddx COSB3,%fp3 // ...B3+T(B5+TB7)fmulx %fp1,%fp2 // ...T(B4+T(B6+TB8))fmulx %fp3,%fp1 // ...T(B3+T(B5+TB7))faddx COSB2,%fp2 // ...B2+T(B4+T(B6+TB8))fadds COSB1,%fp1 // ...B1+T(B3+T(B5+TB7))fmulx %fp2,%fp0 // ...S(B2+T(B4+T(B6+TB8)))//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING//--FP2 RELEASED.faddx %fp1,%fp0//--FP1 RELEASEDfmulx X(%a6),%fp0fmovel %d1,%FPCR //restore users exceptionsfadds POSNEG1(%a6),%fp0 //last inst - possible exception setbra t_frcinxSINBORS://--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.//--IF |X| < 2**(-40), RETURN X OR 1.cmpil #0x3FFF8000,%d0bgts REDUCEXSINSM:movel ADJN(%a6),%d0cmpil #0,%d0bgts COSTINYSINTINY:movew #0x0000,XDCARE(%a6) // ...JUST IN CASEfmovel %d1,%FPCR //restore users exceptionsfmovex X(%a6),%fp0 //last inst - possible exception setbra t_frcinxCOSTINY:fmoves #0x3F800000,%fp0fmovel %d1,%FPCR //restore users exceptionsfsubs #0x00800000,%fp0 //last inst - possible exception setbra t_frcinxREDUCEX://--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.//--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING//--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.fmovemx %fp2-%fp5,-(%a7) // ...save FP2 through FP5movel %d2,-(%a7)fmoves #0x00000000,%fp1//--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that//--there is a danger of unwanted overflow in first LOOP iteration. In this//--case, reduce argument by one remainder step to make subsequent reduction//--safe.cmpil #0x7ffeffff,%d0 //is argument dangerously large?bnes LOOPmovel #0x7ffe0000,FP_SCR2(%a6) //yes// ;create 2**16383*PI/2movel #0xc90fdaa2,FP_SCR2+4(%a6)clrl FP_SCR2+8(%a6)ftstx %fp0 //test sign of argumentmovel #0x7fdc0000,FP_SCR3(%a6) //create low half of 2**16383*// ;PI/2 at FP_SCR3movel #0x85a308d3,FP_SCR3+4(%a6)clrl FP_SCR3+8(%a6)fblt red_negorw #0x8000,FP_SCR2(%a6) //positive argorw #0x8000,FP_SCR3(%a6)red_neg:faddx FP_SCR2(%a6),%fp0 //high part of reduction is exactfmovex %fp0,%fp1 //save high result in fp1faddx FP_SCR3(%a6),%fp0 //low part of reductionfsubx %fp0,%fp1 //determine low component of resultfaddx FP_SCR3(%a6),%fp1 //fp0/fp1 are reduced argument.//--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.//--integer quotient will be stored in N//--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)LOOP:fmovex %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2movew INARG(%a6),%d0movel %d0,%a1 // ...save a copy of D0andil #0x00007FFF,%d0subil #0x00003FFF,%d0 // ...D0 IS Kcmpil #28,%d0bles LASTLOOPCONTLOOP:subil #27,%d0 // ...D0 IS L := K-27movel #0,ENDFLAG(%a6)bras WORKLASTLOOP:clrl %d0 // ...D0 IS L := 0movel #1,ENDFLAG(%a6)WORK://--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN//--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.//--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),//--2**L * (PIby2_1), 2**L * (PIby2_2)movel #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PIsubl %d0,%d2 // ...BIASED EXPO OF 2**(-L)*(2/PI)movel #0xA2F9836E,FP_SCR1+4(%a6)movel #0x4E44152A,FP_SCR1+8(%a6)movew %d2,FP_SCR1(%a6) // ...FP_SCR1 is 2**(-L)*(2/PI)fmovex %fp0,%fp2fmulx FP_SCR1(%a6),%fp2//--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN//--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N//--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT//--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE//--US THE DESIRED VALUE IN FLOATING POINT.//--HIDE SIX CYCLES OF INSTRUCTIONmovel %a1,%d2swap %d2andil #0x80000000,%d2oril #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGLmovel %d2,TWOTO63(%a6)movel %d0,%d2addil #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2)//--FP2 IS READYfadds TWOTO63(%a6),%fp2 // ...THE FRACTIONAL PART OF FP1 IS ROUNDED//--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2movew %d2,FP_SCR2(%a6)clrw FP_SCR2+2(%a6)movel #0xC90FDAA2,FP_SCR2+4(%a6)clrl FP_SCR2+8(%a6) // ...FP_SCR2 is 2**(L) * Piby2_1//--FP2 IS READYfsubs TWOTO63(%a6),%fp2 // ...FP2 is Naddil #0x00003FDD,%d0movew %d0,FP_SCR3(%a6)clrw FP_SCR3+2(%a6)movel #0x85A308D3,FP_SCR3+4(%a6)clrl FP_SCR3+8(%a6) // ...FP_SCR3 is 2**(L) * Piby2_2movel ENDFLAG(%a6),%d0//--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and//--P2 = 2**(L) * Piby2_2fmovex %fp2,%fp4fmulx FP_SCR2(%a6),%fp4 // ...W = N*P1fmovex %fp2,%fp5fmulx FP_SCR3(%a6),%fp5 // ...w = N*P2fmovex %fp4,%fp3//--we want P+p = W+w but |p| <= half ulp of P//--Then, we need to compute A := R-P and a := r-pfaddx %fp5,%fp3 // ...FP3 is Pfsubx %fp3,%fp4 // ...W-Pfsubx %fp3,%fp0 // ...FP0 is A := R - Pfaddx %fp5,%fp4 // ...FP4 is p = (W-P)+wfmovex %fp0,%fp3 // ...FP3 Afsubx %fp4,%fp1 // ...FP1 is a := r - p//--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but//--|r| <= half ulp of R.faddx %fp1,%fp0 // ...FP0 is R := A+a//--No need to calculate r if this is the last loopcmpil #0,%d0bgt RESTORE//--Need to calculate rfsubx %fp0,%fp3 // ...A-Rfaddx %fp3,%fp1 // ...FP1 is r := (A-R)+abra LOOPRESTORE:fmovel %fp2,N(%a6)movel (%a7)+,%d2fmovemx (%a7)+,%fp2-%fp5movel ADJN(%a6),%d0cmpil #4,%d0blt SINCONTbras SCCONT.global ssincosdssincosd://--SIN AND COS OF X FOR DENORMALIZED Xfmoves #0x3F800000,%fp1bsr sto_cos //store cosine resultbra t_extdnrm.global ssincosssincos://--SET ADJN TO 4movel #4,ADJN(%a6)fmovex (%a0),%fp0 // ...LOAD INPUTmovel (%a0),%d0movew 4(%a0),%d0fmovex %fp0,X(%a6)andil #0x7FFFFFFF,%d0 // ...COMPACTIFY Xcmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)?bges SCOK1bra SCSMSCOK1:cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI?blts SCMAINbra REDUCEXSCMAIN://--THIS IS THE USUAL CASE, |X| <= 15 PI.//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.fmovex %fp0,%fp1fmuld TWOBYPI,%fp1 // ...X*2/PI//--HIDE THE NEXT THREE INSTRUCTIONSlea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32//--FP1 IS NOW READYfmovel %fp1,N(%a6) // ...CONVERT TO INTEGERmovel N(%a6),%d0asll #4,%d0addal %d0,%a1 // ...ADDRESS OF N*PIBY2, IN Y1, Y2fsubx (%a1)+,%fp0 // ...X-Y1fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2SCCONT://--continuation point from REDUCEX//--HIDE THE NEXT TWOmovel N(%a6),%d0rorl #1,%d0cmpil #0,%d0 // ...D0 < 0 IFF N IS ODDbge NEVENNODD://--REGISTERS SAVED SO FAR: D0, A0, FP2.fmovex %fp0,RPRIME(%a6)fmulx %fp0,%fp0 // ...FP0 IS S = R*Rfmoved SINA7,%fp1 // ...A7fmoved COSB8,%fp2 // ...B8fmulx %fp0,%fp1 // ...SA7movel %d2,-(%a7)movel %d0,%d2fmulx %fp0,%fp2 // ...SB8rorl #1,%d2andil #0x80000000,%d2faddd SINA6,%fp1 // ...A6+SA7eorl %d0,%d2andil #0x80000000,%d2faddd COSB7,%fp2 // ...B7+SB8fmulx %fp0,%fp1 // ...S(A6+SA7)eorl %d2,RPRIME(%a6)movel (%a7)+,%d2fmulx %fp0,%fp2 // ...S(B7+SB8)rorl #1,%d0andil #0x80000000,%d0faddd SINA5,%fp1 // ...A5+S(A6+SA7)movel #0x3F800000,POSNEG1(%a6)eorl %d0,POSNEG1(%a6)faddd COSB6,%fp2 // ...B6+S(B7+SB8)fmulx %fp0,%fp1 // ...S(A5+S(A6+SA7))fmulx %fp0,%fp2 // ...S(B6+S(B7+SB8))fmovex %fp0,SPRIME(%a6)faddd SINA4,%fp1 // ...A4+S(A5+S(A6+SA7))eorl %d0,SPRIME(%a6)faddd COSB5,%fp2 // ...B5+S(B6+S(B7+SB8))fmulx %fp0,%fp1 // ...S(A4+...)fmulx %fp0,%fp2 // ...S(B5+...)faddd SINA3,%fp1 // ...A3+S(A4+...)faddd COSB4,%fp2 // ...B4+S(B5+...)fmulx %fp0,%fp1 // ...S(A3+...)fmulx %fp0,%fp2 // ...S(B4+...)faddx SINA2,%fp1 // ...A2+S(A3+...)faddx COSB3,%fp2 // ...B3+S(B4+...)fmulx %fp0,%fp1 // ...S(A2+...)fmulx %fp0,%fp2 // ...S(B3+...)faddx SINA1,%fp1 // ...A1+S(A2+...)faddx COSB2,%fp2 // ...B2+S(B3+...)fmulx %fp0,%fp1 // ...S(A1+...)fmulx %fp2,%fp0 // ...S(B2+...)fmulx RPRIME(%a6),%fp1 // ...R'S(A1+...)fadds COSB1,%fp0 // ...B1+S(B2...)fmulx SPRIME(%a6),%fp0 // ...S'(B1+S(B2+...))movel %d1,-(%sp) //restore users mode & precisionandil #0xff,%d1 //mask off all exceptionsfmovel %d1,%FPCRfaddx RPRIME(%a6),%fp1 // ...COS(X)bsr sto_cos //store cosine resultfmovel (%sp)+,%FPCR //restore users exceptionsfadds POSNEG1(%a6),%fp0 // ...SIN(X)bra t_frcinxNEVEN://--REGISTERS SAVED SO FAR: FP2.fmovex %fp0,RPRIME(%a6)fmulx %fp0,%fp0 // ...FP0 IS S = R*Rfmoved COSB8,%fp1 // ...B8fmoved SINA7,%fp2 // ...A7fmulx %fp0,%fp1 // ...SB8fmovex %fp0,SPRIME(%a6)fmulx %fp0,%fp2 // ...SA7rorl #1,%d0andil #0x80000000,%d0faddd COSB7,%fp1 // ...B7+SB8faddd SINA6,%fp2 // ...A6+SA7eorl %d0,RPRIME(%a6)eorl %d0,SPRIME(%a6)fmulx %fp0,%fp1 // ...S(B7+SB8)oril #0x3F800000,%d0movel %d0,POSNEG1(%a6)fmulx %fp0,%fp2 // ...S(A6+SA7)faddd COSB6,%fp1 // ...B6+S(B7+SB8)faddd SINA5,%fp2 // ...A5+S(A6+SA7)fmulx %fp0,%fp1 // ...S(B6+S(B7+SB8))fmulx %fp0,%fp2 // ...S(A5+S(A6+SA7))faddd COSB5,%fp1 // ...B5+S(B6+S(B7+SB8))faddd SINA4,%fp2 // ...A4+S(A5+S(A6+SA7))fmulx %fp0,%fp1 // ...S(B5+...)fmulx %fp0,%fp2 // ...S(A4+...)faddd COSB4,%fp1 // ...B4+S(B5+...)faddd SINA3,%fp2 // ...A3+S(A4+...)fmulx %fp0,%fp1 // ...S(B4+...)fmulx %fp0,%fp2 // ...S(A3+...)faddx COSB3,%fp1 // ...B3+S(B4+...)faddx SINA2,%fp2 // ...A2+S(A3+...)fmulx %fp0,%fp1 // ...S(B3+...)fmulx %fp0,%fp2 // ...S(A2+...)faddx COSB2,%fp1 // ...B2+S(B3+...)faddx SINA1,%fp2 // ...A1+S(A2+...)fmulx %fp0,%fp1 // ...S(B2+...)fmulx %fp2,%fp0 // ...s(a1+...)fadds COSB1,%fp1 // ...B1+S(B2...)fmulx RPRIME(%a6),%fp0 // ...R'S(A1+...)fmulx SPRIME(%a6),%fp1 // ...S'(B1+S(B2+...))movel %d1,-(%sp) //save users mode & precisionandil #0xff,%d1 //mask off all exceptionsfmovel %d1,%FPCRfadds POSNEG1(%a6),%fp1 // ...COS(X)bsr sto_cos //store cosine resultfmovel (%sp)+,%FPCR //restore users exceptionsfaddx RPRIME(%a6),%fp0 // ...SIN(X)bra t_frcinxSCBORS:cmpil #0x3FFF8000,%d0bgt REDUCEXSCSM:movew #0x0000,XDCARE(%a6)fmoves #0x3F800000,%fp1movel %d1,-(%sp) //save users mode & precisionandil #0xff,%d1 //mask off all exceptionsfmovel %d1,%FPCRfsubs #0x00800000,%fp1bsr sto_cos //store cosine resultfmovel (%sp)+,%FPCR //restore users exceptionsfmovex X(%a6),%fp0bra t_frcinx|end
