URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [lib/] [libcpu/] [mips64orion/] [clock/] [ckinit.c] - Rev 173
Compare with Previous | Blame | View Log
/* ckinit.c * * This file contains the clock driver initialization for the IDT 4650. * * Author: Craig Lebakken <craigl@transition.com> * * COPYRIGHT (c) 1996 by Transition Networks Inc. * * To anyone who acknowledges that this file is provided "AS IS" * without any express or implied warranty: * permission to use, copy, modify, and distribute this file * for any purpose is hereby granted without fee, provided that * the above copyright notice and this notice appears in all * copies, and that the name of Transition Networks not be used in * advertising or publicity pertaining to distribution of the * software without specific, written prior permission. * Transition Networks makes no representations about the suitability * of this software for any purpose. * * Derived from c/src/lib/libbsp/no_cpu/no_bsp/clock/ckinit.c: * * COPYRIGHT (c) 1989-1999. * On-Line Applications Research Corporation (OAR). * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.OARcorp.com/rtems/license.html. * * $Id: ckinit.c,v 1.2 2001-09-27 12:01:22 chris Exp $ */ /* * Rather than deleting this, it is commented out to (hopefully) help * the submitter send updates. * * static char _sccsid[] = "@(#)ckinit.c 08/20/96 1.3\n"; */ #include <stdlib.h> #include <rtems.h> #include <rtems/libio.h> #define EXT_INT5 0x8000 /* external interrupt 5 */ #include "clock.h" /* formerly in the BSP */ #if 0 #define CLOCKS_PER_MICROSECOND ( CPU_CLOCK_RATE_MHZ ) /* equivalent to CPU clock speed in MHz */ #endif #define CLOCKS_PER_MICROSECOND \ rtems_cpu_configuration_get_clicks_per_microsecond() /* to avoid including the bsp */ mips_isr_entry set_vector( rtems_isr_entry, rtems_vector_number, int ); void Clock_exit( void ); rtems_isr Clock_isr( rtems_vector_number vector ); /* * The interrupt vector number associated with the clock tick device * driver. */ #define CLOCK_VECTOR_MASK EXT_INT5 #define CLOCK_VECTOR 0x7 /* * Clock_driver_ticks is a monotonically increasing counter of the * number of clock ticks since the driver was initialized. */ volatile rtems_unsigned32 Clock_driver_ticks; /* * Clock_isrs is the number of clock ISRs until the next invocation of * the RTEMS clock tick routine. The clock tick device driver * gets an interrupt once a millisecond and counts down until the * length of time between the user configured microseconds per tick * has passed. */ rtems_unsigned32 Clock_isrs; /* ISRs until next tick */ /* * These are set by clock driver during its init */ rtems_device_major_number rtems_clock_major = ~0; rtems_device_minor_number rtems_clock_minor; /* * The previous ISR on this clock tick interrupt vector. */ rtems_isr_entry Old_ticker; void Clock_exit( void ); static unsigned32 mips_timer_rate = 0; /* * Isr Handler */ rtems_isr Clock_isr( rtems_vector_number vector ) { /* * bump the number of clock driver ticks since initialization * * determine if it is time to announce the passing of tick as configured * to RTEMS through the rtems_clock_tick directive * * perform any timer dependent tasks */ /* refresh the internal CPU timer */ mips_set_timer( mips_timer_rate ); Clock_driver_ticks += 1; rtems_clock_tick(); } /* User callback shell (set from Clock_Control) */ static void (*user_callback)(void); rtems_isr User_Clock_isr( rtems_vector_number vector ) { /* refresh the internal CPU timer */ mips_set_timer( mips_timer_rate ); if (user_callback) user_callback(); } /* * Install_clock * * Install a clock tick handleR and reprograms the chip. This * is used to initially establish the clock tick. */ void Install_clock( rtems_isr_entry clock_isr ) { /* * Initialize the clock tick device driver variables */ Clock_driver_ticks = 0; Clock_isrs = rtems_configuration_get_milliseconds_per_tick(); Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 ); /* * Hardware specific initialize goes here */ mips_timer_rate = rtems_configuration_get_microseconds_per_tick() * CLOCKS_PER_MICROSECOND; mips_set_timer( mips_timer_rate ); enable_int(CLOCK_VECTOR_MASK); /* * Schedule the clock cleanup routine to execute if the application exits. */ atexit( Clock_exit ); } /* * Clean up before the application exits */ void Clock_exit( void ) { /* mips: turn off the timer interrupts */ disable_int(~CLOCK_VECTOR_MASK); } /* * Clock_initialize * * Device driver entry point for clock tick driver initialization. */ rtems_device_driver Clock_initialize( rtems_device_major_number major, rtems_device_minor_number minor, void *pargp ) { Install_clock( Clock_isr ); /* * make major/minor avail to others such as shared memory driver */ rtems_clock_major = major; rtems_clock_minor = minor; return RTEMS_SUCCESSFUL; } rtems_device_driver Clock_control( rtems_device_major_number major, rtems_device_minor_number minor, void *pargp ) { rtems_unsigned32 isrlevel; rtems_libio_ioctl_args_t *args = pargp; if (args == 0) goto done; /* * This is hokey, but until we get a defined interface * to do this, it will just be this simple... */ if (args->command == rtems_build_name('I', 'S', 'R', ' ')) { Clock_isr(CLOCK_VECTOR); } else if (args->command == rtems_build_name('N', 'E', 'W', ' ')) { rtems_interrupt_disable( isrlevel ); user_callback = (void (*)(void))args->buffer; (void) set_vector( User_Clock_isr, CLOCK_VECTOR, 1 ); rtems_interrupt_enable( isrlevel ); } done: return RTEMS_SUCCESSFUL; }