URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [branches/] [oc/] [gdb-5.0/] [gdb/] [gdbarch.sh] - Rev 104
Go to most recent revision | Compare with Previous | Blame | View Log
#!/usr/local/bin/bash # Architecture commands for GDB, the GNU debugger. # Copyright 1998-2000 Free Software Foundation, Inc. # # This file is part of GDB. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. compare_new () { file=$1 if ! test -r ${file} then echo "${file} missing? cp new-${file} ${file}" 1>&2 elif diff -c ${file} new-${file} then echo "${file} unchanged" 1>&2 else echo "${file} has changed? cp new-${file} ${file}" 1>&2 fi } # DEFAULT is a valid fallback definition of a MACRO when # multi-arch is not enabled. default_is_fallback_p () { [ "${default}" != "" -a "${invalid_p}" = "0" ] # FIXME: cagney - not until after 5.0 false } # Format of the input table read="class level macro returntype function formal actual attrib startup default invalid_p fmt print print_p description" do_read () { if eval read $read then test "${startup}" || startup=0 test "${fmt}" || fmt="%ld" test "${print}" || print="(long) ${macro}" #test "${default}" || default=0 : else false fi } # dump out/verify the doco for field in ${read} do case ${field} in class ) : ;; # # -> line disable # f -> function # hiding a function # v -> variable # hiding a variable # i -> set from info # hiding something from the ``struct info'' object level ) : ;; # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >= # LEVEL is a predicate on checking that a given method is # initialized (using INVALID_P). macro ) : ;; # The name of the MACRO that this method is to be accessed by. returntype ) : ;; # For functions, the return type; for variables, the data type function ) : ;; # For functions, the member function name; for variables, the # variable name. Member function names are always prefixed with # ``gdbarch_'' for name-space purity. formal ) : ;; # The formal argument list. It is assumed that the formal # argument list includes the actual name of each list element. # A function with no arguments shall have ``void'' as the # formal argument list. actual ) : ;; # The list of actual arguments. The arguments specified shall # match the FORMAL list given above. Functions with out # arguments leave this blank. attrib ) : ;; # Any GCC attributes that should be attached to the function # declaration. At present this field is unused. startup ) : ;; # To help with the GDB startup a static gdbarch object is # created. STARTUP is the value to insert into that static # gdbarch object. # By default ``0'' is used. default ) : ;; # Any initial value to assign to a new gdbarch object after it # as been malloc()ed. Zero is used by default. # Specify a non-empty DEFAULT and a zero INVALID_P to create a # fallback value or function for when multi-arch is disabled. # Specify a zero DEFAULT function to make that fallback # illegal to call. invalid_p ) : ;; # A predicate equation that validates MEMBER. Non-zero is # returned if the code creating the new architecture failed to # initialize the MEMBER or initialized the member to something # invalid. By default, a check that the value is no longer # equal to DEFAULT ips performed. The equation ``0'' disables # the invalid_p check. fmt ) : ;; # printf style format string that can be used to print out the # MEMBER. Sometimes "%s" is useful. For functions, this is # ignored and the function address is printed. # By default ```%ld'' is used. print ) : ;; # An optional equation that casts MEMBER to a value suitable # for formatting by FMT. # By default ``(long)'' is used. print_p ) : ;; # An optional indicator for any predicte to wrap around the # print member code. # # -> Wrap print up in ``#ifdef MACRO'' # exp -> Wrap print up in ``if (${print_p}) ... # ``'' -> No predicate description ) : ;; # Currently unused. *) exit 1;; esac done IFS=: function_list () { # See below (DOCO) for description of each field cat <<EOF | i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct:::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL # i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN # v:1:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address:0 v:1:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):0 #v:1:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):0 v:1:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):0 v:1:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):0 v:1:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):0 v:1:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):0 v:1:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):0 v:1:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):0 v:1:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):0 # f:1:TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:0 f:1:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:0 f:1:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:0 f:1:TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:0 f:1:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:0 f:1:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:0 # v:2:NUM_REGS:int:num_regs::::0:-1 v:2:SP_REGNUM:int:sp_regnum::::0:-1 v:2:FP_REGNUM:int:fp_regnum::::0:-1 v:2:PC_REGNUM:int:pc_regnum::::0:-1 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name:0 v:2:REGISTER_SIZE:int:register_size::::0:-1 v:2:REGISTER_BYTES:int:register_bytes::::0:-1 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0 # v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0:gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0: v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1::0x%08lx v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::0x%08lx v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words:0:0x%08lx v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words:0:0x%08lx v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1::0x%08lx v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p::0:0 # v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion::::0:::::# v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type::::0:::::# f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double:0 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0 # f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not:0 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0:0 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0:0 # f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0 f:2:POP_FRAME:void:pop_frame:void:-:::0 # # I wish that these would just go away.... f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0:0 f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0:0 f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0 f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0 f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0 f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0 # f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0 f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0 # f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0 # f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc:0 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint:0 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint:0 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1 # f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address:0 # v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not:0 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0 # EOF grep -v '^#' } # dump it out if true then exec > new-gdbarch function_list | while do_read # eval read $read do cat <<EOF ${class} ${macro}(${actual}) ${returntype} ${function} ($formal)${attrib} level=${level} startup=${startup} default=${default} invalid_p=${invalid_p} fmt=${fmt} print=${print} print_p=${print_p} description=${description} EOF done exec 1>&2 fi copyright () { cat <<EOF /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */ /* Dynamic architecture support for GDB, the GNU debugger. Copyright 1998-1999, Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file was created with the aid of \`\`gdbarch.sh''. The bourn shell script \`\`gdbarch.sh'' creates the files \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them against the existing \`\`gdbarch.[hc]''. Any differences found being reported. If editing this file, please also run gdbarch.sh and merge any changes into that script. Conversely, when makeing sweeping changes to this file, modifying gdbarch.sh and using its output may prove easier. */ EOF } # # The .h file # exec > new-gdbarch.h copyright cat <<EOF #ifndef GDBARCH_H #define GDBARCH_H struct frame_info; struct value; #ifndef GDB_MULTI_ARCH #define GDB_MULTI_ARCH 0 #endif extern struct gdbarch *current_gdbarch; /* See gdb/doc/gdbint.texi for a discussion of the GDB_MULTI_ARCH macro */ /* If any of the following are defined, the target wasn't correctly converted. */ #if GDB_MULTI_ARCH #if defined (CALL_DUMMY) #error "CALL_DUMMY: replaced by CALL_DUMMY_WORDS/SIZEOF_CALL_DUMMY_WORDS" #endif #endif #if GDB_MULTI_ARCH #if defined (REGISTER_NAMES) #error "REGISTER_NAMES: replaced by REGISTER_NAME" #endif #endif #if GDB_MULTI_ARCH #if defined (EXTRA_FRAME_INFO) #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info" #endif #endif #if GDB_MULTI_ARCH #if defined (FRAME_FIND_SAVED_REGS) #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS" #endif #endif EOF # function typedef's echo "" echo "" echo "/* The following are pre-initialized by GDBARCH. */" function_list | while do_read # eval read $read do case "${class}" in "i" ) echo "" echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);" echo "/* set_gdbarch_${function}() - not applicable - pre-initialized. */" echo "#if GDB_MULTI_ARCH" echo "#if (GDB_MULTI_ARCH > 1) || !defined (${macro})" echo "#define ${macro} (gdbarch_${function} (current_gdbarch))" echo "#endif" echo "#endif" ;; esac done # function typedef's echo "" echo "" echo "/* The following are initialized by the target dependant code. */" function_list | while do_read # eval read $read do case "${class}" in "v" ) echo "" echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);" echo "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});" echo "#if GDB_MULTI_ARCH" echo "#if (GDB_MULTI_ARCH > 1) || !defined (${macro})" echo "#define ${macro} (gdbarch_${function} (current_gdbarch))" echo "#endif" echo "#endif" ;; "f" ) echo "" echo "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});" if [ "${formal}" = "void" ] then echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);" else echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});" fi echo "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});" if ! default_is_fallback_p then echo "#if GDB_MULTI_ARCH" fi echo "#if (GDB_MULTI_ARCH > 1) || !defined (${macro})" if [ "${actual}" = "" ] then echo "#define ${macro}() (gdbarch_${function} (current_gdbarch))" elif [ "${actual}" = "-" ] then echo "#define ${macro} (gdbarch_${function} (current_gdbarch))" else echo "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))" fi echo "#endif" if ! default_is_fallback_p then echo "#endif" fi ;; esac done # close it off cat <<EOF extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); /* Mechanism for co-ordinating the selection of a specific architecture. GDB targets (*-tdep.c) can register an interest in a specific architecture. Other GDB components can register a need to maintain per-architecture data. The mechanisms below ensures that there is only a loose connection between the set-architecture command and the various GDB components. Each component can independantly register their need to maintain architecture specific data with gdbarch. Pragmatics: Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It didn't scale. The more traditional mega-struct containing architecture specific data for all the various GDB components was also considered. Since GDB is built from a variable number of (fairly independant) components it was determined that the global aproach was not applicable. */ /* Register a new architectural family with GDB. Register support for the specified ARCHITECTURE with GDB. When gdbarch determines that the specified architecture has been selected, the corresponding INIT function is called. -- The INIT function takes two parameters: INFO which contains the information available to gdbarch about the (possibly new) architecture; ARCHES which is a list of the previously created \`\`struct gdbarch'' for this architecture. The INIT function parameter INFO shall, as far as possible, be pre-initialized with information obtained from INFO.ABFD or previously selected architecture (if similar). INIT shall ensure that the INFO.BYTE_ORDER is non-zero. The INIT function shall return any of: NULL - indicating that it doesn't reconize the selected architecture; an existing \`\`struct gdbarch'' from the ARCHES list - indicating that the new architecture is just a synonym for an earlier architecture (see gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch'' - that describes the selected architecture (see gdbarch_alloc()). */ struct gdbarch_list { struct gdbarch *gdbarch; struct gdbarch_list *next; }; struct gdbarch_info { /* Use default: bfd_arch_unknown (ZERO). */ enum bfd_architecture bfd_architecture; /* Use default: NULL (ZERO). */ const struct bfd_arch_info *bfd_arch_info; /* Use default: 0 (ZERO). */ int byte_order; /* Use default: NULL (ZERO). */ bfd *abfd; /* Use default: NULL (ZERO). */ struct gdbarch_tdep_info *tdep_info; }; typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches); extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *); /* Helper function. Search the list of ARCHES for a GDBARCH that matches the information provided by INFO. */ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform basic initialization using values obtained from the INFO andTDEP parameters. set_gdbarch_*() functions are called to complete the initialization of the object. */ extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); /* Helper function. Free a partially-constructed \`\`struct gdbarch''. */ extern void gdbarch_free (struct gdbarch *); /* Helper function. Force an update of the current architecture. Used by legacy targets that have added their own target specific architecture manipulation commands. The INFO parameter shall be fully initialized (\`\`memset (&INFO, sizeof (info), 0)'' set relevant fields) before gdbarch_update() is called. gdbarch_update() shall initialize any \`\`default'' fields using information obtained from the previous architecture or INFO.ABFD (if specified) before calling the corresponding architectures INIT function. */ extern int gdbarch_update (struct gdbarch_info info); /* Register per-architecture data-pointer. Reserve space for a per-architecture data-pointer. An identifier for the reserved data-pointer is returned. That identifer should be saved in a local static. When a new architecture is selected, INIT() is called. When a previous architecture is re-selected, the per-architecture data-pointer for that previous architecture is restored (INIT() is not called). INIT() shall return the initial value for the per-architecture data-pointer for the current architecture. Multiple registrarants for any architecture are allowed (and strongly encouraged). */ typedef void *(gdbarch_data_ftype) (void); extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_ftype *init); /* Return the value of the per-architecture data-pointer for the current architecture. */ extern void *gdbarch_data (struct gdbarch_data*); /* Register per-architecture memory region. Provide a memory-region swap mechanism. Per-architecture memory region are created. These memory regions are swapped whenever the architecture is changed. For a new architecture, the memory region is initialized with zero (0) and the INIT function is called. Memory regions are swapped / initialized in the order that they are registered. NULL DATA and/or INIT values can be specified. New code should use register_gdbarch_data(). */ typedef void (gdbarch_swap_ftype) (void); extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init); #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL) /* The target-system-dependant byte order is dynamic */ /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness is selectable at runtime. The user can use the \`\`set endian'' command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when target_byte_order should be auto-detected (from the program image say). */ #if GDB_MULTI_ARCH /* Multi-arch GDB is always bi-endian. */ #define TARGET_BYTE_ORDER_SELECTABLE_P 1 #endif #ifndef TARGET_BYTE_ORDER_SELECTABLE_P /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */ #ifdef TARGET_BYTE_ORDER_SELECTABLE #define TARGET_BYTE_ORDER_SELECTABLE_P 1 #else #define TARGET_BYTE_ORDER_SELECTABLE_P 0 #endif #endif extern int target_byte_order; #ifdef TARGET_BYTE_ORDER_SELECTABLE /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE and expect defs.h to re-define TARGET_BYTE_ORDER. */ #undef TARGET_BYTE_ORDER #endif #ifndef TARGET_BYTE_ORDER #define TARGET_BYTE_ORDER (target_byte_order + 0) #endif extern int target_byte_order_auto; #ifndef TARGET_BYTE_ORDER_AUTO #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0) #endif /* The target-system-dependant BFD architecture is dynamic */ extern int target_architecture_auto; #ifndef TARGET_ARCHITECTURE_AUTO #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0) #endif extern const struct bfd_arch_info *target_architecture; #ifndef TARGET_ARCHITECTURE #define TARGET_ARCHITECTURE (target_architecture + 0) #endif /* Notify the target dependant backend of a change to the selected architecture. A zero return status indicates that the target did not like the change. */ extern int (*target_architecture_hook) (const struct bfd_arch_info *); /* The target-system-dependant disassembler is semi-dynamic */ #include "dis-asm.h" /* Get defs for disassemble_info */ extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr, unsigned int len, disassemble_info *info); extern void dis_asm_memory_error (int status, bfd_vma memaddr, disassemble_info *info); extern void dis_asm_print_address (bfd_vma addr, disassemble_info *info); extern int (*tm_print_insn) (bfd_vma, disassemble_info*); extern disassemble_info tm_print_insn_info; #ifndef TARGET_PRINT_INSN #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info) #endif #ifndef TARGET_PRINT_INSN_INFO #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info) #endif /* Explicit test for D10V architecture. USE of these macro's is *STRONGLY* discouraged. */ #define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v) #ifndef D10V_MAKE_DADDR #define D10V_MAKE_DADDR(X) (internal_error ("gdbarch: D10V_MAKE_DADDR"), 0) #endif #ifndef D10V_MAKE_IADDR #define D10V_MAKE_IADDR(X) (internal_error ("gdbarch: D10V_MAKE_IADDR"), 0) #endif /* Fallback definition of FRAMELESS_FUNCTION_INVOCATION */ #ifndef FRAMELESS_FUNCTION_INVOCATION #define FRAMELESS_FUNCTION_INVOCATION(FI) (0) #endif /* Fallback definition of REGISTER_CONVERTIBLE etc */ extern int generic_register_convertible_not (int reg_nr); #ifndef REGISTER_CONVERTIBLE #define REGISTER_CONVERTIBLE(x) (0) #endif #ifndef REGISTER_CONVERT_TO_VIRTUAL #define REGISTER_CONVERT_TO_VIRTUAL(x, y, z, a) #endif #ifndef REGISTER_CONVERT_TO_RAW #define REGISTER_CONVERT_TO_RAW(x, y, z, a) #endif /* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */ #ifndef EXTRACT_STRUCT_VALUE_ADDRESS #define EXTRACT_STRUCT_VALUE_ADDRESS_P (0) #define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error ("gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0) #else #ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P #define EXTRACT_STRUCT_VALUE_ADDRESS_P (1) #endif #endif /* Fallback definition for REGISTER_NAME for systems still defining REGISTER_NAMES. */ #ifndef REGISTER_NAME extern char *gdb_register_names[]; #define REGISTER_NAME(i) gdb_register_names[i] #endif /* Set the dynamic target-system-dependant parameters (architecture, byte-order, ...) using information found in the BFD */ extern void set_gdbarch_from_file (bfd *); /* Explicitly set the dynamic target-system-dependant parameters based on bfd_architecture and machine. */ extern void set_architecture_from_arch_mach (enum bfd_architecture, unsigned long); /* Initialize the current architecture to the "first" one we find on our list. */ extern void initialize_current_architecture (void); /* Helper function for targets that don't know how my arguments are being passed */ extern int frame_num_args_unknown (struct frame_info *fi); /* gdbarch trace variable */ extern int gdbarch_debug; extern void gdbarch_dump (void); #endif EOF exec 1>&2 #../move-if-change new-gdbarch.h gdbarch.h compare_new gdbarch.h # # C file # exec > new-gdbarch.c copyright cat <<EOF #include "defs.h" #include "gdbarch-utils.h" #if GDB_MULTI_ARCH #include "gdbcmd.h" #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */ #else /* Just include everything in sight so that the every old definition of macro is visible. */ #include "gdb_string.h" #include <ctype.h> #include "symtab.h" #include "frame.h" #include "inferior.h" #include "breakpoint.h" #include "gdb_wait.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "gdbthread.h" #include "annotate.h" #include "symfile.h" /* for overlay functions */ #endif #include "symcat.h" /* Static function declarations */ static void verify_gdbarch (struct gdbarch *gdbarch); static void init_gdbarch_data (struct gdbarch *); static void init_gdbarch_swap (struct gdbarch *); static void swapout_gdbarch_swap (struct gdbarch *); static void swapin_gdbarch_swap (struct gdbarch *); /* Convenience macro for allocting typesafe memory. */ #ifndef XMALLOC #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE)) #endif /* Non-zero if we want to trace architecture code. */ #ifndef GDBARCH_DEBUG #define GDBARCH_DEBUG 0 #endif int gdbarch_debug = GDBARCH_DEBUG; EOF # gdbarch open the gdbarch object echo "" echo "/* Maintain the struct gdbarch object */" echo "" echo "struct gdbarch" echo "{" echo " /* basic architectural information */" function_list | while do_read # eval read $read do case "${class}" in "i" ) echo " ${returntype} ${function};" ;; esac done echo "" echo " /* target specific vector. */" echo " struct gdbarch_tdep *tdep;" echo "" echo " /* per-architecture data-pointers */" echo " int nr_data;" echo " void **data;" echo "" echo " /* per-architecture swap-regions */" echo " struct gdbarch_swap *swap;" echo "" cat <<EOF /* Multi-arch values. When extending this structure you must: Add the field below. Declare set/get functions and define the corresponding macro in gdbarch.h. gdbarch_alloc(): If zero/NULL is not a suitable default, initialize the new field. verify_gdbarch(): Confirm that the target updated the field correctly. gdbarch_dump(): Add a fprintf_unfiltered call to so that the new field is dumped out \`\`startup_gdbarch()'': Append an initial value to the static variable (base values on the host's c-type system). get_gdbarch(): Implement the set/get functions (probably using the macro's as shortcuts). */ EOF function_list | while do_read # eval read $read do case "${class}" in "v" ) echo " ${returntype} ${function};" ;; "f" ) echo " gdbarch_${function}_ftype *${function}${attrib};" ;; esac done echo "};" # A pre-initialized vector echo "" echo "" cat <<EOF /* The default architecture uses host values (for want of a better choice). */ EOF echo "" echo "extern const struct bfd_arch_info bfd_default_arch_struct;" echo "" echo "struct gdbarch startup_gdbarch = {" echo " /* basic architecture information */" function_list | while do_read # eval read $read do case "${class}" in "i" ) echo " ${startup}," ;; esac done cat <<EOF /* target specific vector */ NULL, /*per-architecture data-pointers and swap regions */ 0, NULL, NULL, /* Multi-arch values */ EOF function_list | while do_read # eval read $read do case "${class}" in "f" | "v" ) echo " ${startup}," ;; esac done cat <<EOF /* startup_gdbarch() */ }; struct gdbarch *current_gdbarch = &startup_gdbarch; EOF # Create a new gdbarch struct echo "" echo "" cat <<EOF /* Create a new \`\`struct gdbarch'' based in information provided by \`\`struct gdbarch_info''. */ EOF echo "" cat <<EOF struct gdbarch * gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep) { struct gdbarch *gdbarch = XMALLOC (struct gdbarch); memset (gdbarch, 0, sizeof (*gdbarch)); gdbarch->tdep = tdep; EOF echo "" function_list | while do_read # eval read $read do case "${class}" in "i" ) echo " gdbarch->${function} = info->${function};" esac done echo "" echo " /* Force the explicit initialization of these. */" function_list | while do_read # eval read $read do case "${class}" in "f" | "v" ) if [ "${default}" != "" -a "${default}" != "0" ] then echo " gdbarch->${function} = ${default};" fi ;; esac done cat <<EOF /* gdbarch_alloc() */ return gdbarch; } EOF # Free a gdbarch struct. echo "" echo "" cat <<EOF /* Free a gdbarch struct. This should never happen in normal operation --- once you've created a gdbarch, you keep it around. However, if an architecture's init function encounters an error building the structure, it may need to clean up a partially constructed gdbarch. */ void gdbarch_free (struct gdbarch *arch) { /* At the moment, this is trivial. */ free (arch); } EOF # verify a new architecture echo "" echo "" echo "/* Ensure that all values in a GDBARCH are reasonable. */" echo "" cat <<EOF static void verify_gdbarch (struct gdbarch *gdbarch) { /* Only perform sanity checks on a multi-arch target. */ if (GDB_MULTI_ARCH <= 0) return; /* fundamental */ if (gdbarch->byte_order == 0) internal_error ("verify_gdbarch: byte-order unset"); if (gdbarch->bfd_arch_info == NULL) internal_error ("verify_gdbarch: bfd_arch_info unset"); /* Check those that need to be defined for the given multi-arch level. */ EOF function_list | while do_read # eval read $read do case "${class}" in "f" | "v" ) if [ "${invalid_p}" = "0" ] then echo " /* Skip verify of ${function}, invalid_p == 0 */" elif [ "${invalid_p}" ] then echo " if ((GDB_MULTI_ARCH >= ${level})" echo " && (${invalid_p}))" echo " internal_error (\"gdbarch: verify_gdbarch: ${function} invalid\");" elif [ "${default}" ] then echo " if ((GDB_MULTI_ARCH >= ${level})" echo " && (gdbarch->${function} == ${default}))" echo " internal_error (\"gdbarch: verify_gdbarch: ${function} invalid\");" fi ;; esac done cat <<EOF } EOF # dump the structure echo "" echo "" echo "/* Print out the details of the current architecture. */" echo "" cat <<EOF void gdbarch_dump (void) { EOF function_list | while do_read # eval read $read do case "${class}" in "f" ) echo " fprintf_unfiltered (gdb_stdlog," echo " \"gdbarch_update: ${macro} = 0x%08lx\\n\"," echo " (long) current_gdbarch->${function}" echo " /*${macro} ()*/);" ;; * ) if [ "${print_p}" = "#" ] then echo "#ifdef ${macro}" echo " fprintf_unfiltered (gdb_stdlog," echo " \"gdbarch_update: ${macro} = ${fmt}\\n\"," echo " ${print});" echo "#endif" elif [ "${print_p}" ] then echo " if (${print_p})" echo " fprintf_unfiltered (gdb_stdlog," echo " \"gdbarch_update: ${macro} = ${fmt}\\n\"," echo " ${print});" else echo " fprintf_unfiltered (gdb_stdlog," echo " \"gdbarch_update: ${macro} = ${fmt}\\n\"," echo " ${print});" fi ;; esac done echo "}" # GET/SET echo "" cat <<EOF struct gdbarch_tdep * gdbarch_tdep (struct gdbarch *gdbarch) { if (gdbarch_debug >= 2) fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\n"); return gdbarch->tdep; } EOF echo "" function_list | while do_read # eval read $read do case "${class}" in "f" ) echo "" echo "${returntype}" if [ "${formal}" = "void" ] then echo "gdbarch_${function} (struct gdbarch *gdbarch)" else echo "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})" fi echo "{" if default_is_fallback_p && [ "${default}" != "0" ] then echo " if (GDB_MULTI_ARCH == 0)" if [ "${returntype}" = "void" ] then echo " {" echo " ${default} (${actual});" echo " return;" echo " }" else echo " return ${default} (${actual});" fi fi echo " if (gdbarch->${function} == 0)" echo " internal_error (\"gdbarch: gdbarch_${function} invalid\");" echo " if (gdbarch_debug >= 2)" echo " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\n\");" test "${actual}" = "-" && actual="" if [ "${returntype}" = "void" ] then echo " gdbarch->${function} (${actual});" else echo " return gdbarch->${function} (${actual});" fi echo "}" echo "" echo "void" echo "set_gdbarch_${function} (struct gdbarch *gdbarch," echo " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})" echo "{" echo " gdbarch->${function} = ${function};" echo "}" ;; "v" ) echo "" echo "${returntype}" echo "gdbarch_${function} (struct gdbarch *gdbarch)" echo "{" if [ "${invalid_p}" = "0" ] then echo " /* Skip verify of ${function}, invalid_p == 0 */" elif [ "${invalid_p}" ] then echo " if (${invalid_p})" echo " internal_error (\"gdbarch: gdbarch_${function} invalid\");" elif [ "${default}" ] then echo " if (gdbarch->${function} == ${default})" echo " internal_error (\"gdbarch: gdbarch_${function} invalid\");" fi echo " if (gdbarch_debug >= 2)" echo " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\n\");" echo " return gdbarch->${function};" echo "}" echo "" echo "void" echo "set_gdbarch_${function} (struct gdbarch *gdbarch," echo " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})" echo "{" echo " gdbarch->${function} = ${function};" echo "}" ;; "i" ) echo "" echo "${returntype}" echo "gdbarch_${function} (struct gdbarch *gdbarch)" echo "{" echo " if (gdbarch_debug >= 2)" echo " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\n\");" echo " return gdbarch->${function};" echo "}" ;; esac done # All the trailing guff cat <<EOF /* Keep a registrary of per-architecture data-pointers required by GDB modules. */ struct gdbarch_data { int index; }; struct gdbarch_data_registration { gdbarch_data_ftype *init; struct gdbarch_data *data; struct gdbarch_data_registration *next; }; struct gdbarch_data_registrary { int nr; struct gdbarch_data_registration *registrations; }; struct gdbarch_data_registrary gdbarch_data_registrary = { 0, NULL, }; struct gdbarch_data * register_gdbarch_data (gdbarch_data_ftype *init) { struct gdbarch_data_registration **curr; for (curr = &gdbarch_data_registrary.registrations; (*curr) != NULL; curr = &(*curr)->next); (*curr) = XMALLOC (struct gdbarch_data_registration); (*curr)->next = NULL; (*curr)->init = init; (*curr)->data = XMALLOC (struct gdbarch_data); (*curr)->data->index = gdbarch_data_registrary.nr++; return (*curr)->data; } /* Walk through all the registered users initializing each in turn. */ static void init_gdbarch_data (struct gdbarch *gdbarch) { struct gdbarch_data_registration *rego; gdbarch->nr_data = gdbarch_data_registrary.nr + 1; gdbarch->data = xmalloc (sizeof (void*) * gdbarch->nr_data); for (rego = gdbarch_data_registrary.registrations; rego != NULL; rego = rego->next) { if (rego->data->index < gdbarch->nr_data) gdbarch->data[rego->data->index] = rego->init (); } } /* Return the current value of the specified per-architecture data-pointer. */ void * gdbarch_data (data) struct gdbarch_data *data; { if (data->index >= current_gdbarch->nr_data) internal_error ("gdbarch_data: request for non-existant data."); return current_gdbarch->data[data->index]; } /* Keep a registrary of swaped data required by GDB modules. */ struct gdbarch_swap { void *swap; struct gdbarch_swap_registration *source; struct gdbarch_swap *next; }; struct gdbarch_swap_registration { void *data; unsigned long sizeof_data; gdbarch_swap_ftype *init; struct gdbarch_swap_registration *next; }; struct gdbarch_swap_registrary { int nr; struct gdbarch_swap_registration *registrations; }; struct gdbarch_swap_registrary gdbarch_swap_registrary = { 0, NULL, }; void register_gdbarch_swap (void *data, unsigned long sizeof_data, gdbarch_swap_ftype *init) { struct gdbarch_swap_registration **rego; for (rego = &gdbarch_swap_registrary.registrations; (*rego) != NULL; rego = &(*rego)->next); (*rego) = XMALLOC (struct gdbarch_swap_registration); (*rego)->next = NULL; (*rego)->init = init; (*rego)->data = data; (*rego)->sizeof_data = sizeof_data; } static void init_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap_registration *rego; struct gdbarch_swap **curr = &gdbarch->swap; for (rego = gdbarch_swap_registrary.registrations; rego != NULL; rego = rego->next) { if (rego->data != NULL) { (*curr) = XMALLOC (struct gdbarch_swap); (*curr)->source = rego; (*curr)->swap = xmalloc (rego->sizeof_data); (*curr)->next = NULL; memset (rego->data, 0, rego->sizeof_data); curr = &(*curr)->next; } if (rego->init != NULL) rego->init (); } } static void swapout_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap *curr; for (curr = gdbarch->swap; curr != NULL; curr = curr->next) memcpy (curr->swap, curr->source->data, curr->source->sizeof_data); } static void swapin_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap *curr; for (curr = gdbarch->swap; curr != NULL; curr = curr->next) memcpy (curr->source->data, curr->swap, curr->source->sizeof_data); } /* Keep a registrary of the architectures known by GDB. */ struct gdbarch_init_registration { enum bfd_architecture bfd_architecture; gdbarch_init_ftype *init; struct gdbarch_list *arches; struct gdbarch_init_registration *next; }; static struct gdbarch_init_registration *gdbarch_init_registrary = NULL; void register_gdbarch_init (enum bfd_architecture bfd_architecture, gdbarch_init_ftype *init) { struct gdbarch_init_registration **curr; const struct bfd_arch_info *bfd_arch_info; /* Check that BFD reconizes this architecture */ bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0); if (bfd_arch_info == NULL) { internal_error ("gdbarch: Attempt to register unknown architecture (%d)", bfd_architecture); } /* Check that we haven't seen this architecture before */ for (curr = &gdbarch_init_registrary; (*curr) != NULL; curr = &(*curr)->next) { if (bfd_architecture == (*curr)->bfd_architecture) internal_error ("gdbarch: Duplicate registraration of architecture (%s)", bfd_arch_info->printable_name); } /* log it */ if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n", bfd_arch_info->printable_name, (long) init); /* Append it */ (*curr) = XMALLOC (struct gdbarch_init_registration); (*curr)->bfd_architecture = bfd_architecture; (*curr)->init = init; (*curr)->arches = NULL; (*curr)->next = NULL; } /* Look for an architecture using gdbarch_info. Base search on only BFD_ARCH_INFO and BYTE_ORDER. */ struct gdbarch_list * gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info) { for (; arches != NULL; arches = arches->next) { if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info) continue; if (info->byte_order != arches->gdbarch->byte_order) continue; return arches; } return NULL; } /* Update the current architecture. Return ZERO if the update request failed. */ int gdbarch_update (struct gdbarch_info info) { struct gdbarch *new_gdbarch; struct gdbarch_list **list; struct gdbarch_init_registration *rego; /* Fill in any missing bits. Most important is the bfd_architecture which is used to select the target architecture. */ if (info.bfd_architecture == bfd_arch_unknown) { if (info.bfd_arch_info != NULL) info.bfd_architecture = info.bfd_arch_info->arch; else if (info.abfd != NULL) info.bfd_architecture = bfd_get_arch (info.abfd); /* FIXME - should query BFD for its default architecture. */ else info.bfd_architecture = current_gdbarch->bfd_arch_info->arch; } if (info.bfd_arch_info == NULL) { if (target_architecture_auto && info.abfd != NULL) info.bfd_arch_info = bfd_get_arch_info (info.abfd); else info.bfd_arch_info = current_gdbarch->bfd_arch_info; } if (info.byte_order == 0) { if (target_byte_order_auto && info.abfd != NULL) info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN : 0); else info.byte_order = current_gdbarch->byte_order; /* FIXME - should query BFD for its default byte-order. */ } /* A default for abfd? */ /* Find the target that knows about this architecture. */ for (rego = gdbarch_init_registrary; rego != NULL && rego->bfd_architecture != info.bfd_architecture; rego = rego->next); if (rego == NULL) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\n"); return 0; } if (gdbarch_debug) { fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.bfd_architecture %d (%s)\n", info.bfd_architecture, bfd_lookup_arch (info.bfd_architecture, 0)->printable_name); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.bfd_arch_info %s\n", (info.bfd_arch_info != NULL ? info.bfd_arch_info->printable_name : "(null)")); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.byte_order %d (%s)\n", info.byte_order, (info.byte_order == BIG_ENDIAN ? "big" : info.byte_order == LITTLE_ENDIAN ? "little" : "default")); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.abfd 0x%lx\n", (long) info.abfd); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.tdep_info 0x%lx\n", (long) info.tdep_info); } /* Ask the target for a replacement architecture. */ new_gdbarch = rego->init (info, rego->arches); /* Did the target like it? No. Reject the change. */ if (new_gdbarch == NULL) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\n"); return 0; } /* Did the architecture change? No. Do nothing. */ if (current_gdbarch == new_gdbarch) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\n", (long) new_gdbarch, new_gdbarch->bfd_arch_info->printable_name); return 1; } /* Swap all data belonging to the old target out */ swapout_gdbarch_swap (current_gdbarch); /* Is this a pre-existing architecture? Yes. Swap it in. */ for (list = ®o->arches; (*list) != NULL; list = &(*list)->next) { if ((*list)->gdbarch == new_gdbarch) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n", (long) new_gdbarch, new_gdbarch->bfd_arch_info->printable_name); current_gdbarch = new_gdbarch; swapin_gdbarch_swap (new_gdbarch); return 1; } } /* Append this new architecture to this targets list. */ (*list) = XMALLOC (struct gdbarch_list); (*list)->next = NULL; (*list)->gdbarch = new_gdbarch; /* Switch to this new architecture. Dump it out. */ current_gdbarch = new_gdbarch; if (gdbarch_debug) { fprintf_unfiltered (gdb_stdlog, "gdbarch_update: New architecture 0x%08lx (%s) selected\n", (long) new_gdbarch, new_gdbarch->bfd_arch_info->printable_name); gdbarch_dump (); } /* Check that the newly installed architecture is valid. */ verify_gdbarch (new_gdbarch); /* Initialize the per-architecture memory (swap) areas. CURRENT_GDBARCH must be update before these modules are called. */ init_gdbarch_swap (new_gdbarch); /* Initialize the per-architecture data-pointer of all parties that registered an interest in this architecture. CURRENT_GDBARCH must be updated before these modules are called. */ init_gdbarch_data (new_gdbarch); return 1; } /* Functions to manipulate the endianness of the target. */ #ifdef TARGET_BYTE_ORDER_SELECTABLE /* compat - Catch old targets that expect a selectable byte-order to default to BIG_ENDIAN */ #ifndef TARGET_BYTE_ORDER_DEFAULT #define TARGET_BYTE_ORDER_DEFAULT BIG_ENDIAN #endif #endif #if !TARGET_BYTE_ORDER_SELECTABLE_P #ifndef TARGET_BYTE_ORDER_DEFAULT /* compat - Catch old non byte-order selectable targets that do not define TARGET_BYTE_ORDER_DEFAULT and instead expect TARGET_BYTE_ORDER to be used as the default. For targets that defined neither TARGET_BYTE_ORDER nor TARGET_BYTE_ORDER_DEFAULT the below will get a strange compiler warning. */ #define TARGET_BYTE_ORDER_DEFAULT TARGET_BYTE_ORDER #endif #endif #ifndef TARGET_BYTE_ORDER_DEFAULT #define TARGET_BYTE_ORDER_DEFAULT BIG_ENDIAN /* arbitrary */ #endif int target_byte_order = TARGET_BYTE_ORDER_DEFAULT; int target_byte_order_auto = 1; /* Chain containing the \"set endian\" commands. */ static struct cmd_list_element *endianlist = NULL; /* Called by \`\`show endian''. */ static void show_endian (char *args, int from_tty) { char *msg = (TARGET_BYTE_ORDER_AUTO ? "The target endianness is set automatically (currently %s endian)\n" : "The target is assumed to be %s endian\n"); printf_unfiltered (msg, (TARGET_BYTE_ORDER == BIG_ENDIAN ? "big" : "little")); } /* Called if the user enters \`\`set endian'' without an argument. */ static void set_endian (char *args, int from_tty) { printf_unfiltered ("\"set endian\" must be followed by \"auto\", \"big\" or \"little\".\n"); show_endian (args, from_tty); } /* Called by \`\`set endian big''. */ static void set_endian_big (char *args, int from_tty) { if (TARGET_BYTE_ORDER_SELECTABLE_P) { target_byte_order = BIG_ENDIAN; target_byte_order_auto = 0; if (GDB_MULTI_ARCH) { struct gdbarch_info info; memset (&info, 0, sizeof info); info.byte_order = BIG_ENDIAN; gdbarch_update (info); } } else { printf_unfiltered ("Byte order is not selectable."); show_endian (args, from_tty); } } /* Called by \`\`set endian little''. */ static void set_endian_little (char *args, int from_tty) { if (TARGET_BYTE_ORDER_SELECTABLE_P) { target_byte_order = LITTLE_ENDIAN; target_byte_order_auto = 0; if (GDB_MULTI_ARCH) { struct gdbarch_info info; memset (&info, 0, sizeof info); info.byte_order = LITTLE_ENDIAN; gdbarch_update (info); } } else { printf_unfiltered ("Byte order is not selectable."); show_endian (args, from_tty); } } /* Called by \`\`set endian auto''. */ static void set_endian_auto (char *args, int from_tty) { if (TARGET_BYTE_ORDER_SELECTABLE_P) { target_byte_order_auto = 1; } else { printf_unfiltered ("Byte order is not selectable."); show_endian (args, from_tty); } } /* Set the endianness from a BFD. */ static void set_endian_from_file (bfd *abfd) { if (TARGET_BYTE_ORDER_SELECTABLE_P) { int want; if (bfd_big_endian (abfd)) want = BIG_ENDIAN; else want = LITTLE_ENDIAN; if (TARGET_BYTE_ORDER_AUTO) target_byte_order = want; else if (TARGET_BYTE_ORDER != want) warning ("%s endian file does not match %s endian target.", want == BIG_ENDIAN ? "big" : "little", TARGET_BYTE_ORDER == BIG_ENDIAN ? "big" : "little"); } else { if (bfd_big_endian (abfd) ? TARGET_BYTE_ORDER != BIG_ENDIAN : TARGET_BYTE_ORDER == BIG_ENDIAN) warning ("%s endian file does not match %s endian target.", bfd_big_endian (abfd) ? "big" : "little", TARGET_BYTE_ORDER == BIG_ENDIAN ? "big" : "little"); } } /* Functions to manipulate the architecture of the target */ enum set_arch { set_arch_auto, set_arch_manual }; int target_architecture_auto = 1; extern const struct bfd_arch_info bfd_default_arch_struct; const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct; int (*target_architecture_hook) (const struct bfd_arch_info *ap); static void show_endian (char *, int); static void set_endian (char *, int); static void set_endian_big (char *, int); static void set_endian_little (char *, int); static void set_endian_auto (char *, int); static void set_endian_from_file (bfd *); static int arch_ok (const struct bfd_arch_info *arch); static void set_arch (const struct bfd_arch_info *arch, enum set_arch type); static void show_architecture (char *, int); static void set_architecture (char *, int); static void info_architecture (char *, int); static void set_architecture_from_file (bfd *); /* Do the real work of changing the current architecture */ static int arch_ok (const struct bfd_arch_info *arch) { /* Should be performing the more basic check that the binary is compatible with GDB. */ /* Check with the target that the architecture is valid. */ return (target_architecture_hook == NULL || target_architecture_hook (arch)); } static void set_arch (const struct bfd_arch_info *arch, enum set_arch type) { switch (type) { case set_arch_auto: if (!arch_ok (arch)) warning ("Target may not support %s architecture", arch->printable_name); target_architecture = arch; break; case set_arch_manual: if (!arch_ok (arch)) { printf_unfiltered ("Target does not support \`%s' architecture.\n", arch->printable_name); } else { target_architecture_auto = 0; target_architecture = arch; } break; } if (gdbarch_debug) gdbarch_dump (); } /* Called if the user enters \`\`show architecture'' without an argument. */ static void show_architecture (char *args, int from_tty) { const char *arch; arch = TARGET_ARCHITECTURE->printable_name; if (target_architecture_auto) printf_filtered ("The target architecture is set automatically (currently %s)\n", arch); else printf_filtered ("The target architecture is assumed to be %s\n", arch); } /* Called if the user enters \`\`set architecture'' with or without an argument. */ static void set_architecture (char *args, int from_tty) { if (args == NULL) { printf_unfiltered ("\"set architecture\" must be followed by \"auto\" or an architecture name.\n"); } else if (strcmp (args, "auto") == 0) { target_architecture_auto = 1; } else if (GDB_MULTI_ARCH) { const struct bfd_arch_info *arch = bfd_scan_arch (args); if (arch == NULL) printf_unfiltered ("Architecture \`%s' not reconized.\n", args); else { struct gdbarch_info info; memset (&info, 0, sizeof info); info.bfd_arch_info = arch; if (gdbarch_update (info)) target_architecture_auto = 0; else printf_unfiltered ("Architecture \`%s' not reconized.\n", args); } } else { const struct bfd_arch_info *arch = bfd_scan_arch (args); if (arch != NULL) set_arch (arch, set_arch_manual); else printf_unfiltered ("Architecture \`%s' not reconized.\n", args); } } /* Called if the user enters \`\`info architecture'' without an argument. */ static void info_architecture (char *args, int from_tty) { enum bfd_architecture a; if (GDB_MULTI_ARCH) { if (gdbarch_init_registrary != NULL) { struct gdbarch_init_registration *rego; printf_filtered ("Available architectures are:\n"); for (rego = gdbarch_init_registrary; rego != NULL; rego = rego->next) { const struct bfd_arch_info *ap; ap = bfd_lookup_arch (rego->bfd_architecture, 0); if (ap != NULL) { do { printf_filtered (" %s", ap->printable_name); ap = ap->next; } while (ap != NULL); printf_filtered ("\n"); } } } else { printf_filtered ("There are no available architectures.\n"); } return; } printf_filtered ("Available architectures are:\n"); for (a = bfd_arch_obscure + 1; a < bfd_arch_last; a++) { const struct bfd_arch_info *ap = bfd_lookup_arch (a, 0); if (ap != NULL) { do { printf_filtered (" %s", ap->printable_name); ap = ap->next; } while (ap != NULL); printf_filtered ("\n"); } } } /* Set the architecture from arch/machine */ void set_architecture_from_arch_mach (arch, mach) enum bfd_architecture arch; unsigned long mach; { const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach); if (wanted != NULL) set_arch (wanted, set_arch_manual); else internal_error ("gdbarch: hardwired architecture/machine not reconized"); } /* Set the architecture from a BFD */ static void set_architecture_from_file (bfd *abfd) { const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd); if (target_architecture_auto) { set_arch (wanted, set_arch_auto); } else if (wanted != target_architecture) { warning ("%s architecture file may be incompatible with %s target.", wanted->printable_name, target_architecture->printable_name); } } /* Misc helper functions for targets. */ int frame_num_args_unknown (fi) struct frame_info *fi; { return -1; } int generic_register_convertible_not (num) int num; { return 0; } /* Disassembler */ /* Pointer to the target-dependent disassembly function. */ int (*tm_print_insn) (bfd_vma, disassemble_info *); disassemble_info tm_print_insn_info; /* Set the dynamic target-system-dependant parameters (architecture, byte-order) using information found in the BFD */ void set_gdbarch_from_file (abfd) bfd *abfd; { if (GDB_MULTI_ARCH) { struct gdbarch_info info; memset (&info, 0, sizeof info); info.abfd = abfd; gdbarch_update (info); return; } set_architecture_from_file (abfd); set_endian_from_file (abfd); } #if defined (CALL_DUMMY) /* FIXME - this should go away */ LONGEST call_dummy_words[] = CALL_DUMMY; int sizeof_call_dummy_words = sizeof (call_dummy_words); #endif /* Initialize the current architecture. */ void initialize_current_architecture () { if (GDB_MULTI_ARCH) { struct gdbarch_init_registration *rego; const struct bfd_arch_info *chosen = NULL; for (rego = gdbarch_init_registrary; rego != NULL; rego = rego->next) { const struct bfd_arch_info *ap = bfd_lookup_arch (rego->bfd_architecture, 0); /* Choose the first architecture alphabetically. */ if (chosen == NULL || strcmp (ap->printable_name, chosen->printable_name) < 0) chosen = ap; } if (chosen != NULL) { struct gdbarch_info info; memset (&info, 0, sizeof info); info.bfd_arch_info = chosen; gdbarch_update (info); } } } extern void _initialize_gdbarch (void); void _initialize_gdbarch () { struct cmd_list_element *c; add_prefix_cmd ("endian", class_support, set_endian, "Set endianness of target.", &endianlist, "set endian ", 0, &setlist); add_cmd ("big", class_support, set_endian_big, "Set target as being big endian.", &endianlist); add_cmd ("little", class_support, set_endian_little, "Set target as being little endian.", &endianlist); add_cmd ("auto", class_support, set_endian_auto, "Select target endianness automatically.", &endianlist); add_cmd ("endian", class_support, show_endian, "Show endianness of target.", &showlist); add_cmd ("architecture", class_support, set_architecture, "Set architecture of target.", &setlist); add_alias_cmd ("processor", "architecture", class_support, 1, &setlist); add_cmd ("architecture", class_support, show_architecture, "Show architecture of target.", &showlist); add_cmd ("architecture", class_support, info_architecture, "List supported target architectures", &infolist); INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered); tm_print_insn_info.flavour = bfd_target_unknown_flavour; tm_print_insn_info.read_memory_func = dis_asm_read_memory; tm_print_insn_info.memory_error_func = dis_asm_memory_error; tm_print_insn_info.print_address_func = dis_asm_print_address; add_show_from_set (add_set_cmd ("arch", class_maintenance, var_zinteger, (char *)&gdbarch_debug, "Set architecture debugging.\n\\ When non-zero, architecture debugging is enabled.", &setdebuglist), &showdebuglist); c = add_set_cmd ("archdebug", class_maintenance, var_zinteger, (char *)&gdbarch_debug, "Set architecture debugging.\n\\ When non-zero, architecture debugging is enabled.", &setlist); deprecate_cmd (c, "set debug arch"); deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch"); } EOF # close things off exec 1>&2 #../move-if-change new-gdbarch.c gdbarch.c compare_new gdbarch.c
Go to most recent revision | Compare with Previous | Blame | View Log