URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [branches/] [oc/] [gdb-5.0/] [gdb/] [remote.c] - Rev 1765
Compare with Previous | Blame | View Log
/* Remote target communications for serial-line targets in custom GDB protocol Copyright 1988, 1991-2000 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* See the GDB User Guide for details of the GDB remote protocol. */ #include "defs.h" #include "gdb_string.h" #include <ctype.h> #include <fcntl.h> #include "frame.h" #include "inferior.h" #include "bfd.h" #include "symfile.h" #include "target.h" #include "gdb_wait.h" /*#include "terminal.h" */ #include "gdbcmd.h" #include "objfiles.h" #include "gdb-stabs.h" #include "gdbthread.h" #include "remote.h" #include "dcache.h" #include <ctype.h> #include <sys/time.h> #ifdef USG #include <sys/types.h> #endif #include "event-loop.h" #include "event-top.h" #include "inf-loop.h" #include <signal.h> #include "serial.h" /* Prototypes for local functions */ static void cleanup_sigint_signal_handler (void *dummy); static void initialize_sigint_signal_handler (void); static int getpkt_sane (char *buf, long sizeof_buf, int forever); static void handle_remote_sigint PARAMS ((int)); static void handle_remote_sigint_twice PARAMS ((int)); static void async_remote_interrupt PARAMS ((gdb_client_data)); void async_remote_interrupt_twice PARAMS ((gdb_client_data)); static void build_remote_gdbarch_data PARAMS ((void)); static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len); static int remote_read_bytes PARAMS ((CORE_ADDR memaddr, char *myaddr, int len)); static void remote_files_info PARAMS ((struct target_ops * ignore)); static int remote_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len, int should_write, struct target_ops * target)); static void remote_prepare_to_store PARAMS ((void)); static void remote_fetch_registers PARAMS ((int regno)); static void remote_resume PARAMS ((int pid, int step, enum target_signal siggnal)); static void remote_async_resume PARAMS ((int pid, int step, enum target_signal siggnal)); static int remote_start_remote PARAMS ((PTR)); static void remote_open PARAMS ((char *name, int from_tty)); static void remote_async_open PARAMS ((char *name, int from_tty)); static void extended_remote_open PARAMS ((char *name, int from_tty)); static void extended_remote_async_open PARAMS ((char *name, int from_tty)); static void remote_open_1 PARAMS ((char *, int, struct target_ops *, int extended_p)); static void remote_async_open_1 PARAMS ((char *, int, struct target_ops *, int extended_p)); static void remote_close PARAMS ((int quitting)); static void remote_store_registers PARAMS ((int regno)); static void remote_mourn PARAMS ((void)); static void remote_async_mourn PARAMS ((void)); static void extended_remote_restart PARAMS ((void)); static void extended_remote_mourn PARAMS ((void)); static void extended_remote_create_inferior PARAMS ((char *, char *, char **)); static void extended_remote_async_create_inferior PARAMS ((char *, char *, char **)); static void remote_mourn_1 PARAMS ((struct target_ops *)); static void remote_send (char *buf, long sizeof_buf); static int readchar PARAMS ((int timeout)); static int remote_wait PARAMS ((int pid, struct target_waitstatus * status)); static int remote_async_wait PARAMS ((int pid, struct target_waitstatus * status)); static void remote_kill PARAMS ((void)); static void remote_async_kill PARAMS ((void)); static int tohex PARAMS ((int nib)); static void remote_detach PARAMS ((char *args, int from_tty)); static void remote_async_detach PARAMS ((char *args, int from_tty)); static void remote_interrupt PARAMS ((int signo)); static void remote_interrupt_twice PARAMS ((int signo)); static void interrupt_query PARAMS ((void)); static void set_thread PARAMS ((int, int)); static int remote_thread_alive PARAMS ((int)); static void get_offsets PARAMS ((void)); static long read_frame (char *buf, long sizeof_buf); static int remote_insert_breakpoint PARAMS ((CORE_ADDR, char *)); static int remote_remove_breakpoint PARAMS ((CORE_ADDR, char *)); static int hexnumlen PARAMS ((ULONGEST num)); static void init_remote_ops PARAMS ((void)); static void init_extended_remote_ops PARAMS ((void)); static void init_remote_cisco_ops PARAMS ((void)); static struct target_ops remote_cisco_ops; static void remote_stop PARAMS ((void)); static int ishex PARAMS ((int ch, int *val)); static int stubhex PARAMS ((int ch)); static int remote_query PARAMS ((int /*char */ , char *, char *, int *)); static int hexnumstr PARAMS ((char *, ULONGEST)); static int hexnumnstr PARAMS ((char *, ULONGEST, int)); static CORE_ADDR remote_address_masked PARAMS ((CORE_ADDR)); static void print_packet PARAMS ((char *)); static unsigned long crc32 PARAMS ((unsigned char *, int, unsigned int)); static void compare_sections_command PARAMS ((char *, int)); static void packet_command PARAMS ((char *, int)); static int stub_unpack_int PARAMS ((char *buff, int fieldlength)); static int remote_current_thread PARAMS ((int oldpid)); static void remote_find_new_threads PARAMS ((void)); static void record_currthread PARAMS ((int currthread)); /* exported functions */ extern int fromhex PARAMS ((int a)); static int putpkt_binary PARAMS ((char *buf, int cnt)); static void check_binary_download PARAMS ((CORE_ADDR addr)); struct packet_config; static void show_packet_config_cmd PARAMS ((struct packet_config * config)); static void set_packet_config_cmd PARAMS ((struct packet_config * config, struct cmd_list_element * c)); static void add_packet_config_cmd PARAMS ((struct packet_config * config, char *name, char *title, void (*set_func) (char *args, int from_tty, struct cmd_list_element * c), void (*show_func) (char *name, int from_tty), struct cmd_list_element **setlist, struct cmd_list_element **showlist)); static void init_packet_config PARAMS ((struct packet_config * config)); static void set_remote_protocol_P_packet_cmd PARAMS ((char *args, int from_tty, struct cmd_list_element * c)); static void show_remote_protocol_P_packet_cmd PARAMS ((char *args, int from_tty)); static void set_remote_protocol_Z_packet_cmd PARAMS ((char *args, int from_tty, struct cmd_list_element * c)); static void show_remote_protocol_Z_packet_cmd PARAMS ((char *args, int from_tty)); /* Define the target subroutine names */ void open_remote_target PARAMS ((char *, int, struct target_ops *, int)); void _initialize_remote PARAMS ((void)); /* */ static struct target_ops remote_ops; static struct target_ops extended_remote_ops; /* Temporary target ops. Just like the remote_ops and extended_remote_ops, but with asynchronous support. */ static struct target_ops remote_async_ops; static struct target_ops extended_async_remote_ops; /* FIXME: cagney/1999-09-23: Even though getpkt was called with ``forever'' still use the normal timeout mechanism. This is currently used by the ASYNC code to guarentee that target reads during the initial connect always time-out. Once getpkt has been modified to return a timeout indication and, in turn remote_wait()/wait_for_inferior() have gained a timeout parameter this can go away. */ static int wait_forever_enabled_p = 1; /* This variable chooses whether to send a ^C or a break when the user requests program interruption. Although ^C is usually what remote systems expect, and that is the default here, sometimes a break is preferable instead. */ static int remote_break; /* Descriptor for I/O to remote machine. Initialize it to NULL so that remote_open knows that we don't have a file open when the program starts. */ static serial_t remote_desc = NULL; /* This is set by the target (thru the 'S' message) to denote that the target is in kernel mode. */ static int cisco_kernel_mode = 0; /* This variable sets the number of bits in an address that are to be sent in a memory ("M" or "m") packet. Normally, after stripping leading zeros, the entire address would be sent. This variable restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The initial implementation of remote.c restricted the address sent in memory packets to ``host::sizeof long'' bytes - (typically 32 bits). Consequently, for 64 bit targets, the upper 32 bits of an address was never sent. Since fixing this bug may cause a break in some remote targets this variable is principly provided to facilitate backward compatibility. */ static int remote_address_size; /* Tempoary to track who currently owns the terminal. See target_async_terminal_* for more details. */ static int remote_async_terminal_ours_p; /* This is the size (in chars) of the first response to the ``g'' packet. It is used as a heuristic when determining the maximum size of memory-read and memory-write packets. A target will typically only reserve a buffer large enough to hold the ``g'' packet. The size does not include packet overhead (headers and trailers). */ static long actual_register_packet_size; /* This is the maximum size (in chars) of a non read/write packet. It is also used as a cap on the size of read/write packets. */ static long remote_packet_size; /* compatibility. */ #define PBUFSIZ (remote_packet_size) /* User configurable variables for the number of characters in a memory read/write packet. MIN (PBUFSIZ, g-packet-size) is the default. Some targets need smaller values (fifo overruns, et.al.) and some users need larger values (speed up transfers). The variables ``preferred_*'' (the user request), ``current_*'' (what was actually set) and ``forced_*'' (Positive - a soft limit, negative - a hard limit). */ struct memory_packet_config { char *name; long size; int fixed_p; }; /* Compute the current size of a read/write packet. Since this makes use of ``actual_register_packet_size'' the computation is dynamic. */ static long get_memory_packet_size (struct memory_packet_config *config) { /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk law?) that some hosts don't cope very well with large alloca() calls. Eventually the alloca() code will be replaced by calls to xmalloc() and make_cleanups() allowing this restriction to either be lifted or removed. */ #ifndef MAX_REMOTE_PACKET_SIZE #define MAX_REMOTE_PACKET_SIZE 16384 #endif /* NOTE: 16 is just chosen at random. */ #ifndef MIN_REMOTE_PACKET_SIZE #define MIN_REMOTE_PACKET_SIZE 16 #endif long what_they_get; if (config->fixed_p) { if (config->size <= 0) what_they_get = MAX_REMOTE_PACKET_SIZE; else what_they_get = config->size; } else { what_they_get = remote_packet_size; /* Limit the packet to the size specified by the user. */ if (config->size > 0 && what_they_get > config->size) what_they_get = config->size; /* Limit it to the size of the targets ``g'' response. */ if (actual_register_packet_size > 0 && what_they_get > actual_register_packet_size) what_they_get = actual_register_packet_size; } if (what_they_get > MAX_REMOTE_PACKET_SIZE) what_they_get = MAX_REMOTE_PACKET_SIZE; if (what_they_get < MIN_REMOTE_PACKET_SIZE) what_they_get = MIN_REMOTE_PACKET_SIZE; return what_they_get; } /* Update the size of a read/write packet. If they user wants something really big then do a sanity check. */ static void set_memory_packet_size (char *args, struct memory_packet_config *config) { int fixed_p = config->fixed_p; long size = config->size; if (args == NULL) error ("Argument required (integer, `fixed' or `limited')."); else if (strcmp (args, "hard") == 0 || strcmp (args, "fixed") == 0) fixed_p = 1; else if (strcmp (args, "soft") == 0 || strcmp (args, "limit") == 0) fixed_p = 0; else { char *end; size = strtoul (args, &end, 0); if (args == end) error ("Invalid %s (bad syntax).", config->name); #if 0 /* Instead of explicitly capping the size of a packet to MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is instead allowed to set the size to something arbitrarily large. */ if (size > MAX_REMOTE_PACKET_SIZE) error ("Invalid %s (too large).", config->name); #endif } /* Extra checks? */ if (fixed_p && !config->fixed_p) { if (! query ("The target may not be able to correctly handle a %s\n" "of %ld bytes. Change the packet size? ", config->name, size)) error ("Packet size not changed."); } /* Update the config. */ config->fixed_p = fixed_p; config->size = size; } static void show_memory_packet_size (struct memory_packet_config *config) { printf_filtered ("The %s is %ld. ", config->name, config->size); if (config->fixed_p) printf_filtered ("Packets are fixed at %ld bytes.\n", get_memory_packet_size (config)); else printf_filtered ("Packets are limited to %ld bytes.\n", get_memory_packet_size (config)); } static struct memory_packet_config memory_write_packet_config = { "memory-write-packet-size", }; static void set_memory_write_packet_size (char *args, int from_tty) { set_memory_packet_size (args, &memory_write_packet_config); } static void show_memory_write_packet_size (char *args, int from_tty) { show_memory_packet_size (&memory_write_packet_config); } static long get_memory_write_packet_size (void) { return get_memory_packet_size (&memory_write_packet_config); } static struct memory_packet_config memory_read_packet_config = { "memory-read-packet-size", }; static void set_memory_read_packet_size (char *args, int from_tty) { set_memory_packet_size (args, &memory_read_packet_config); } static void show_memory_read_packet_size (char *args, int from_tty) { show_memory_packet_size (&memory_read_packet_config); } static long get_memory_read_packet_size (void) { long size = get_memory_packet_size (&memory_read_packet_config); /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an extra buffer size argument before the memory read size can be increased beyond PBUFSIZ. */ if (size > PBUFSIZ) size = PBUFSIZ; return size; } /* Register packet size initialization. Since the bounds change when the architecture changes (namely REGISTER_BYTES) this all needs to be multi-arched. */ static void register_remote_packet_sizes (void) { REGISTER_GDBARCH_SWAP (remote_packet_size); REGISTER_GDBARCH_SWAP (actual_register_packet_size); } static void build_remote_packet_sizes (void) { /* Default maximum number of characters in a packet body. Many remote stubs have a hardwired buffer size of 400 bytes (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used as the maximum packet-size to ensure that the packet and an extra NUL character can always fit in the buffer. This stops GDB trashing stubs that try to squeeze an extra NUL into what is already a full buffer (As of 1999-12-04 that was most stubs. */ remote_packet_size = 400 - 1; /* Should REGISTER_BYTES needs more space than the default, adjust the size accordingly. Remember that each byte is encoded as two characters. 32 is the overhead for the packet header / footer. NOTE: cagney/1999-10-26: I suspect that 8 (``$NN:G...#NN'') is a better guess, the below has been padded a little. */ if (REGISTER_BYTES > ((remote_packet_size - 32) / 2)) remote_packet_size = (REGISTER_BYTES * 2 + 32); /* This one is filled in when a ``g'' packet is received. */ actual_register_packet_size = 0; } /* Generic configuration support for packets the stub optionally supports. Allows the user to specify the use of the packet as well as allowing GDB to auto-detect support in the remote stub. */ enum packet_support { PACKET_SUPPORT_UNKNOWN = 0, PACKET_ENABLE, PACKET_DISABLE }; enum packet_detect { PACKET_AUTO_DETECT = 0, PACKET_MANUAL_DETECT }; struct packet_config { char *state; char *name; char *title; enum packet_detect detect; enum packet_support support; }; static char packet_support_auto[] = "auto"; static char packet_enable[] = "enable"; static char packet_disable[] = "disable"; static char *packet_support_enums[] = { packet_support_auto, packet_enable, packet_disable, 0, }; static void set_packet_config_cmd (config, c) struct packet_config *config; struct cmd_list_element *c; { if (config->state == packet_enable) { config->detect = PACKET_MANUAL_DETECT; config->support = PACKET_ENABLE; } else if (config->state == packet_disable) { config->detect = PACKET_MANUAL_DETECT; config->support = PACKET_DISABLE; } else if (config->state == packet_support_auto) { config->detect = PACKET_AUTO_DETECT; config->support = PACKET_SUPPORT_UNKNOWN; } else internal_error ("Bad enum value"); } static void show_packet_config_cmd (config) struct packet_config *config; { char *support = "internal-error"; switch (config->support) { case PACKET_ENABLE: support = "enabled"; break; case PACKET_DISABLE: support = "disabled"; break; case PACKET_SUPPORT_UNKNOWN: support = "unknown"; break; } switch (config->detect) { case PACKET_AUTO_DETECT: printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n", config->name, config->title, support); break; case PACKET_MANUAL_DETECT: printf_filtered ("Support for remote protocol `%s' (%s) is currently %s.\n", config->name, config->title, support); } } static void add_packet_config_cmd (config, name, title, set_func, show_func, setlist, showlist) struct packet_config *config; char *name; char *title; void (*set_func) PARAMS ((char *args, int from_tty, struct cmd_list_element * c)); void (*show_func) PARAMS ((char *name, int from_tty)); struct cmd_list_element **setlist; struct cmd_list_element **showlist; { struct cmd_list_element *c; char *set_doc; char *show_doc; char *full_name; config->name = name; config->title = title; asprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet", name, title); asprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet", name, title); asprintf (&full_name, "%s-packet", name); c = add_set_enum_cmd (full_name, class_obscure, packet_support_enums, (char *) &config->state, set_doc, setlist); c->function.sfunc = set_func; add_cmd (full_name, class_obscure, show_func, show_doc, showlist); } static void init_packet_config (config) struct packet_config *config; { switch (config->detect) { case PACKET_AUTO_DETECT: config->support = PACKET_SUPPORT_UNKNOWN; break; case PACKET_MANUAL_DETECT: /* let the user beware */ break; } } /* Should we try the 'P' (set register) request? */ static struct packet_config remote_protocol_P; static void set_remote_protocol_P_packet_cmd (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { set_packet_config_cmd (&remote_protocol_P, c); } static void show_remote_protocol_P_packet_cmd (args, from_tty) char *args; int from_tty; { show_packet_config_cmd (&remote_protocol_P); } /* Should we try the 'Z' (set breakpoint) request? */ static struct packet_config remote_protocol_Z; static void set_remote_protocol_Z_packet_cmd (args, from_tty, c) char *args; int from_tty; struct cmd_list_element *c; { set_packet_config_cmd (&remote_protocol_Z, c); } static void show_remote_protocol_Z_packet_cmd (args, from_tty) char *args; int from_tty; { show_packet_config_cmd (&remote_protocol_Z); } /* Should we try the 'X' (remote binary download) packet? This variable (available to the user via "set remote X-packet") dictates whether downloads are sent in binary (via the 'X' packet). We assume that the stub can, and attempt to do it. This will be cleared if the stub does not understand it. This switch is still needed, though in cases when the packet is supported in the stub, but the connection does not allow it (i.e., 7-bit serial connection only). */ static struct packet_config remote_protocol_binary_download; /* Should we try the 'ThreadInfo' query packet? This variable (NOT available to the user: auto-detect only!) determines whether GDB will use the new, simpler "ThreadInfo" query or the older, more complex syntax for thread queries. This is an auto-detect variable (set to true at each connect, and set to false when the target fails to recognize it). */ static int use_threadinfo_query; static int use_threadextra_query; static void set_remote_protocol_binary_download_cmd (char *args, int from_tty, struct cmd_list_element *c) { set_packet_config_cmd (&remote_protocol_binary_download, c); } static void show_remote_protocol_binary_download_cmd (char *args, int from_tty) { show_packet_config_cmd (&remote_protocol_binary_download); } /* Tokens for use by the asynchronous signal handlers for SIGINT */ PTR sigint_remote_twice_token; PTR sigint_remote_token; /* These are pointers to hook functions that may be set in order to modify resume/wait behavior for a particular architecture. */ void (*target_resume_hook) PARAMS ((void)); void (*target_wait_loop_hook) PARAMS ((void)); /* These are the threads which we last sent to the remote system. -1 for all or -2 for not sent yet. */ static int general_thread; static int continue_thread; /* Call this function as a result of 1) A halt indication (T packet) containing a thread id 2) A direct query of currthread 3) Successful execution of set thread */ static void record_currthread (currthread) int currthread; { general_thread = currthread; /* If this is a new thread, add it to GDB's thread list. If we leave it up to WFI to do this, bad things will happen. */ if (!in_thread_list (currthread)) { add_thread (currthread); #ifdef UI_OUT ui_out_text (uiout, "[New "); ui_out_text (uiout, target_pid_to_str (currthread)); ui_out_text (uiout, "]\n"); #else printf_filtered ("[New %s]\n", target_pid_to_str (currthread)); #endif } } #define MAGIC_NULL_PID 42000 static void set_thread (th, gen) int th; int gen; { char *buf = alloca (PBUFSIZ); int state = gen ? general_thread : continue_thread; if (state == th) return; buf[0] = 'H'; buf[1] = gen ? 'g' : 'c'; if (th == MAGIC_NULL_PID) { buf[2] = '0'; buf[3] = '\0'; } else if (th < 0) sprintf (&buf[2], "-%x", -th); else sprintf (&buf[2], "%x", th); putpkt (buf); getpkt (buf, PBUFSIZ, 0); if (gen) general_thread = th; else continue_thread = th; } /* Return nonzero if the thread TH is still alive on the remote system. */ static int remote_thread_alive (tid) int tid; { char buf[16]; if (tid < 0) sprintf (buf, "T-%08x", -tid); else sprintf (buf, "T%08x", tid); putpkt (buf); getpkt (buf, sizeof (buf), 0); return (buf[0] == 'O' && buf[1] == 'K'); } /* About these extended threadlist and threadinfo packets. They are variable length packets but, the fields within them are often fixed length. They are redundent enough to send over UDP as is the remote protocol in general. There is a matching unit test module in libstub. */ #define OPAQUETHREADBYTES 8 /* a 64 bit opaque identifier */ typedef unsigned char threadref[OPAQUETHREADBYTES]; /* WARNING: This threadref data structure comes from the remote O.S., libstub protocol encoding, and remote.c. it is not particularly changable */ /* Right now, the internal structure is int. We want it to be bigger. Plan to fix this. */ typedef int gdb_threadref; /* internal GDB thread reference */ /* gdb_ext_thread_info is an internal GDB data structure which is equivalint to the reply of the remote threadinfo packet */ struct gdb_ext_thread_info { threadref threadid; /* External form of thread reference */ int active; /* Has state interesting to GDB? , regs, stack */ char display[256]; /* Brief state display, name, blocked/syspended */ char shortname[32]; /* To be used to name threads */ char more_display[256]; /* Long info, statistics, queue depth, whatever */ }; /* The volume of remote transfers can be limited by submitting a mask containing bits specifying the desired information. Use a union of these values as the 'selection' parameter to get_thread_info. FIXME: Make these TAG names more thread specific. */ #define TAG_THREADID 1 #define TAG_EXISTS 2 #define TAG_DISPLAY 4 #define TAG_THREADNAME 8 #define TAG_MOREDISPLAY 16 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2) char *unpack_varlen_hex PARAMS ((char *buff, int *result)); static char *unpack_nibble PARAMS ((char *buf, int *val)); static char *pack_nibble PARAMS ((char *buf, int nibble)); static char *pack_hex_byte PARAMS ((char *pkt, int /*unsigned char */ byte)); static char *unpack_byte PARAMS ((char *buf, int *value)); static char *pack_int PARAMS ((char *buf, int value)); static char *unpack_int PARAMS ((char *buf, int *value)); static char *unpack_string PARAMS ((char *src, char *dest, int length)); static char *pack_threadid PARAMS ((char *pkt, threadref * id)); static char *unpack_threadid PARAMS ((char *inbuf, threadref * id)); void int_to_threadref PARAMS ((threadref * id, int value)); static int threadref_to_int PARAMS ((threadref * ref)); static void copy_threadref PARAMS ((threadref * dest, threadref * src)); static int threadmatch PARAMS ((threadref * dest, threadref * src)); static char *pack_threadinfo_request PARAMS ((char *pkt, int mode, threadref * id)); static int remote_unpack_thread_info_response PARAMS ((char *pkt, threadref * expectedref, struct gdb_ext_thread_info * info)); static int remote_get_threadinfo PARAMS ((threadref * threadid, int fieldset, /*TAG mask */ struct gdb_ext_thread_info * info)); static int adapt_remote_get_threadinfo PARAMS ((gdb_threadref * ref, int selection, struct gdb_ext_thread_info * info)); static char *pack_threadlist_request PARAMS ((char *pkt, int startflag, int threadcount, threadref * nextthread)); static int parse_threadlist_response PARAMS ((char *pkt, int result_limit, threadref * original_echo, threadref * resultlist, int *doneflag)); static int remote_get_threadlist PARAMS ((int startflag, threadref * nextthread, int result_limit, int *done, int *result_count, threadref * threadlist)); typedef int (*rmt_thread_action) (threadref * ref, void *context); static int remote_threadlist_iterator PARAMS ((rmt_thread_action stepfunction, void *context, int looplimit)); static int remote_newthread_step PARAMS ((threadref * ref, void *context)); /* encode 64 bits in 16 chars of hex */ static const char hexchars[] = "0123456789abcdef"; static int ishex (ch, val) int ch; int *val; { if ((ch >= 'a') && (ch <= 'f')) { *val = ch - 'a' + 10; return 1; } if ((ch >= 'A') && (ch <= 'F')) { *val = ch - 'A' + 10; return 1; } if ((ch >= '0') && (ch <= '9')) { *val = ch - '0'; return 1; } return 0; } static int stubhex (ch) int ch; { if (ch >= 'a' && ch <= 'f') return ch - 'a' + 10; if (ch >= '0' && ch <= '9') return ch - '0'; if (ch >= 'A' && ch <= 'F') return ch - 'A' + 10; return -1; } static int stub_unpack_int (buff, fieldlength) char *buff; int fieldlength; { int nibble; int retval = 0; while (fieldlength) { nibble = stubhex (*buff++); retval |= nibble; fieldlength--; if (fieldlength) retval = retval << 4; } return retval; } char * unpack_varlen_hex (buff, result) char *buff; /* packet to parse */ int *result; { int nibble; int retval = 0; while (ishex (*buff, &nibble)) { buff++; retval = retval << 4; retval |= nibble & 0x0f; } *result = retval; return buff; } static char * unpack_nibble (buf, val) char *buf; int *val; { ishex (*buf++, val); return buf; } static char * pack_nibble (buf, nibble) char *buf; int nibble; { *buf++ = hexchars[(nibble & 0x0f)]; return buf; } static char * pack_hex_byte (pkt, byte) char *pkt; int byte; { *pkt++ = hexchars[(byte >> 4) & 0xf]; *pkt++ = hexchars[(byte & 0xf)]; return pkt; } static char * unpack_byte (buf, value) char *buf; int *value; { *value = stub_unpack_int (buf, 2); return buf + 2; } static char * pack_int (buf, value) char *buf; int value; { buf = pack_hex_byte (buf, (value >> 24) & 0xff); buf = pack_hex_byte (buf, (value >> 16) & 0xff); buf = pack_hex_byte (buf, (value >> 8) & 0x0ff); buf = pack_hex_byte (buf, (value & 0xff)); return buf; } static char * unpack_int (buf, value) char *buf; int *value; { *value = stub_unpack_int (buf, 8); return buf + 8; } #if 0 /* currently unused, uncomment when needed */ static char *pack_string PARAMS ((char *pkt, char *string)); static char * pack_string (pkt, string) char *pkt; char *string; { char ch; int len; len = strlen (string); if (len > 200) len = 200; /* Bigger than most GDB packets, junk??? */ pkt = pack_hex_byte (pkt, len); while (len-- > 0) { ch = *string++; if ((ch == '\0') || (ch == '#')) ch = '*'; /* Protect encapsulation */ *pkt++ = ch; } return pkt; } #endif /* 0 (unused) */ static char * unpack_string (src, dest, length) char *src; char *dest; int length; { while (length--) *dest++ = *src++; *dest = '\0'; return src; } static char * pack_threadid (pkt, id) char *pkt; threadref *id; { char *limit; unsigned char *altid; altid = (unsigned char *) id; limit = pkt + BUF_THREAD_ID_SIZE; while (pkt < limit) pkt = pack_hex_byte (pkt, *altid++); return pkt; } static char * unpack_threadid (inbuf, id) char *inbuf; threadref *id; { char *altref; char *limit = inbuf + BUF_THREAD_ID_SIZE; int x, y; altref = (char *) id; while (inbuf < limit) { x = stubhex (*inbuf++); y = stubhex (*inbuf++); *altref++ = (x << 4) | y; } return inbuf; } /* Externally, threadrefs are 64 bits but internally, they are still ints. This is due to a mismatch of specifications. We would like to use 64bit thread references internally. This is an adapter function. */ void int_to_threadref (id, value) threadref *id; int value; { unsigned char *scan; scan = (unsigned char *) id; { int i = 4; while (i--) *scan++ = 0; } *scan++ = (value >> 24) & 0xff; *scan++ = (value >> 16) & 0xff; *scan++ = (value >> 8) & 0xff; *scan++ = (value & 0xff); } static int threadref_to_int (ref) threadref *ref; { int i, value = 0; unsigned char *scan; scan = (char *) ref; scan += 4; i = 4; while (i-- > 0) value = (value << 8) | ((*scan++) & 0xff); return value; } static void copy_threadref (dest, src) threadref *dest; threadref *src; { int i; unsigned char *csrc, *cdest; csrc = (unsigned char *) src; cdest = (unsigned char *) dest; i = 8; while (i--) *cdest++ = *csrc++; } static int threadmatch (dest, src) threadref *dest; threadref *src; { /* things are broken right now, so just assume we got a match */ #if 0 unsigned char *srcp, *destp; int i, result; srcp = (char *) src; destp = (char *) dest; result = 1; while (i-- > 0) result &= (*srcp++ == *destp++) ? 1 : 0; return result; #endif return 1; } /* threadid:1, # always request threadid context_exists:2, display:4, unique_name:8, more_display:16 */ /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */ static char * pack_threadinfo_request (pkt, mode, id) char *pkt; int mode; threadref *id; { *pkt++ = 'q'; /* Info Query */ *pkt++ = 'P'; /* process or thread info */ pkt = pack_int (pkt, mode); /* mode */ pkt = pack_threadid (pkt, id); /* threadid */ *pkt = '\0'; /* terminate */ return pkt; } /* These values tag the fields in a thread info response packet */ /* Tagging the fields allows us to request specific fields and to add more fields as time goes by */ #define TAG_THREADID 1 /* Echo the thread identifier */ #define TAG_EXISTS 2 /* Is this process defined enough to fetch registers and its stack */ #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */ #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */ #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about the process */ static int remote_unpack_thread_info_response (pkt, expectedref, info) char *pkt; threadref *expectedref; struct gdb_ext_thread_info *info; { int mask, length; unsigned int tag; threadref ref; char *limit = pkt + PBUFSIZ; /* plausable parsing limit */ int retval = 1; /* info->threadid = 0; FIXME: implement zero_threadref */ info->active = 0; info->display[0] = '\0'; info->shortname[0] = '\0'; info->more_display[0] = '\0'; /* Assume the characters indicating the packet type have been stripped */ pkt = unpack_int (pkt, &mask); /* arg mask */ pkt = unpack_threadid (pkt, &ref); if (mask == 0) warning ("Incomplete response to threadinfo request\n"); if (!threadmatch (&ref, expectedref)) { /* This is an answer to a different request */ warning ("ERROR RMT Thread info mismatch\n"); return 0; } copy_threadref (&info->threadid, &ref); /* Loop on tagged fields , try to bail if somthing goes wrong */ while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */ { pkt = unpack_int (pkt, &tag); /* tag */ pkt = unpack_byte (pkt, &length); /* length */ if (!(tag & mask)) /* tags out of synch with mask */ { warning ("ERROR RMT: threadinfo tag mismatch\n"); retval = 0; break; } if (tag == TAG_THREADID) { if (length != 16) { warning ("ERROR RMT: length of threadid is not 16\n"); retval = 0; break; } pkt = unpack_threadid (pkt, &ref); mask = mask & ~TAG_THREADID; continue; } if (tag == TAG_EXISTS) { info->active = stub_unpack_int (pkt, length); pkt += length; mask = mask & ~(TAG_EXISTS); if (length > 8) { warning ("ERROR RMT: 'exists' length too long\n"); retval = 0; break; } continue; } if (tag == TAG_THREADNAME) { pkt = unpack_string (pkt, &info->shortname[0], length); mask = mask & ~TAG_THREADNAME; continue; } if (tag == TAG_DISPLAY) { pkt = unpack_string (pkt, &info->display[0], length); mask = mask & ~TAG_DISPLAY; continue; } if (tag == TAG_MOREDISPLAY) { pkt = unpack_string (pkt, &info->more_display[0], length); mask = mask & ~TAG_MOREDISPLAY; continue; } warning ("ERROR RMT: unknown thread info tag\n"); break; /* Not a tag we know about */ } return retval; } static int remote_get_threadinfo (threadid, fieldset, info) threadref *threadid; int fieldset; /* TAG mask */ struct gdb_ext_thread_info *info; { int result; char *threadinfo_pkt = alloca (PBUFSIZ); pack_threadinfo_request (threadinfo_pkt, fieldset, threadid); putpkt (threadinfo_pkt); getpkt (threadinfo_pkt, PBUFSIZ, 0); result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid, info); return result; } /* Unfortunately, 61 bit thread-ids are bigger than the internal representation of a threadid. */ static int adapt_remote_get_threadinfo (ref, selection, info) gdb_threadref *ref; int selection; struct gdb_ext_thread_info *info; { threadref lclref; int_to_threadref (&lclref, *ref); return remote_get_threadinfo (&lclref, selection, info); } /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */ static char * pack_threadlist_request (pkt, startflag, threadcount, nextthread) char *pkt; int startflag; int threadcount; threadref *nextthread; { *pkt++ = 'q'; /* info query packet */ *pkt++ = 'L'; /* Process LIST or threadLIST request */ pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */ pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */ pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */ *pkt = '\0'; return pkt; } /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */ static int parse_threadlist_response (pkt, result_limit, original_echo, resultlist, doneflag) char *pkt; int result_limit; threadref *original_echo; threadref *resultlist; int *doneflag; { char *limit; int count, resultcount, done; resultcount = 0; /* Assume the 'q' and 'M chars have been stripped. */ limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */ pkt = unpack_byte (pkt, &count); /* count field */ pkt = unpack_nibble (pkt, &done); /* The first threadid is the argument threadid. */ pkt = unpack_threadid (pkt, original_echo); /* should match query packet */ while ((count-- > 0) && (pkt < limit)) { pkt = unpack_threadid (pkt, resultlist++); if (resultcount++ >= result_limit) break; } if (doneflag) *doneflag = done; return resultcount; } static int remote_get_threadlist (startflag, nextthread, result_limit, done, result_count, threadlist) int startflag; threadref *nextthread; int result_limit; int *done; int *result_count; threadref *threadlist; { static threadref echo_nextthread; char *threadlist_packet = alloca (PBUFSIZ); char *t_response = alloca (PBUFSIZ); int result = 1; /* Trancate result limit to be smaller than the packet size */ if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ) result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2; pack_threadlist_request (threadlist_packet, startflag, result_limit, nextthread); putpkt (threadlist_packet); getpkt (t_response, PBUFSIZ, 0); *result_count = parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread, threadlist, done); if (!threadmatch (&echo_nextthread, nextthread)) { /* FIXME: This is a good reason to drop the packet */ /* Possably, there is a duplicate response */ /* Possabilities : retransmit immediatly - race conditions retransmit after timeout - yes exit wait for packet, then exit */ warning ("HMM: threadlist did not echo arg thread, dropping it\n"); return 0; /* I choose simply exiting */ } if (*result_count <= 0) { if (*done != 1) { warning ("RMT ERROR : failed to get remote thread list\n"); result = 0; } return result; /* break; */ } if (*result_count > result_limit) { *result_count = 0; warning ("RMT ERROR: threadlist response longer than requested\n"); return 0; } return result; } /* This is the interface between remote and threads, remotes upper interface */ /* remote_find_new_threads retrieves the thread list and for each thread in the list, looks up the thread in GDB's internal list, ading the thread if it does not already exist. This involves getting partial thread lists from the remote target so, polling the quit_flag is required. */ /* About this many threadisds fit in a packet. */ #define MAXTHREADLISTRESULTS 32 static int remote_threadlist_iterator (stepfunction, context, looplimit) rmt_thread_action stepfunction; void *context; int looplimit; { int done, i, result_count; int startflag = 1; int result = 1; int loopcount = 0; static threadref nextthread; static threadref resultthreadlist[MAXTHREADLISTRESULTS]; done = 0; while (!done) { if (loopcount++ > looplimit) { result = 0; warning ("Remote fetch threadlist -infinite loop-\n"); break; } if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS, &done, &result_count, resultthreadlist)) { result = 0; break; } /* clear for later iterations */ startflag = 0; /* Setup to resume next batch of thread references, set nextthread. */ if (result_count >= 1) copy_threadref (&nextthread, &resultthreadlist[result_count - 1]); i = 0; while (result_count--) if (!(result = (*stepfunction) (&resultthreadlist[i++], context))) break; } return result; } static int remote_newthread_step (ref, context) threadref *ref; void *context; { int pid; pid = threadref_to_int (ref); if (!in_thread_list (pid)) add_thread (pid); return 1; /* continue iterator */ } #define CRAZY_MAX_THREADS 1000 static int remote_current_thread (oldpid) int oldpid; { char *buf = alloca (PBUFSIZ); putpkt ("qC"); getpkt (buf, PBUFSIZ, 0); if (buf[0] == 'Q' && buf[1] == 'C') return strtol (&buf[2], NULL, 16); else return oldpid; } /* Find new threads for info threads command. * Original version, using John Metzler's thread protocol. */ static void remote_find_new_threads () { remote_threadlist_iterator (remote_newthread_step, 0, CRAZY_MAX_THREADS); if (inferior_pid == MAGIC_NULL_PID) /* ack ack ack */ inferior_pid = remote_current_thread (inferior_pid); } /* * Find all threads for info threads command. * Uses new thread protocol contributed by Cisco. * Falls back and attempts to use the older method (above) * if the target doesn't respond to the new method. */ static void remote_threads_info (void) { char *buf = alloca (PBUFSIZ); char *bufp; int tid; if (remote_desc == 0) /* paranoia */ error ("Command can only be used when connected to the remote target."); if (use_threadinfo_query) { putpkt ("qfThreadInfo"); bufp = buf; getpkt (bufp, PBUFSIZ, 0); if (bufp[0] != '\0') /* q packet recognized */ { while (*bufp++ == 'm') /* reply contains one or more TID */ { do { tid = strtol (bufp, &bufp, 16); if (tid != 0 && !in_thread_list (tid)) add_thread (tid); } while (*bufp++ == ','); /* comma-separated list */ putpkt ("qsThreadInfo"); bufp = buf; getpkt (bufp, PBUFSIZ, 0); } return; /* done */ } } /* Else fall back to old method based on jmetzler protocol. */ use_threadinfo_query = 0; remote_find_new_threads (); return; } /* * Collect a descriptive string about the given thread. * The target may say anything it wants to about the thread * (typically info about its blocked / runnable state, name, etc.). * This string will appear in the info threads display. * * Optional: targets are not required to implement this function. */ static char * remote_threads_extra_info (struct thread_info *tp) { int result; int set; threadref id; struct gdb_ext_thread_info threadinfo; static char display_buf[100]; /* arbitrary... */ char *bufp = alloca (PBUFSIZ); int n = 0; /* position in display_buf */ if (remote_desc == 0) /* paranoia */ internal_error ("remote_threads_extra_info"); if (use_threadextra_query) { sprintf (bufp, "qThreadExtraInfo,%x", tp->pid); putpkt (bufp); getpkt (bufp, PBUFSIZ, 0); if (bufp[0] != 0) { char *p; for (p = display_buf; p < display_buf + sizeof(display_buf) - 1 && bufp[0] != 0 && bufp[1] != 0; p++, bufp+=2) { *p = fromhex (bufp[0]) * 16 + fromhex (bufp[1]); } *p = 0; return display_buf; } } /* If the above query fails, fall back to the old method. */ use_threadextra_query = 0; set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME | TAG_MOREDISPLAY | TAG_DISPLAY; int_to_threadref (&id, tp->pid); if (remote_get_threadinfo (&id, set, &threadinfo)) if (threadinfo.active) { if (*threadinfo.shortname) n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname); if (*threadinfo.display) n += sprintf(&display_buf[n], " State: %s,", threadinfo.display); if (*threadinfo.more_display) n += sprintf(&display_buf[n], " Priority: %s", threadinfo.more_display); if (n > 0) { /* for purely cosmetic reasons, clear up trailing commas */ if (',' == display_buf[n-1]) display_buf[n-1] = ' '; return display_buf; } } return NULL; } /* Restart the remote side; this is an extended protocol operation. */ static void extended_remote_restart () { char *buf = alloca (PBUFSIZ); /* Send the restart command; for reasons I don't understand the remote side really expects a number after the "R". */ buf[0] = 'R'; sprintf (&buf[1], "%x", 0); putpkt (buf); /* Now query for status so this looks just like we restarted gdbserver from scratch. */ putpkt ("?"); getpkt (buf, PBUFSIZ, 0); } /* Clean up connection to a remote debugger. */ /* ARGSUSED */ static void remote_close (quitting) int quitting; { if (remote_desc) SERIAL_CLOSE (remote_desc); remote_desc = NULL; } /* Query the remote side for the text, data and bss offsets. */ static void get_offsets () { char *buf = alloca (PBUFSIZ); char *ptr; int lose; CORE_ADDR text_addr, data_addr, bss_addr; struct section_offsets *offs; putpkt ("qOffsets"); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\000') return; /* Return silently. Stub doesn't support this command. */ if (buf[0] == 'E') { warning ("Remote failure reply: %s", buf); return; } /* Pick up each field in turn. This used to be done with scanf, but scanf will make trouble if CORE_ADDR size doesn't match conversion directives correctly. The following code will work with any size of CORE_ADDR. */ text_addr = data_addr = bss_addr = 0; ptr = buf; lose = 0; if (strncmp (ptr, "Text=", 5) == 0) { ptr += 5; /* Don't use strtol, could lose on big values. */ while (*ptr && *ptr != ';') text_addr = (text_addr << 4) + fromhex (*ptr++); } else lose = 1; if (!lose && strncmp (ptr, ";Data=", 6) == 0) { ptr += 6; while (*ptr && *ptr != ';') data_addr = (data_addr << 4) + fromhex (*ptr++); } else lose = 1; if (!lose && strncmp (ptr, ";Bss=", 5) == 0) { ptr += 5; while (*ptr && *ptr != ';') bss_addr = (bss_addr << 4) + fromhex (*ptr++); } else lose = 1; if (lose) error ("Malformed response to offset query, %s", buf); if (symfile_objfile == NULL) return; offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS); memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS); ANOFFSET (offs, SECT_OFF_TEXT) = text_addr; /* This is a temporary kludge to force data and bss to use the same offsets because that's what nlmconv does now. The real solution requires changes to the stub and remote.c that I don't have time to do right now. */ ANOFFSET (offs, SECT_OFF_DATA) = data_addr; ANOFFSET (offs, SECT_OFF_BSS) = data_addr; objfile_relocate (symfile_objfile, offs); } /* * Cisco version of section offsets: * * Instead of having GDB query the target for the section offsets, * Cisco lets the target volunteer the information! It's also in * a different format, so here are the functions that will decode * a section offset packet from a Cisco target. */ /* * Function: remote_cisco_section_offsets * * Returns: zero for success, non-zero for failure */ static int remote_cisco_section_offsets (bfd_vma text_addr, bfd_vma data_addr, bfd_vma bss_addr, bfd_signed_vma *text_offs, bfd_signed_vma *data_offs, bfd_signed_vma *bss_offs) { bfd_vma text_base, data_base, bss_base; struct minimal_symbol *start; asection *sect; bfd *abfd; int len; char *p; if (symfile_objfile == NULL) return -1; /* no can do nothin' */ start = lookup_minimal_symbol ("_start", NULL, NULL); if (start == NULL) return -1; /* Can't find "_start" symbol */ data_base = bss_base = 0; text_base = SYMBOL_VALUE_ADDRESS (start); abfd = symfile_objfile->obfd; for (sect = abfd->sections; sect != 0; sect = sect->next) { p = (unsigned char *) bfd_get_section_name (abfd, sect); len = strlen (p); if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */ if (data_base == 0 || data_base > bfd_get_section_vma (abfd, sect)) data_base = bfd_get_section_vma (abfd, sect); if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */ if (bss_base == 0 || bss_base > bfd_get_section_vma (abfd, sect)) bss_base = bfd_get_section_vma (abfd, sect); } *text_offs = text_addr - text_base; *data_offs = data_addr - data_base; *bss_offs = bss_addr - bss_base; if (remote_debug) { char tmp[128]; sprintf (tmp, "VMA: text = 0x"); sprintf_vma (tmp + strlen (tmp), text_addr); sprintf (tmp + strlen (tmp), " data = 0x"); sprintf_vma (tmp + strlen (tmp), data_addr); sprintf (tmp + strlen (tmp), " bss = 0x"); sprintf_vma (tmp + strlen (tmp), bss_addr); fprintf_filtered (gdb_stdlog, tmp); fprintf_filtered (gdb_stdlog, "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n", paddr_nz (*text_offs), paddr_nz (*data_offs), paddr_nz (*bss_offs)); } return 0; } /* * Function: remote_cisco_objfile_relocate * * Relocate the symbol file for a remote target. */ void remote_cisco_objfile_relocate (text_off, data_off, bss_off) bfd_signed_vma text_off; bfd_signed_vma data_off; bfd_signed_vma bss_off; { struct section_offsets *offs; if (text_off != 0 || data_off != 0 || bss_off != 0) { /* FIXME: This code assumes gdb-stabs.h is being used; it's broken for xcoff, dwarf, sdb-coff, etc. But there is no simple canonical representation for this stuff. */ offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS); memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS); ANOFFSET (offs, SECT_OFF_TEXT) = text_off; ANOFFSET (offs, SECT_OFF_DATA) = data_off; ANOFFSET (offs, SECT_OFF_BSS) = bss_off; /* First call the standard objfile_relocate. */ objfile_relocate (symfile_objfile, offs); /* Now we need to fix up the section entries already attached to the exec target. These entries will control memory transfers from the exec file. */ exec_set_section_offsets (text_off, data_off, bss_off); } } /* Stub for catch_errors. */ static int remote_start_remote_dummy (void *dummy) { start_remote (); /* Initialize gdb process mechanisms */ return 1; } static int remote_start_remote (dummy) PTR dummy; { immediate_quit = 1; /* Allow user to interrupt it */ /* Ack any packet which the remote side has already sent. */ SERIAL_WRITE (remote_desc, "+", 1); /* Let the stub know that we want it to return the thread. */ set_thread (-1, 0); inferior_pid = remote_current_thread (inferior_pid); get_offsets (); /* Get text, data & bss offsets */ putpkt ("?"); /* initiate a query from remote machine */ immediate_quit = 0; return remote_start_remote_dummy (dummy); } /* Open a connection to a remote debugger. NAME is the filename used for communication. */ static void remote_open (name, from_tty) char *name; int from_tty; { remote_open_1 (name, from_tty, &remote_ops, 0); } /* Just like remote_open, but with asynchronous support. */ static void remote_async_open (name, from_tty) char *name; int from_tty; { remote_async_open_1 (name, from_tty, &remote_async_ops, 0); } /* Open a connection to a remote debugger using the extended remote gdb protocol. NAME is the filename used for communication. */ static void extended_remote_open (name, from_tty) char *name; int from_tty; { remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ ); } /* Just like extended_remote_open, but with asynchronous support. */ static void extended_remote_async_open (name, from_tty) char *name; int from_tty; { remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ ); } /* Generic code for opening a connection to a remote target. */ static DCACHE *remote_dcache; static void remote_open_1 (name, from_tty, target, extended_p) char *name; int from_tty; struct target_ops *target; int extended_p; { if (name == 0) error ("To open a remote debug connection, you need to specify what\n\ serial device is attached to the remote system\n\ (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."); /* See FIXME above */ wait_forever_enabled_p = 1; target_preopen (from_tty); unpush_target (target); remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes); remote_desc = SERIAL_OPEN (name); if (!remote_desc) perror_with_name (name); if (baud_rate != -1) { if (SERIAL_SETBAUDRATE (remote_desc, baud_rate)) { SERIAL_CLOSE (remote_desc); perror_with_name (name); } } SERIAL_RAW (remote_desc); /* If there is something sitting in the buffer we might take it as a response to a command, which would be bad. */ SERIAL_FLUSH_INPUT (remote_desc); if (from_tty) { puts_filtered ("Remote debugging using "); puts_filtered (name); puts_filtered ("\n"); } push_target (target); /* Switch to using remote target now */ init_packet_config (&remote_protocol_P); init_packet_config (&remote_protocol_Z); general_thread = -2; continue_thread = -2; /* Force remote_write_bytes to check whether target supports binary downloading. */ init_packet_config (&remote_protocol_binary_download); /* Probe for ability to use "ThreadInfo" query, as required. */ use_threadinfo_query = 1; use_threadextra_query = 1; /* Without this, some commands which require an active target (such as kill) won't work. This variable serves (at least) double duty as both the pid of the target process (if it has such), and as a flag indicating that a target is active. These functions should be split out into seperate variables, especially since GDB will someday have a notion of debugging several processes. */ inferior_pid = MAGIC_NULL_PID; /* Start the remote connection; if error (0), discard this target. In particular, if the user quits, be sure to discard it (we'd be in an inconsistent state otherwise). */ if (!catch_errors (remote_start_remote, NULL, "Couldn't establish connection to remote target\n", RETURN_MASK_ALL)) { pop_target (); return; } if (extended_p) { /* tell the remote that we're using the extended protocol. */ char *buf = alloca (PBUFSIZ); putpkt ("!"); getpkt (buf, PBUFSIZ, 0); } } /* Just like remote_open but with asynchronous support. */ static void remote_async_open_1 (name, from_tty, target, extended_p) char *name; int from_tty; struct target_ops *target; int extended_p; { if (name == 0) error ("To open a remote debug connection, you need to specify what\n\ serial device is attached to the remote system\n\ (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."); target_preopen (from_tty); unpush_target (target); remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes); remote_desc = SERIAL_OPEN (name); if (!remote_desc) perror_with_name (name); if (baud_rate != -1) { if (SERIAL_SETBAUDRATE (remote_desc, baud_rate)) { SERIAL_CLOSE (remote_desc); perror_with_name (name); } } SERIAL_RAW (remote_desc); /* If there is something sitting in the buffer we might take it as a response to a command, which would be bad. */ SERIAL_FLUSH_INPUT (remote_desc); if (from_tty) { puts_filtered ("Remote debugging using "); puts_filtered (name); puts_filtered ("\n"); } push_target (target); /* Switch to using remote target now */ init_packet_config (&remote_protocol_P); init_packet_config (&remote_protocol_Z); general_thread = -2; continue_thread = -2; /* Force remote_write_bytes to check whether target supports binary downloading. */ init_packet_config (&remote_protocol_binary_download); /* Probe for ability to use "ThreadInfo" query, as required. */ use_threadinfo_query = 1; use_threadextra_query = 1; /* Without this, some commands which require an active target (such as kill) won't work. This variable serves (at least) double duty as both the pid of the target process (if it has such), and as a flag indicating that a target is active. These functions should be split out into seperate variables, especially since GDB will someday have a notion of debugging several processes. */ inferior_pid = MAGIC_NULL_PID; /* With this target we start out by owning the terminal. */ remote_async_terminal_ours_p = 1; /* FIXME: cagney/1999-09-23: During the initial connection it is assumed that the target is already ready and able to respond to requests. Unfortunatly remote_start_remote() eventually calls wait_for_inferior() with no timeout. wait_forever_enabled_p gets around this. Eventually a mechanism that allows wait_for_inferior() to expect/get timeouts will be implemented. */ wait_forever_enabled_p = 0; /* Start the remote connection; if error (0), discard this target. In particular, if the user quits, be sure to discard it (we'd be in an inconsistent state otherwise). */ if (!catch_errors (remote_start_remote, NULL, "Couldn't establish connection to remote target\n", RETURN_MASK_ALL)) { pop_target (); wait_forever_enabled_p = 1; return; } wait_forever_enabled_p = 1; if (extended_p) { /* tell the remote that we're using the extended protocol. */ char *buf = alloca (PBUFSIZ); putpkt ("!"); getpkt (buf, PBUFSIZ, 0); } } /* This takes a program previously attached to and detaches it. After this is done, GDB can be used to debug some other program. We better not have left any breakpoints in the target program or it'll die when it hits one. */ static void remote_detach (args, from_tty) char *args; int from_tty; { char *buf = alloca (PBUFSIZ); if (args) error ("Argument given to \"detach\" when remotely debugging."); /* Tell the remote target to detach. */ strcpy (buf, "D"); remote_send (buf, PBUFSIZ); target_mourn_inferior (); if (from_tty) puts_filtered ("Ending remote debugging.\n"); } /* Same as remote_detach, but with async support. */ static void remote_async_detach (args, from_tty) char *args; int from_tty; { char *buf = alloca (PBUFSIZ); if (args) error ("Argument given to \"detach\" when remotely debugging."); /* Tell the remote target to detach. */ strcpy (buf, "D"); remote_send (buf, PBUFSIZ); /* Unregister the file descriptor from the event loop. */ if (target_is_async_p ()) SERIAL_ASYNC (remote_desc, NULL, 0); target_mourn_inferior (); if (from_tty) puts_filtered ("Ending remote debugging.\n"); } /* Convert hex digit A to a number. */ int fromhex (a) int a; { if (a >= '0' && a <= '9') return a - '0'; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else if (a >= 'A' && a <= 'F') return a - 'A' + 10; else error ("Reply contains invalid hex digit %d", a); } /* Convert number NIB to a hex digit. */ static int tohex (nib) int nib; { if (nib < 10) return '0' + nib; else return 'a' + nib - 10; } /* Tell the remote machine to resume. */ static enum target_signal last_sent_signal = TARGET_SIGNAL_0; static int last_sent_step; static void remote_resume (pid, step, siggnal) int pid, step; enum target_signal siggnal; { char *buf = alloca (PBUFSIZ); if (pid == -1) set_thread (0, 0); /* run any thread */ else set_thread (pid, 0); /* run this thread */ dcache_flush (remote_dcache); last_sent_signal = siggnal; last_sent_step = step; /* A hook for when we need to do something at the last moment before resumption. */ if (target_resume_hook) (*target_resume_hook) (); if (siggnal != TARGET_SIGNAL_0) { buf[0] = step ? 'S' : 'C'; buf[1] = tohex (((int) siggnal >> 4) & 0xf); buf[2] = tohex ((int) siggnal & 0xf); buf[3] = '\0'; } else strcpy (buf, step ? "s" : "c"); putpkt (buf); } /* Same as remote_resume, but with async support. */ static void remote_async_resume (pid, step, siggnal) int pid, step; enum target_signal siggnal; { char *buf = alloca (PBUFSIZ); if (pid == -1) set_thread (0, 0); /* run any thread */ else set_thread (pid, 0); /* run this thread */ dcache_flush (remote_dcache); last_sent_signal = siggnal; last_sent_step = step; /* A hook for when we need to do something at the last moment before resumption. */ if (target_resume_hook) (*target_resume_hook) (); if (siggnal != TARGET_SIGNAL_0) { buf[0] = step ? 'S' : 'C'; buf[1] = tohex (((int) siggnal >> 4) & 0xf); buf[2] = tohex ((int) siggnal & 0xf); buf[3] = '\0'; } else strcpy (buf, step ? "s" : "c"); /* We are about to start executing the inferior, let's register it with the event loop. NOTE: this is the one place where all the execution commands end up. We could alternatively do this in each of the execution commands in infcmd.c.*/ /* FIXME: ezannoni 1999-09-28: We may need to move this out of here into infcmd.c in order to allow inferior function calls to work NOT asynchronously. */ if (event_loop_p && target_can_async_p ()) target_async (inferior_event_handler, 0); /* Tell the world that the target is now executing. */ /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set this? Instead, should the client of target just assume (for async targets) that the target is going to start executing? Is this information already found in the continuation block? */ if (target_is_async_p ()) target_executing = 1; putpkt (buf); } /* Set up the signal handler for SIGINT, while the target is executing, ovewriting the 'regular' SIGINT signal handler. */ static void initialize_sigint_signal_handler () { sigint_remote_token = create_async_signal_handler (async_remote_interrupt, NULL); signal (SIGINT, handle_remote_sigint); } /* Signal handler for SIGINT, while the target is executing. */ static void handle_remote_sigint (sig) int sig; { signal (sig, handle_remote_sigint_twice); sigint_remote_twice_token = create_async_signal_handler (async_remote_interrupt_twice, NULL); mark_async_signal_handler_wrapper (sigint_remote_token); } /* Signal handler for SIGINT, installed after SIGINT has already been sent once. It will take effect the second time that the user sends a ^C. */ static void handle_remote_sigint_twice (sig) int sig; { signal (sig, handle_sigint); sigint_remote_twice_token = create_async_signal_handler (inferior_event_handler_wrapper, NULL); mark_async_signal_handler_wrapper (sigint_remote_twice_token); } /* Perform the real interruption of the target execution, in response to a ^C. */ static void async_remote_interrupt (arg) gdb_client_data arg; { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n"); target_stop (); } /* Perform interrupt, if the first attempt did not succeed. Just give up on the target alltogether. */ void async_remote_interrupt_twice (arg) gdb_client_data arg; { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n"); /* Do something only if the target was not killed by the previous cntl-C. */ if (target_executing) { interrupt_query (); signal (SIGINT, handle_remote_sigint); } } /* Reinstall the usual SIGINT handlers, after the target has stopped. */ static void cleanup_sigint_signal_handler (void *dummy) { signal (SIGINT, handle_sigint); if (sigint_remote_twice_token) delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token); if (sigint_remote_token) delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token); } /* Send ^C to target to halt it. Target will respond, and send us a packet. */ static void (*ofunc) PARAMS ((int)); /* The command line interface's stop routine. This function is installed as a signal handler for SIGINT. The first time a user requests a stop, we call remote_stop to send a break or ^C. If there is no response from the target (it didn't stop when the user requested it), we ask the user if he'd like to detach from the target. */ static void remote_interrupt (signo) int signo; { /* If this doesn't work, try more severe steps. */ signal (signo, remote_interrupt_twice); if (remote_debug) fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n"); target_stop (); } /* The user typed ^C twice. */ static void remote_interrupt_twice (signo) int signo; { signal (signo, ofunc); interrupt_query (); signal (signo, remote_interrupt); } /* This is the generic stop called via the target vector. When a target interrupt is requested, either by the command line or the GUI, we will eventually end up here. */ static void remote_stop () { /* Send a break or a ^C, depending on user preference. */ if (remote_debug) fprintf_unfiltered (gdb_stdlog, "remote_stop called\n"); if (remote_break) SERIAL_SEND_BREAK (remote_desc); else SERIAL_WRITE (remote_desc, "\003", 1); } /* Ask the user what to do when an interrupt is received. */ static void interrupt_query () { target_terminal_ours (); if (query ("Interrupted while waiting for the program.\n\ Give up (and stop debugging it)? ")) { target_mourn_inferior (); return_to_top_level (RETURN_QUIT); } target_terminal_inferior (); } /* Enable/disable target terminal ownership. Most targets can use terminal groups to control terminal ownership. Remote targets are different in that explicit transfer of ownership to/from GDB/target is required. */ static void remote_async_terminal_inferior (void) { /* FIXME: cagney/1999-09-27: Shouldn't need to test for sync_execution here. This function should only be called when GDB is resuming the inferior in the forground. A background resume (``run&'') should leave GDB in control of the terminal and consequently should not call this code. */ if (!sync_execution) return; /* FIXME: cagney/1999-09-27: Closely related to the above. Make calls target_terminal_*() idenpotent. The event-loop GDB talking to an asynchronous target with a synchronous command calls this function from both event-top.c and infrun.c/infcmd.c. Once GDB stops trying to transfer the terminal to the target when it shouldn't this guard can go away. */ if (!remote_async_terminal_ours_p) return; delete_file_handler (input_fd); remote_async_terminal_ours_p = 0; initialize_sigint_signal_handler (); /* NOTE: At this point we could also register our selves as the recipient of all input. Any characters typed could then be passed on down to the target. */ } static void remote_async_terminal_ours (void) { /* See FIXME in remote_async_terminal_inferior. */ if (!sync_execution) return; /* See FIXME in remote_async_terminal_inferior. */ if (remote_async_terminal_ours_p) return; cleanup_sigint_signal_handler (NULL); add_file_handler (input_fd, stdin_event_handler, 0); remote_async_terminal_ours_p = 1; } /* If nonzero, ignore the next kill. */ int kill_kludge; void remote_console_output (char *msg) { char *p; for (p = msg; p[0] && p[1]; p += 2) { char tb[2]; char c = fromhex (p[0]) * 16 + fromhex (p[1]); tb[0] = c; tb[1] = 0; fputs_unfiltered (tb, gdb_stdtarg); } gdb_flush (gdb_stdtarg); } /* Wait until the remote machine stops, then return, storing status in STATUS just as `wait' would. Returns "pid", which in the case of a multi-threaded remote OS, is the thread-id. */ static int remote_wait (pid, status) int pid; struct target_waitstatus *status; { unsigned char *buf = alloca (PBUFSIZ); int thread_num = -1; status->kind = TARGET_WAITKIND_EXITED; status->value.integer = 0; while (1) { unsigned char *p; ofunc = signal (SIGINT, remote_interrupt); getpkt (buf, PBUFSIZ, 1); signal (SIGINT, ofunc); /* This is a hook for when we need to do something (perhaps the collection of trace data) every time the target stops. */ if (target_wait_loop_hook) (*target_wait_loop_hook) (); switch (buf[0]) { case 'E': /* Error of some sort */ warning ("Remote failure reply: %s", buf); continue; case 'T': /* Status with PC, SP, FP, ... */ { int i; long regno; char regs[MAX_REGISTER_RAW_SIZE]; /* Expedited reply, containing Signal, {regno, reg} repeat */ /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where ss = signal number n... = register number r... = register contents */ p = &buf[3]; /* after Txx */ while (*p) { unsigned char *p1; char *p_temp; /* Read the register number */ regno = strtol ((const char *) p, &p_temp, 16); p1 = (unsigned char *) p_temp; if (p1 == p) /* No register number present here */ { p1 = (unsigned char *) strchr ((const char *) p, ':'); if (p1 == NULL) warning ("Malformed packet(a) (missing colon): %s\n\ Packet: '%s'\n", p, buf); if (strncmp ((const char *) p, "thread", p1 - p) == 0) { p_temp = unpack_varlen_hex (++p1, &thread_num); record_currthread (thread_num); p = (unsigned char *) p_temp; } } else { p = p1; if (*p++ != ':') warning ("Malformed packet(b) (missing colon): %s\n\ Packet: '%s'\n", p, buf); if (regno >= NUM_REGS) warning ("Remote sent bad register number %ld: %s\n\ Packet: '%s'\n", regno, p, buf); for (i = 0; i < REGISTER_RAW_SIZE (regno); i++) { if (p[0] == 0 || p[1] == 0) warning ("Remote reply is too short: %s", buf); regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]); p += 2; } supply_register (regno, regs); } if (*p++ != ';') { warning ("Remote register badly formatted: %s", buf); warning (" here: %s", p); } } } /* fall through */ case 'S': /* Old style status, just signal only */ status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = (enum target_signal) (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); if (buf[3] == 'p') { /* Export Cisco kernel mode as a convenience variable (so that it can be used in the GDB prompt if desired). */ if (cisco_kernel_mode == 1) set_internalvar (lookup_internalvar ("cisco_kernel_mode"), value_from_string ("PDEBUG-")); cisco_kernel_mode = 0; thread_num = strtol ((const char *) &buf[4], NULL, 16); record_currthread (thread_num); } else if (buf[3] == 'k') { /* Export Cisco kernel mode as a convenience variable (so that it can be used in the GDB prompt if desired). */ if (cisco_kernel_mode == 1) set_internalvar (lookup_internalvar ("cisco_kernel_mode"), value_from_string ("KDEBUG-")); cisco_kernel_mode = 1; } goto got_status; case 'N': /* Cisco special: status and offsets */ { bfd_vma text_addr, data_addr, bss_addr; bfd_signed_vma text_off, data_off, bss_off; unsigned char *p1; status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = (enum target_signal) (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); if (symfile_objfile == NULL) { warning ("Relocation packet received with no symbol file. \ Packet Dropped"); goto got_status; } /* Relocate object file. Buffer format is NAATT;DD;BB * where AA is the signal number, TT is the new text * address, DD * is the new data address, and BB is the * new bss address. */ p = &buf[3]; text_addr = strtoul (p, (char **) &p1, 16); if (p1 == p || *p1 != ';') warning ("Malformed relocation packet: Packet '%s'", buf); p = p1 + 1; data_addr = strtoul (p, (char **) &p1, 16); if (p1 == p || *p1 != ';') warning ("Malformed relocation packet: Packet '%s'", buf); p = p1 + 1; bss_addr = strtoul (p, (char **) &p1, 16); if (p1 == p) warning ("Malformed relocation packet: Packet '%s'", buf); if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr, &text_off, &data_off, &bss_off) == 0) if (text_off != 0 || data_off != 0 || bss_off != 0) remote_cisco_objfile_relocate (text_off, data_off, bss_off); goto got_status; } case 'W': /* Target exited */ { /* The remote process exited. */ status->kind = TARGET_WAITKIND_EXITED; status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]); goto got_status; } case 'X': status->kind = TARGET_WAITKIND_SIGNALLED; status->value.sig = (enum target_signal) (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); kill_kludge = 1; goto got_status; case 'O': /* Console output */ remote_console_output (buf + 1); continue; case '\0': if (last_sent_signal != TARGET_SIGNAL_0) { /* Zero length reply means that we tried 'S' or 'C' and the remote system doesn't support it. */ target_terminal_ours_for_output (); printf_filtered ("Can't send signals to this remote system. %s not sent.\n", target_signal_to_name (last_sent_signal)); last_sent_signal = TARGET_SIGNAL_0; target_terminal_inferior (); strcpy ((char *) buf, last_sent_step ? "s" : "c"); putpkt ((char *) buf); continue; } /* else fallthrough */ default: warning ("Invalid remote reply: %s", buf); continue; } } got_status: if (thread_num != -1) { return thread_num; } return inferior_pid; } /* Async version of remote_wait. */ static int remote_async_wait (pid, status) int pid; struct target_waitstatus *status; { unsigned char *buf = alloca (PBUFSIZ); int thread_num = -1; status->kind = TARGET_WAITKIND_EXITED; status->value.integer = 0; while (1) { unsigned char *p; if (!target_is_async_p ()) ofunc = signal (SIGINT, remote_interrupt); /* FIXME: cagney/1999-09-27: If we're in async mode we should _never_ wait for ever -> test on target_is_async_p(). However, before we do that we need to ensure that the caller knows how to take the target into/out of async mode. */ getpkt (buf, PBUFSIZ, wait_forever_enabled_p); if (!target_is_async_p ()) signal (SIGINT, ofunc); /* This is a hook for when we need to do something (perhaps the collection of trace data) every time the target stops. */ if (target_wait_loop_hook) (*target_wait_loop_hook) (); switch (buf[0]) { case 'E': /* Error of some sort */ warning ("Remote failure reply: %s", buf); continue; case 'T': /* Status with PC, SP, FP, ... */ { int i; long regno; char regs[MAX_REGISTER_RAW_SIZE]; /* Expedited reply, containing Signal, {regno, reg} repeat */ /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where ss = signal number n... = register number r... = register contents */ p = &buf[3]; /* after Txx */ while (*p) { unsigned char *p1; char *p_temp; /* Read the register number */ regno = strtol ((const char *) p, &p_temp, 16); p1 = (unsigned char *) p_temp; if (p1 == p) /* No register number present here */ { p1 = (unsigned char *) strchr ((const char *) p, ':'); if (p1 == NULL) warning ("Malformed packet(a) (missing colon): %s\n\ Packet: '%s'\n", p, buf); if (strncmp ((const char *) p, "thread", p1 - p) == 0) { p_temp = unpack_varlen_hex (++p1, &thread_num); record_currthread (thread_num); p = (unsigned char *) p_temp; } } else { p = p1; if (*p++ != ':') warning ("Malformed packet(b) (missing colon): %s\n\ Packet: '%s'\n", p, buf); if (regno >= NUM_REGS) warning ("Remote sent bad register number %ld: %s\n\ Packet: '%s'\n", regno, p, buf); for (i = 0; i < REGISTER_RAW_SIZE (regno); i++) { if (p[0] == 0 || p[1] == 0) warning ("Remote reply is too short: %s", buf); regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]); p += 2; } supply_register (regno, regs); } if (*p++ != ';') { warning ("Remote register badly formatted: %s", buf); warning (" here: %s", p); } } } /* fall through */ case 'S': /* Old style status, just signal only */ status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = (enum target_signal) (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); if (buf[3] == 'p') { /* Export Cisco kernel mode as a convenience variable (so that it can be used in the GDB prompt if desired). */ if (cisco_kernel_mode == 1) set_internalvar (lookup_internalvar ("cisco_kernel_mode"), value_from_string ("PDEBUG-")); cisco_kernel_mode = 0; thread_num = strtol ((const char *) &buf[4], NULL, 16); record_currthread (thread_num); } else if (buf[3] == 'k') { /* Export Cisco kernel mode as a convenience variable (so that it can be used in the GDB prompt if desired). */ if (cisco_kernel_mode == 1) set_internalvar (lookup_internalvar ("cisco_kernel_mode"), value_from_string ("KDEBUG-")); cisco_kernel_mode = 1; } goto got_status; case 'N': /* Cisco special: status and offsets */ { bfd_vma text_addr, data_addr, bss_addr; bfd_signed_vma text_off, data_off, bss_off; unsigned char *p1; status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = (enum target_signal) (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); if (symfile_objfile == NULL) { warning ("Relocation packet recieved with no symbol file. \ Packet Dropped"); goto got_status; } /* Relocate object file. Buffer format is NAATT;DD;BB * where AA is the signal number, TT is the new text * address, DD * is the new data address, and BB is the * new bss address. */ p = &buf[3]; text_addr = strtoul (p, (char **) &p1, 16); if (p1 == p || *p1 != ';') warning ("Malformed relocation packet: Packet '%s'", buf); p = p1 + 1; data_addr = strtoul (p, (char **) &p1, 16); if (p1 == p || *p1 != ';') warning ("Malformed relocation packet: Packet '%s'", buf); p = p1 + 1; bss_addr = strtoul (p, (char **) &p1, 16); if (p1 == p) warning ("Malformed relocation packet: Packet '%s'", buf); if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr, &text_off, &data_off, &bss_off) == 0) if (text_off != 0 || data_off != 0 || bss_off != 0) remote_cisco_objfile_relocate (text_off, data_off, bss_off); goto got_status; } case 'W': /* Target exited */ { /* The remote process exited. */ status->kind = TARGET_WAITKIND_EXITED; status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]); goto got_status; } case 'X': status->kind = TARGET_WAITKIND_SIGNALLED; status->value.sig = (enum target_signal) (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); kill_kludge = 1; goto got_status; case 'O': /* Console output */ remote_console_output (buf + 1); /* Return immediately to the event loop. The event loop will still be waiting on the inferior afterwards. */ status->kind = TARGET_WAITKIND_IGNORE; goto got_status; case '\0': if (last_sent_signal != TARGET_SIGNAL_0) { /* Zero length reply means that we tried 'S' or 'C' and the remote system doesn't support it. */ target_terminal_ours_for_output (); printf_filtered ("Can't send signals to this remote system. %s not sent.\n", target_signal_to_name (last_sent_signal)); last_sent_signal = TARGET_SIGNAL_0; target_terminal_inferior (); strcpy ((char *) buf, last_sent_step ? "s" : "c"); putpkt ((char *) buf); continue; } /* else fallthrough */ default: warning ("Invalid remote reply: %s", buf); continue; } } got_status: if (thread_num != -1) { return thread_num; } return inferior_pid; } /* Number of bytes of registers this stub implements. */ static int register_bytes_found; /* Read the remote registers into the block REGS. */ /* Currently we just read all the registers, so we don't use regno. */ /* ARGSUSED */ static void remote_fetch_registers (regno) int regno; { char *buf = alloca (PBUFSIZ); int i; char *p; char regs[REGISTER_BYTES]; set_thread (inferior_pid, 1); sprintf (buf, "g"); remote_send (buf, PBUFSIZ); /* Save the size of the packet sent to us by the target. Its used as a heuristic when determining the max size of packets that the target can safely receive. */ if (actual_register_packet_size == 0) actual_register_packet_size = strlen (buf); /* Unimplemented registers read as all bits zero. */ memset (regs, 0, REGISTER_BYTES); /* We can get out of synch in various cases. If the first character in the buffer is not a hex character, assume that has happened and try to fetch another packet to read. */ while ((buf[0] < '0' || buf[0] > '9') && (buf[0] < 'a' || buf[0] > 'f') && buf[0] != 'x') /* New: unavailable register value */ { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Bad register packet; fetching a new packet\n"); getpkt (buf, PBUFSIZ, 0); } /* Reply describes registers byte by byte, each byte encoded as two hex characters. Suck them all up, then supply them to the register cacheing/storage mechanism. */ p = buf; for (i = 0; i < REGISTER_BYTES; i++) { if (p[0] == 0) break; if (p[1] == 0) { warning ("Remote reply is of odd length: %s", buf); /* Don't change register_bytes_found in this case, and don't print a second warning. */ goto supply_them; } if (p[0] == 'x' && p[1] == 'x') regs[i] = 0; /* 'x' */ else regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]); p += 2; } if (i != register_bytes_found) { register_bytes_found = i; #ifdef REGISTER_BYTES_OK if (!REGISTER_BYTES_OK (i)) warning ("Remote reply is too short: %s", buf); #endif } supply_them: for (i = 0; i < NUM_REGS; i++) { supply_register (i, ®s[REGISTER_BYTE (i)]); if (buf[REGISTER_BYTE (i) * 2] == 'x') register_valid[i] = -1; /* register value not available */ } } /* Prepare to store registers. Since we may send them all (using a 'G' request), we have to read out the ones we don't want to change first. */ static void remote_prepare_to_store () { /* Make sure the entire registers array is valid. */ switch (remote_protocol_P.support) { case PACKET_DISABLE: case PACKET_SUPPORT_UNKNOWN: read_register_bytes (0, (char *) NULL, REGISTER_BYTES); break; case PACKET_ENABLE: break; } } /* Helper: Attempt to store REGNO using the P packet. Return fail IFF packet was not recognized. */ static int store_register_using_P (int regno) { /* Try storing a single register. */ char *buf = alloca (PBUFSIZ); char *regp; char *p; int i; sprintf (buf, "P%x=", regno); p = buf + strlen (buf); regp = ®isters[REGISTER_BYTE (regno)]; for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i) { *p++ = tohex ((regp[i] >> 4) & 0xf); *p++ = tohex (regp[i] & 0xf); } *p = '\0'; remote_send (buf, PBUFSIZ); return buf[0] != '\0'; } /* Store register REGNO, or all registers if REGNO == -1, from the contents of REGISTERS. FIXME: ignores errors. */ static void remote_store_registers (regno) int regno; { char *buf = alloca (PBUFSIZ); int i; char *p; set_thread (inferior_pid, 1); if (regno >= 0) { switch (remote_protocol_P.support) { case PACKET_DISABLE: break; case PACKET_ENABLE: if (store_register_using_P (regno)) return; else error ("Protocol error: P packet not recognized by stub"); case PACKET_SUPPORT_UNKNOWN: if (store_register_using_P (regno)) { /* The stub recognized the 'P' packet. Remember this. */ remote_protocol_P.support = PACKET_ENABLE; return; } else { /* The stub does not support the 'P' packet. Use 'G' instead, and don't try using 'P' in the future (it will just waste our time). */ remote_protocol_P.support = PACKET_DISABLE; break; } } } buf[0] = 'G'; /* Command describes registers byte by byte, each byte encoded as two hex characters. */ p = buf + 1; /* remote_prepare_to_store insures that register_bytes_found gets set. */ for (i = 0; i < register_bytes_found; i++) { *p++ = tohex ((registers[i] >> 4) & 0xf); *p++ = tohex (registers[i] & 0xf); } *p = '\0'; remote_send (buf, PBUFSIZ); } /* Use of the data cache *used* to be disabled because it loses for looking at and changing hardware I/O ports and the like. Accepting `volatile' would perhaps be one way to fix it. Another idea would be to use the executable file for the text segment (for all SEC_CODE sections? For all SEC_READONLY sections?). This has problems if you want to actually see what the memory contains (e.g. self-modifying code, clobbered memory, user downloaded the wrong thing). Because it speeds so much up, it's now enabled, if you're playing with registers you turn it of (set remotecache 0). */ /* Read a word from remote address ADDR and return it. This goes through the data cache. */ #if 0 /* unused? */ static int remote_fetch_word (addr) CORE_ADDR addr; { return dcache_fetch (remote_dcache, addr); } /* Write a word WORD into remote address ADDR. This goes through the data cache. */ static void remote_store_word (addr, word) CORE_ADDR addr; int word; { dcache_poke (remote_dcache, addr, word); } #endif /* 0 (unused?) */ /* Return the number of hex digits in num. */ static int hexnumlen (num) ULONGEST num; { int i; for (i = 0; num != 0; i++) num >>= 4; return max (i, 1); } /* Set BUF to the minimum number of hex digits representing NUM. */ static int hexnumstr (buf, num) char *buf; ULONGEST num; { int len = hexnumlen (num); return hexnumnstr (buf, num, len); } /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */ static int hexnumnstr (buf, num, width) char *buf; ULONGEST num; int width; { int i; buf[width] = '\0'; for (i = width - 1; i >= 0; i--) { buf[i] = "0123456789abcdef"[(num & 0xf)]; num >>= 4; } return width; } /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */ static CORE_ADDR remote_address_masked (addr) CORE_ADDR addr; { if (remote_address_size > 0 && remote_address_size < (sizeof (ULONGEST) * 8)) { /* Only create a mask when that mask can safely be constructed in a ULONGEST variable. */ ULONGEST mask = 1; mask = (mask << remote_address_size) - 1; addr &= mask; } return addr; } /* Determine whether the remote target supports binary downloading. This is accomplished by sending a no-op memory write of zero length to the target at the specified address. It does not suffice to send the whole packet, since many stubs strip the eighth bit and subsequently compute a wrong checksum, which causes real havoc with remote_write_bytes. NOTE: This can still lose if the serial line is not eight-bit clean. In cases like this, the user should clear "remote X-packet". */ static void check_binary_download (addr) CORE_ADDR addr; { switch (remote_protocol_binary_download.support) { case PACKET_DISABLE: break; case PACKET_ENABLE: break; case PACKET_SUPPORT_UNKNOWN: { char *buf = alloca (PBUFSIZ); char *p; p = buf; *p++ = 'X'; p += hexnumstr (p, (ULONGEST) addr); *p++ = ','; p += hexnumstr (p, (ULONGEST) 0); *p++ = ':'; *p = '\0'; putpkt_binary (buf, (int) (p - buf)); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0') { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "binary downloading NOT suppported by target\n"); remote_protocol_binary_download.support = PACKET_DISABLE; } else { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "binary downloading suppported by target\n"); remote_protocol_binary_download.support = PACKET_ENABLE; } break; } } } /* Write memory data directly to the remote machine. This does not inform the data cache; the data cache uses this. MEMADDR is the address in the remote memory space. MYADDR is the address of the buffer in our space. LEN is the number of bytes. Returns number of bytes transferred, or 0 (setting errno) for error. Only transfer a single packet. */ static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len) { unsigned char *buf; int max_buf_size; /* Max size of packet output buffer */ unsigned char *p; unsigned char *plen; long sizeof_buf; int plenlen; int todo; int nr_bytes; /* Verify that the target can support a binary download */ check_binary_download (memaddr); /* Determine the max packet size. */ max_buf_size = get_memory_write_packet_size (); sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */ buf = alloca (sizeof_buf); /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */ max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4; /* construct "M"<memaddr>","<len>":" */ /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */ p = buf; /* Append [XM]. Compute a best guess of the number of bytes actually transfered. */ switch (remote_protocol_binary_download.support) { case PACKET_ENABLE: *p++ = 'X'; /* Best guess at number of bytes that will fit. */ todo = min (len, max_buf_size); break; case PACKET_DISABLE: *p++ = 'M'; /* num bytes that will fit */ todo = min (len, max_buf_size / 2); break; case PACKET_SUPPORT_UNKNOWN: internal_error ("remote_write_bytes: bad switch"); } /* Append <memaddr> */ memaddr = remote_address_masked (memaddr); p += hexnumstr (p, (ULONGEST) memaddr); *p++ = ','; /* Append <len>. Retain the location/size of <len>. It may need to be adjusted once the packet body has been created. */ plen = p; plenlen = hexnumstr (p, (ULONGEST) todo); p += plenlen; *p++ = ':'; *p = '\0'; /* Append the packet body. */ switch (remote_protocol_binary_download.support) { case PACKET_ENABLE: /* Binary mode. Send target system values byte by byte, in increasing byte addresses. Only escape certain critical characters. */ for (nr_bytes = 0; (nr_bytes < todo) && (p - buf) < (max_buf_size - 2); nr_bytes++) { switch (myaddr[nr_bytes] & 0xff) { case '$': case '#': case 0x7d: /* These must be escaped */ *p++ = 0x7d; *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20; break; default: *p++ = myaddr[nr_bytes] & 0xff; break; } } if (nr_bytes < todo) { /* Escape chars have filled up the buffer prematurely, and we have actually sent fewer bytes than planned. Fix-up the length field of the packet. Use the same number of characters as before. */ plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen); *plen = ':'; /* overwrite \0 from hexnumnstr() */ } break; case PACKET_DISABLE: /* Normal mode: Send target system values byte by byte, in increasing byte addresses. Each byte is encoded as a two hex value. */ for (nr_bytes = 0; nr_bytes < todo; nr_bytes++) { *p++ = tohex ((myaddr[nr_bytes] >> 4) & 0xf); *p++ = tohex (myaddr[nr_bytes] & 0xf); } *p = '\0'; break; case PACKET_SUPPORT_UNKNOWN: internal_error ("remote_write_bytes: bad switch"); } putpkt_binary (buf, (int) (p - buf)); getpkt (buf, sizeof_buf, 0); if (buf[0] == 'E') { /* There is no correspondance between what the remote protocol uses for errors and errno codes. We would like a cleaner way of representing errors (big enough to include errno codes, bfd_error codes, and others). But for now just return EIO. */ errno = EIO; return 0; } /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer bytes than we'd planned. */ return nr_bytes; } /* Read memory data directly from the remote machine. This does not use the data cache; the data cache uses this. MEMADDR is the address in the remote memory space. MYADDR is the address of the buffer in our space. LEN is the number of bytes. Returns number of bytes transferred, or 0 for error. */ /* NOTE: cagney/1999-10-18: This function (and its siblings in other remote targets) shouldn't attempt to read the entire buffer. Instead it should read a single packet worth of data and then return the byte size of that packet to the caller. The caller (its caller and its callers caller ;-) already contains code for handling partial reads. */ static int remote_read_bytes (memaddr, myaddr, len) CORE_ADDR memaddr; char *myaddr; int len; { char *buf; int max_buf_size; /* Max size of packet output buffer */ long sizeof_buf; int origlen; /* Create a buffer big enough for this packet. */ max_buf_size = get_memory_read_packet_size (); sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */ buf = alloca (sizeof_buf); origlen = len; while (len > 0) { char *p; int todo; int i; todo = min (len, max_buf_size / 2); /* num bytes that will fit */ /* construct "m"<memaddr>","<len>" */ /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */ memaddr = remote_address_masked (memaddr); p = buf; *p++ = 'm'; p += hexnumstr (p, (ULONGEST) memaddr); *p++ = ','; p += hexnumstr (p, (ULONGEST) todo); *p = '\0'; putpkt (buf); getpkt (buf, sizeof_buf, 0); if (buf[0] == 'E') { /* There is no correspondance between what the remote protocol uses for errors and errno codes. We would like a cleaner way of representing errors (big enough to include errno codes, bfd_error codes, and others). But for now just return EIO. */ errno = EIO; return 0; } /* Reply describes memory byte by byte, each byte encoded as two hex characters. */ p = buf; for (i = 0; i < todo; i++) { if (p[0] == 0 || p[1] == 0) /* Reply is short. This means that we were able to read only part of what we wanted to. */ return i + (origlen - len); myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]); p += 2; } myaddr += todo; memaddr += todo; len -= todo; } return origlen; } /* Read or write LEN bytes from inferior memory at MEMADDR, transferring to or from debugger address BUFFER. Write to inferior if SHOULD_WRITE is nonzero. Returns length of data written or read; 0 for error. */ #ifndef REMOTE_TRANSLATE_XFER_ADDRESS #define REMOTE_TRANSLATE_XFER_ADDRESS(MEM_ADDR, MEM_LEN, TARG_ADDR, TARG_LEN) \ (*(TARG_ADDR) = (MEM_ADDR), *(TARG_LEN) = (MEM_LEN)) #endif /* ARGSUSED */ static int remote_xfer_memory (mem_addr, buffer, mem_len, should_write, target) CORE_ADDR mem_addr; char *buffer; int mem_len; int should_write; struct target_ops *target; /* ignored */ { CORE_ADDR targ_addr; int targ_len; REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len); if (targ_len <= 0) return 0; return dcache_xfer_memory (remote_dcache, targ_addr, buffer, targ_len, should_write); } #if 0 /* Enable after 4.12. */ void remote_search (len, data, mask, startaddr, increment, lorange, hirange addr_found, data_found) int len; char *data; char *mask; CORE_ADDR startaddr; int increment; CORE_ADDR lorange; CORE_ADDR hirange; CORE_ADDR *addr_found; char *data_found; { if (increment == -4 && len == 4) { long mask_long, data_long; long data_found_long; CORE_ADDR addr_we_found; char *buf = alloca (PBUFSIZ); long returned_long[2]; char *p; mask_long = extract_unsigned_integer (mask, len); data_long = extract_unsigned_integer (data, len); sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long); putpkt (buf); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0') { /* The stub doesn't support the 't' request. We might want to remember this fact, but on the other hand the stub could be switched on us. Maybe we should remember it only until the next "target remote". */ generic_search (len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found); return; } if (buf[0] == 'E') /* There is no correspondance between what the remote protocol uses for errors and errno codes. We would like a cleaner way of representing errors (big enough to include errno codes, bfd_error codes, and others). But for now just use EIO. */ memory_error (EIO, startaddr); p = buf; addr_we_found = 0; while (*p != '\0' && *p != ',') addr_we_found = (addr_we_found << 4) + fromhex (*p++); if (*p == '\0') error ("Protocol error: short return for search"); data_found_long = 0; while (*p != '\0' && *p != ',') data_found_long = (data_found_long << 4) + fromhex (*p++); /* Ignore anything after this comma, for future extensions. */ if (addr_we_found < lorange || addr_we_found >= hirange) { *addr_found = 0; return; } *addr_found = addr_we_found; *data_found = store_unsigned_integer (data_we_found, len); return; } generic_search (len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found); } #endif /* 0 */ static void remote_files_info (ignore) struct target_ops *ignore; { puts_filtered ("Debugging a target over a serial line.\n"); } /* Stuff for dealing with the packets which are part of this protocol. See comment at top of file for details. */ /* Read a single character from the remote end, masking it down to 7 bits. */ static int readchar (timeout) int timeout; { int ch; ch = SERIAL_READCHAR (remote_desc, timeout); if (ch >= 0) return (ch & 0x7f); switch ((enum serial_rc) ch) { case SERIAL_EOF: target_mourn_inferior (); error ("Remote connection closed"); /* no return */ case SERIAL_ERROR: perror_with_name ("Remote communication error"); /* no return */ case SERIAL_TIMEOUT: break; } return ch; } /* Send the command in BUF to the remote machine, and read the reply into BUF. Report an error if we get an error reply. */ static void remote_send (char *buf, long sizeof_buf) { putpkt (buf); getpkt (buf, sizeof_buf, 0); if (buf[0] == 'E') error ("Remote failure reply: %s", buf); } /* Display a null-terminated packet on stdout, for debugging, using C string notation. */ static void print_packet (buf) char *buf; { puts_filtered ("\""); fputstr_filtered (buf, '"', gdb_stdout); puts_filtered ("\""); } int putpkt (buf) char *buf; { return putpkt_binary (buf, strlen (buf)); } /* Send a packet to the remote machine, with error checking. The data of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5 to account for the $, # and checksum, and for a possible /0 if we are debugging (remote_debug) and want to print the sent packet as a string */ static int putpkt_binary (buf, cnt) char *buf; int cnt; { int i; unsigned char csum = 0; char *buf2 = alloca (cnt + 6); long sizeof_junkbuf = PBUFSIZ; char *junkbuf = alloca (sizeof_junkbuf); int ch; int tcount = 0; char *p; /* Copy the packet into buffer BUF2, encapsulating it and giving it a checksum. */ p = buf2; *p++ = '$'; for (i = 0; i < cnt; i++) { csum += buf[i]; *p++ = buf[i]; } *p++ = '#'; *p++ = tohex ((csum >> 4) & 0xf); *p++ = tohex (csum & 0xf); /* Send it over and over until we get a positive ack. */ while (1) { int started_error_output = 0; if (remote_debug) { *p = '\0'; fprintf_unfiltered (gdb_stdlog, "Sending packet: "); fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog); fprintf_unfiltered (gdb_stdlog, "..."); gdb_flush (gdb_stdlog); } if (SERIAL_WRITE (remote_desc, buf2, p - buf2)) perror_with_name ("putpkt: write failed"); /* read until either a timeout occurs (-2) or '+' is read */ while (1) { ch = readchar (remote_timeout); if (remote_debug) { switch (ch) { case '+': case '-': case SERIAL_TIMEOUT: case '$': if (started_error_output) { putchar_unfiltered ('\n'); started_error_output = 0; } } } switch (ch) { case '+': if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Ack\n"); return 1; case '-': if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Nak\n"); case SERIAL_TIMEOUT: tcount++; if (tcount > 3) return 0; break; /* Retransmit buffer */ case '$': { /* It's probably an old response, and we're out of sync. Just gobble up the packet and ignore it. */ getpkt (junkbuf, sizeof_junkbuf, 0); continue; /* Now, go look for + */ } default: if (remote_debug) { if (!started_error_output) { started_error_output = 1; fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: "); } fputc_unfiltered (ch & 0177, gdb_stdlog); } continue; } break; /* Here to retransmit */ } #if 0 /* This is wrong. If doing a long backtrace, the user should be able to get out next time we call QUIT, without anything as violent as interrupt_query. If we want to provide a way out of here without getting to the next QUIT, it should be based on hitting ^C twice as in remote_wait. */ if (quit_flag) { quit_flag = 0; interrupt_query (); } #endif } } static int remote_cisco_mode; /* Come here after finding the start of the frame. Collect the rest into BUF, verifying the checksum, length, and handling run-length compression. No more than sizeof_buf-1 characters are read so that the buffer can be NUL terminated. Returns -1 on error, number of characters in buffer (ignoring the trailing NULL) on success. (could be extended to return one of the SERIAL status indications). */ static long read_frame (char *buf, long sizeof_buf) { unsigned char csum; long bc; int c; csum = 0; bc = 0; while (1) { /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */ c = readchar (remote_timeout); switch (c) { case SERIAL_TIMEOUT: if (remote_debug) fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog); return -1; case '$': if (remote_debug) fputs_filtered ("Saw new packet start in middle of old one\n", gdb_stdlog); return -1; /* Start a new packet, count retries */ case '#': { unsigned char pktcsum; buf[bc] = '\0'; pktcsum = fromhex (readchar (remote_timeout)) << 4; pktcsum |= fromhex (readchar (remote_timeout)); if (csum == pktcsum) return bc; if (remote_debug) { fprintf_filtered (gdb_stdlog, "Bad checksum, sentsum=0x%x, csum=0x%x, buf=", pktcsum, csum); fputs_filtered (buf, gdb_stdlog); fputs_filtered ("\n", gdb_stdlog); } /* Number of characters in buffer ignoring trailing NUL. */ return -1; } case '*': /* Run length encoding */ { int repeat; csum += c; if (remote_cisco_mode == 0) { c = readchar (remote_timeout); csum += c; repeat = c - ' ' + 3; /* Compute repeat count */ } else { /* Cisco's run-length encoding variant uses two hex chars to represent the repeat count. */ c = readchar (remote_timeout); csum += c; repeat = fromhex (c) << 4; c = readchar (remote_timeout); csum += c; repeat += fromhex (c); } /* The character before ``*'' is repeated. */ if (repeat > 0 && repeat <= 255 && bc > 0 && bc + repeat < sizeof_buf - 1) { memset (&buf[bc], buf[bc - 1], repeat); bc += repeat; continue; } buf[bc] = '\0'; printf_filtered ("Repeat count %d too large for buffer: ", repeat); puts_filtered (buf); puts_filtered ("\n"); return -1; } default: if (bc < sizeof_buf - 1) { buf[bc++] = c; csum += c; continue; } buf[bc] = '\0'; puts_filtered ("Remote packet too long: "); puts_filtered (buf); puts_filtered ("\n"); return -1; } } } /* Read a packet from the remote machine, with error checking, and store it in BUF. If FOREVER, wait forever rather than timing out; this is used (in synchronous mode) to wait for a target that is is executing user code to stop. */ /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we don't have to change all the calls to getpkt to deal with the return value, because at the moment I don't know what the right thing to do it for those. */ void getpkt (char *buf, long sizeof_buf, int forever) { int timed_out; timed_out = getpkt_sane (buf, sizeof_buf, forever); } /* Read a packet from the remote machine, with error checking, and store it in BUF. If FOREVER, wait forever rather than timing out; this is used (in synchronous mode) to wait for a target that is is executing user code to stop. If FOREVER == 0, this function is allowed to time out gracefully and return an indication of this to the caller. */ int getpkt_sane (char *buf, long sizeof_buf, int forever) { int c; int tries; int timeout; int val; strcpy (buf, "timeout"); if (forever) { timeout = watchdog > 0 ? watchdog : -1; } else timeout = remote_timeout; #define MAX_TRIES 3 for (tries = 1; tries <= MAX_TRIES; tries++) { /* This can loop forever if the remote side sends us characters continuously, but if it pauses, we'll get a zero from readchar because of timeout. Then we'll count that as a retry. */ /* Note that we will only wait forever prior to the start of a packet. After that, we expect characters to arrive at a brisk pace. They should show up within remote_timeout intervals. */ do { c = readchar (timeout); if (c == SERIAL_TIMEOUT) { if (forever) /* Watchdog went off? Kill the target. */ { QUIT; target_mourn_inferior (); error ("Watchdog has expired. Target detached.\n"); } if (remote_debug) fputs_filtered ("Timed out.\n", gdb_stdlog); goto retry; } } while (c != '$'); /* We've found the start of a packet, now collect the data. */ val = read_frame (buf, sizeof_buf); if (val >= 0) { if (remote_debug) { fprintf_unfiltered (gdb_stdlog, "Packet received: "); fputstr_unfiltered (buf, 0, gdb_stdlog); fprintf_unfiltered (gdb_stdlog, "\n"); } SERIAL_WRITE (remote_desc, "+", 1); return 0; } /* Try the whole thing again. */ retry: SERIAL_WRITE (remote_desc, "-", 1); } /* We have tried hard enough, and just can't receive the packet. Give up. */ printf_unfiltered ("Ignoring packet error, continuing...\n"); SERIAL_WRITE (remote_desc, "+", 1); return 1; } static void remote_kill () { /* For some mysterious reason, wait_for_inferior calls kill instead of mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */ if (kill_kludge) { kill_kludge = 0; target_mourn_inferior (); return; } /* Use catch_errors so the user can quit from gdb even when we aren't on speaking terms with the remote system. */ catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR); /* Don't wait for it to die. I'm not really sure it matters whether we do or not. For the existing stubs, kill is a noop. */ target_mourn_inferior (); } /* Async version of remote_kill. */ static void remote_async_kill () { /* Unregister the file descriptor from the event loop. */ if (target_is_async_p ()) SERIAL_ASYNC (remote_desc, NULL, 0); /* For some mysterious reason, wait_for_inferior calls kill instead of mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */ if (kill_kludge) { kill_kludge = 0; target_mourn_inferior (); return; } /* Use catch_errors so the user can quit from gdb even when we aren't on speaking terms with the remote system. */ catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR); /* Don't wait for it to die. I'm not really sure it matters whether we do or not. For the existing stubs, kill is a noop. */ target_mourn_inferior (); } static void remote_mourn () { remote_mourn_1 (&remote_ops); } static void remote_async_mourn () { remote_mourn_1 (&remote_async_ops); } static void extended_remote_mourn () { /* We do _not_ want to mourn the target like this; this will remove the extended remote target from the target stack, and the next time the user says "run" it'll fail. FIXME: What is the right thing to do here? */ #if 0 remote_mourn_1 (&extended_remote_ops); #endif } /* Worker function for remote_mourn. */ static void remote_mourn_1 (target) struct target_ops *target; { unpush_target (target); generic_mourn_inferior (); } /* In the extended protocol we want to be able to do things like "run" and have them basically work as expected. So we need a special create_inferior function. FIXME: One day add support for changing the exec file we're debugging, arguments and an environment. */ static void extended_remote_create_inferior (exec_file, args, env) char *exec_file; char *args; char **env; { /* Rip out the breakpoints; we'll reinsert them after restarting the remote server. */ remove_breakpoints (); /* Now restart the remote server. */ extended_remote_restart (); /* Now put the breakpoints back in. This way we're safe if the restart function works via a unix fork on the remote side. */ insert_breakpoints (); /* Clean up from the last time we were running. */ clear_proceed_status (); /* Let the remote process run. */ proceed (-1, TARGET_SIGNAL_0, 0); } /* Async version of extended_remote_create_inferior. */ static void extended_remote_async_create_inferior (exec_file, args, env) char *exec_file; char *args; char **env; { /* Rip out the breakpoints; we'll reinsert them after restarting the remote server. */ remove_breakpoints (); /* If running asynchronously, register the target file descriptor with the event loop. */ if (event_loop_p && target_can_async_p ()) target_async (inferior_event_handler, 0); /* Now restart the remote server. */ extended_remote_restart (); /* Now put the breakpoints back in. This way we're safe if the restart function works via a unix fork on the remote side. */ insert_breakpoints (); /* Clean up from the last time we were running. */ clear_proceed_status (); /* Let the remote process run. */ proceed (-1, TARGET_SIGNAL_0, 0); } /* On some machines, e.g. 68k, we may use a different breakpoint instruction than other targets; in those use REMOTE_BREAKPOINT instead of just BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call the standard routines that are in mem-break.c. */ /* FIXME, these ought to be done in a more dynamic fashion. For instance, the choice of breakpoint instruction affects target program design and vice versa, and by making it user-tweakable, the special code here goes away and we need fewer special GDB configurations. */ #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT) #define REMOTE_BREAKPOINT #endif #ifdef REMOTE_BREAKPOINT /* If the target isn't bi-endian, just pretend it is. */ #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT) #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT #endif static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT; static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT; #endif /* REMOTE_BREAKPOINT */ /* Insert a breakpoint on targets that don't have any better breakpoint support. We read the contents of the target location and stash it, then overwrite it with a breakpoint instruction. ADDR is the target location in the target machine. CONTENTS_CACHE is a pointer to memory allocated for saving the target contents. It is guaranteed by the caller to be long enough to save sizeof BREAKPOINT bytes (this is accomplished via BREAKPOINT_MAX). */ static int remote_insert_breakpoint (addr, contents_cache) CORE_ADDR addr; char *contents_cache; { #ifdef REMOTE_BREAKPOINT int val; #endif int bp_size; /* Try the "Z" packet if it is not already disabled. If it succeeds, then set the support to PACKET_ENABLE. If it fails, and the user has explicitly requested the Z support then report an error, otherwise, mark it disabled and go on. */ if ((remote_protocol_Z.support == PACKET_ENABLE) || (remote_protocol_Z.support == PACKET_SUPPORT_UNKNOWN)) { char *buf = alloca (PBUFSIZ); char *p = buf; addr = remote_address_masked (addr); *(p++) = 'Z'; *(p++) = '0'; *(p++) = ','; p += hexnumstr (p, (ULONGEST) addr); BREAKPOINT_FROM_PC (&addr, &bp_size); sprintf (p, ",%d", bp_size); putpkt (buf); getpkt (buf, PBUFSIZ, 0); if (buf[0] != '\0') { remote_protocol_Z.support = PACKET_ENABLE; return (buf[0] == 'E'); } /* The stub does not support the 'Z' request. If the user has explicitly requested the Z support, or if the stub previously said it supported the packet, this is an error, otherwise, mark it disabled. */ else if (remote_protocol_Z.support == PACKET_ENABLE) { error ("Protocol error: Z packet not recognized by stub"); } else { remote_protocol_Z.support = PACKET_DISABLE; } } #ifdef REMOTE_BREAKPOINT val = target_read_memory (addr, contents_cache, sizeof big_break_insn); if (val == 0) { if (TARGET_BYTE_ORDER == BIG_ENDIAN) val = target_write_memory (addr, (char *) big_break_insn, sizeof big_break_insn); else val = target_write_memory (addr, (char *) little_break_insn, sizeof little_break_insn); } return val; #else return memory_insert_breakpoint (addr, contents_cache); #endif /* REMOTE_BREAKPOINT */ } static int remote_remove_breakpoint (addr, contents_cache) CORE_ADDR addr; char *contents_cache; { int bp_size; if ((remote_protocol_Z.support == PACKET_ENABLE) || (remote_protocol_Z.support == PACKET_SUPPORT_UNKNOWN)) { char *buf = alloca (PBUFSIZ); char *p = buf; *(p++) = 'z'; *(p++) = '0'; *(p++) = ','; addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); BREAKPOINT_FROM_PC (&addr, &bp_size); sprintf (p, ",%d", bp_size); putpkt (buf); getpkt (buf, PBUFSIZ, 0); return (buf[0] == 'E'); } #ifdef REMOTE_BREAKPOINT return target_write_memory (addr, contents_cache, sizeof big_break_insn); #else return memory_remove_breakpoint (addr, contents_cache); #endif /* REMOTE_BREAKPOINT */ } #ifdef TARGET_HAS_HARDWARE_WATCHPOINTS int remote_insert_watchpoint (addr, len, type) CORE_ADDR addr; int len; int type; { char *buf = alloca (PBUFSIZ); char *p; if (remote_protocol_Z.support == PACKET_DISABLE) error ("Can't set hardware watchpoints without the 'Z' packet\n"); sprintf (buf, "Z%x,", type + 2 ); p = strchr (buf, '\0'); addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); sprintf (p, ",%x", len); putpkt (buf); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0' || buf [0] == 'E') return -1; return 0; } int remote_remove_watchpoint (addr, len, type) CORE_ADDR addr; int len; int type; { char *buf = alloca (PBUFSIZ); char *p; sprintf (buf, "z%x,", type + 2 ); p = strchr (buf, '\0'); addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); sprintf (p, ",%x", len); putpkt (buf); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0' || buf [0] == 'E') return -1; return 0; } int remote_insert_hw_breakpoint (addr, len) CORE_ADDR addr; int len; { char *buf = alloca (PBUFSIZ); char *p = buf; if (remote_protocol_Z.support == PACKET_DISABLE) error ("Can't set hardware breakpoints without the 'Z' packet\n"); *(p++) = 'Z'; *(p++) = '1'; *(p++) = ','; addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); *p = '\0'; putpkt (buf); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0' || buf [0] == 'E') return -1; return 0; } int remote_remove_hw_breakpoint (addr, len) CORE_ADDR addr; int len; { char *buf = alloca (PBUFSIZ); char *p = buf; *(p++) = 'z'; *(p++) = '1'; *(p++) = ','; addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); *p = '\0'; putpkt(buf); getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0' || buf [0] == 'E') return -1; return 0; } #endif /* Some targets are only capable of doing downloads, and afterwards they switch to the remote serial protocol. This function provides a clean way to get from the download target to the remote target. It's basically just a wrapper so that we don't have to expose any of the internal workings of remote.c. Prior to calling this routine, you should shutdown the current target code, else you will get the "A program is being debugged already..." message. Usually a call to pop_target() suffices. */ void push_remote_target (name, from_tty) char *name; int from_tty; { printf_filtered ("Switching to remote protocol\n"); remote_open (name, from_tty); } /* Other targets want to use the entire remote serial module but with certain remote_ops overridden. */ void open_remote_target (name, from_tty, target, extended_p) char *name; int from_tty; struct target_ops *target; int extended_p; { printf_filtered ("Selecting the %sremote protocol\n", (extended_p ? "extended-" : "")); remote_open_1 (name, from_tty, target, extended_p); } /* Table used by the crc32 function to calcuate the checksum. */ static unsigned long crc32_table[256] = {0, 0}; static unsigned long crc32 (buf, len, crc) unsigned char *buf; int len; unsigned int crc; { if (!crc32_table[1]) { /* Initialize the CRC table and the decoding table. */ int i, j; unsigned int c; for (i = 0; i < 256; i++) { for (c = i << 24, j = 8; j > 0; --j) c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); crc32_table[i] = c; } } while (len--) { crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; buf++; } return crc; } /* compare-sections command With no arguments, compares each loadable section in the exec bfd with the same memory range on the target, and reports mismatches. Useful for verifying the image on the target against the exec file. Depends on the target understanding the new "qCRC:" request. */ /* FIXME: cagney/1999-10-26: This command should be broken down into a target method (target verify memory) and generic version of the actual command. This will allow other high-level code (especially generic_load()) to make use of this target functionality. */ static void compare_sections_command (args, from_tty) char *args; int from_tty; { asection *s; unsigned long host_crc, target_crc; extern bfd *exec_bfd; struct cleanup *old_chain; char *tmp; char *sectdata; char *sectname; char *buf = alloca (PBUFSIZ); bfd_size_type size; bfd_vma lma; int matched = 0; int mismatched = 0; if (!exec_bfd) error ("command cannot be used without an exec file"); if (!current_target.to_shortname || strcmp (current_target.to_shortname, "remote") != 0) error ("command can only be used with remote target"); for (s = exec_bfd->sections; s; s = s->next) { if (!(s->flags & SEC_LOAD)) continue; /* skip non-loadable section */ size = bfd_get_section_size_before_reloc (s); if (size == 0) continue; /* skip zero-length section */ sectname = (char *) bfd_get_section_name (exec_bfd, s); if (args && strcmp (args, sectname) != 0) continue; /* not the section selected by user */ matched = 1; /* do this section */ lma = s->lma; /* FIXME: assumes lma can fit into long */ sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size); putpkt (buf); /* be clever; compute the host_crc before waiting for target reply */ sectdata = xmalloc (size); old_chain = make_cleanup (free, sectdata); bfd_get_section_contents (exec_bfd, s, sectdata, 0, size); host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff); getpkt (buf, PBUFSIZ, 0); if (buf[0] == 'E') error ("target memory fault, section %s, range 0x%08x -- 0x%08x", sectname, lma, lma + size); if (buf[0] != 'C') error ("remote target does not support this operation"); for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++) target_crc = target_crc * 16 + fromhex (*tmp); printf_filtered ("Section %s, range 0x%s -- 0x%s: ", sectname, paddr (lma), paddr (lma + size)); if (host_crc == target_crc) printf_filtered ("matched.\n"); else { printf_filtered ("MIS-MATCHED!\n"); mismatched++; } do_cleanups (old_chain); } if (mismatched > 0) warning ("One or more sections of the remote executable does not match\n\ the loaded file\n"); if (args && !matched) printf_filtered ("No loaded section named '%s'.\n", args); } static int remote_query (query_type, buf, outbuf, bufsiz) int query_type; char *buf; char *outbuf; int *bufsiz; { int i; char *buf2 = alloca (PBUFSIZ); char *p2 = &buf2[0]; if (!bufsiz) error ("null pointer to remote bufer size specified"); /* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let the caller know and return what the minimum size is */ /* Note: a zero bufsiz can be used to query the minimum buffer size */ if (*bufsiz < PBUFSIZ) { *bufsiz = PBUFSIZ; return -1; } /* except for querying the minimum buffer size, target must be open */ if (!remote_desc) error ("remote query is only available after target open"); /* we only take uppercase letters as query types, at least for now */ if ((query_type < 'A') || (query_type > 'Z')) error ("invalid remote query type"); if (!buf) error ("null remote query specified"); if (!outbuf) error ("remote query requires a buffer to receive data"); outbuf[0] = '\0'; *p2++ = 'q'; *p2++ = query_type; /* we used one buffer char for the remote protocol q command and another for the query type. As the remote protocol encapsulation uses 4 chars plus one extra in case we are debugging (remote_debug), we have PBUFZIZ - 7 left to pack the query string */ i = 0; while (buf[i] && (i < (PBUFSIZ - 8))) { /* bad caller may have sent forbidden characters */ if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#')) error ("illegal characters in query string"); *p2++ = buf[i]; i++; } *p2 = buf[i]; if (buf[i]) error ("query larger than available buffer"); i = putpkt (buf2); if (i < 0) return i; getpkt (outbuf, *bufsiz, 0); return 0; } static void remote_rcmd (char *command, struct ui_file *outbuf) { int i; char *buf = alloca (PBUFSIZ); char *p = buf; if (!remote_desc) error ("remote rcmd is only available after target open"); /* Send a NULL command across as an empty command */ if (command == NULL) command = ""; /* The query prefix */ strcpy (buf, "qRcmd,"); p = strchr (buf, '\0'); if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ) error ("\"monitor\" command ``%s'' is too long\n", command); /* Encode the actual command */ for (i = 0; command[i]; i++) { *p++ = tohex ((command[i] >> 4) & 0xf); *p++ = tohex (command[i] & 0xf); } *p = '\0'; if (putpkt (buf) < 0) error ("Communication problem with target\n"); /* get/display the response */ while (1) { /* XXX - see also tracepoint.c:remote_get_noisy_reply() */ buf[0] = '\0'; getpkt (buf, PBUFSIZ, 0); if (buf[0] == '\0') error ("Target does not support this command\n"); if (buf[0] == 'O' && buf[1] != 'K') { remote_console_output (buf + 1); /* 'O' message from stub */ continue; } if (strcmp (buf, "OK") == 0) break; if (strlen (buf) == 3 && buf[0] == 'E' && isdigit (buf[1]) && isdigit (buf[2])) { error ("Protocol error with Rcmd"); } for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2) { char c = (fromhex (p[0]) << 4) + fromhex (p[1]); fputc_unfiltered (c, outbuf); } break; } } static void packet_command (args, from_tty) char *args; int from_tty; { char *buf = alloca (PBUFSIZ); if (!remote_desc) error ("command can only be used with remote target"); if (!args) error ("remote-packet command requires packet text as argument"); puts_filtered ("sending: "); print_packet (args); puts_filtered ("\n"); putpkt (args); getpkt (buf, PBUFSIZ, 0); puts_filtered ("received: "); print_packet (buf); puts_filtered ("\n"); } #if 0 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */ static void display_thread_info PARAMS ((struct gdb_ext_thread_info * info)); static void threadset_test_cmd PARAMS ((char *cmd, int tty)); static void threadalive_test PARAMS ((char *cmd, int tty)); static void threadlist_test_cmd PARAMS ((char *cmd, int tty)); int get_and_display_threadinfo PARAMS ((threadref * ref)); static void threadinfo_test_cmd PARAMS ((char *cmd, int tty)); static int thread_display_step PARAMS ((threadref * ref, void *context)); static void threadlist_update_test_cmd PARAMS ((char *cmd, int tty)); static void init_remote_threadtests PARAMS ((void)); #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */ static void threadset_test_cmd (cmd, tty) char *cmd; int tty; { int sample_thread = SAMPLE_THREAD; printf_filtered ("Remote threadset test\n"); set_thread (sample_thread, 1); } static void threadalive_test (cmd, tty) char *cmd; int tty; { int sample_thread = SAMPLE_THREAD; if (remote_thread_alive (sample_thread)) printf_filtered ("PASS: Thread alive test\n"); else printf_filtered ("FAIL: Thread alive test\n"); } void output_threadid PARAMS ((char *title, threadref * ref)); void output_threadid (title, ref) char *title; threadref *ref; { char hexid[20]; pack_threadid (&hexid[0], ref); /* Convert threead id into hex */ hexid[16] = 0; printf_filtered ("%s %s\n", title, (&hexid[0])); } static void threadlist_test_cmd (cmd, tty) char *cmd; int tty; { int startflag = 1; threadref nextthread; int done, result_count; threadref threadlist[3]; printf_filtered ("Remote Threadlist test\n"); if (!remote_get_threadlist (startflag, &nextthread, 3, &done, &result_count, &threadlist[0])) printf_filtered ("FAIL: threadlist test\n"); else { threadref *scan = threadlist; threadref *limit = scan + result_count; while (scan < limit) output_threadid (" thread ", scan++); } } void display_thread_info (info) struct gdb_ext_thread_info *info; { output_threadid ("Threadid: ", &info->threadid); printf_filtered ("Name: %s\n ", info->shortname); printf_filtered ("State: %s\n", info->display); printf_filtered ("other: %s\n\n", info->more_display); } int get_and_display_threadinfo (ref) threadref *ref; { int result; int set; struct gdb_ext_thread_info threadinfo; set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME | TAG_MOREDISPLAY | TAG_DISPLAY; if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo))) display_thread_info (&threadinfo); return result; } static void threadinfo_test_cmd (cmd, tty) char *cmd; int tty; { int athread = SAMPLE_THREAD; threadref thread; int set; int_to_threadref (&thread, athread); printf_filtered ("Remote Threadinfo test\n"); if (!get_and_display_threadinfo (&thread)) printf_filtered ("FAIL cannot get thread info\n"); } static int thread_display_step (ref, context) threadref *ref; void *context; { /* output_threadid(" threadstep ",ref); *//* simple test */ return get_and_display_threadinfo (ref); } static void threadlist_update_test_cmd (cmd, tty) char *cmd; int tty; { printf_filtered ("Remote Threadlist update test\n"); remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS); } static void init_remote_threadtests (void) { add_com ("tlist", class_obscure, threadlist_test_cmd, "Fetch and print the remote list of thread identifiers, one pkt only"); add_com ("tinfo", class_obscure, threadinfo_test_cmd, "Fetch and display info about one thread"); add_com ("tset", class_obscure, threadset_test_cmd, "Test setting to a different thread"); add_com ("tupd", class_obscure, threadlist_update_test_cmd, "Iterate through updating all remote thread info"); add_com ("talive", class_obscure, threadalive_test, " Remote thread alive test "); } #endif /* 0 */ static void init_remote_ops () { remote_ops.to_shortname = "remote"; remote_ops.to_longname = "Remote serial target in gdb-specific protocol"; remote_ops.to_doc = "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ Specify the serial device it is connected to\n\ (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."; remote_ops.to_open = remote_open; remote_ops.to_close = remote_close; remote_ops.to_detach = remote_detach; remote_ops.to_resume = remote_resume; remote_ops.to_wait = remote_wait; remote_ops.to_fetch_registers = remote_fetch_registers; remote_ops.to_store_registers = remote_store_registers; remote_ops.to_prepare_to_store = remote_prepare_to_store; remote_ops.to_xfer_memory = remote_xfer_memory; remote_ops.to_files_info = remote_files_info; remote_ops.to_insert_breakpoint = remote_insert_breakpoint; remote_ops.to_remove_breakpoint = remote_remove_breakpoint; remote_ops.to_kill = remote_kill; remote_ops.to_load = generic_load; remote_ops.to_mourn_inferior = remote_mourn; remote_ops.to_thread_alive = remote_thread_alive; remote_ops.to_find_new_threads = remote_threads_info; remote_ops.to_extra_thread_info = remote_threads_extra_info; remote_ops.to_stop = remote_stop; remote_ops.to_query = remote_query; remote_ops.to_rcmd = remote_rcmd; remote_ops.to_stratum = process_stratum; remote_ops.to_has_all_memory = 1; remote_ops.to_has_memory = 1; remote_ops.to_has_stack = 1; remote_ops.to_has_registers = 1; remote_ops.to_has_execution = 1; remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */ remote_ops.to_magic = OPS_MAGIC; } /* Set up the extended remote vector by making a copy of the standard remote vector and adding to it. */ static void init_extended_remote_ops () { extended_remote_ops = remote_ops; extended_remote_ops.to_shortname = "extended-remote"; extended_remote_ops.to_longname = "Extended remote serial target in gdb-specific protocol"; extended_remote_ops.to_doc = "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ Specify the serial device it is connected to (e.g. /dev/ttya).", extended_remote_ops.to_open = extended_remote_open; extended_remote_ops.to_create_inferior = extended_remote_create_inferior; extended_remote_ops.to_mourn_inferior = extended_remote_mourn; } /* * Command: info remote-process * * This implements Cisco's version of the "info proc" command. * * This query allows the target stub to return an arbitrary string * (or strings) giving arbitrary information about the target process. * This is optional; the target stub isn't required to implement it. * * Syntax: qfProcessInfo request first string * qsProcessInfo request subsequent string * reply: 'O'<hex-encoded-string> * 'l' last reply (empty) */ static void remote_info_process (char *args, int from_tty) { char *buf = alloca (PBUFSIZ); if (remote_desc == 0) error ("Command can only be used when connected to the remote target."); putpkt ("qfProcessInfo"); getpkt (buf, PBUFSIZ, 0); if (buf[0] == 0) return; /* Silently: target does not support this feature. */ if (buf[0] == 'E') error ("info proc: target error."); while (buf[0] == 'O') /* Capitol-O packet */ { remote_console_output (&buf[1]); putpkt ("qsProcessInfo"); getpkt (buf, PBUFSIZ, 0); } } /* * Target Cisco */ static void remote_cisco_open (char *name, int from_tty) { if (name == 0) error ( "To open a remote debug connection, you need to specify what \n\ device is attached to the remote system (e.g. host:port)."); /* See FIXME above */ wait_forever_enabled_p = 1; target_preopen (from_tty); unpush_target (&remote_cisco_ops); remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes); remote_desc = SERIAL_OPEN (name); if (!remote_desc) perror_with_name (name); /* * If a baud rate was specified on the gdb command line it will * be greater than the initial value of -1. If it is, use it otherwise * default to 9600 */ baud_rate = (baud_rate > 0) ? baud_rate : 9600; if (SERIAL_SETBAUDRATE (remote_desc, baud_rate)) { SERIAL_CLOSE (remote_desc); perror_with_name (name); } SERIAL_RAW (remote_desc); /* If there is something sitting in the buffer we might take it as a response to a command, which would be bad. */ SERIAL_FLUSH_INPUT (remote_desc); if (from_tty) { puts_filtered ("Remote debugging using "); puts_filtered (name); puts_filtered ("\n"); } remote_cisco_mode = 1; push_target (&remote_cisco_ops); /* Switch to using cisco target now */ init_packet_config (&remote_protocol_P); init_packet_config (&remote_protocol_Z); general_thread = -2; continue_thread = -2; /* Force remote_write_bytes to check whether target supports binary downloading. */ init_packet_config (&remote_protocol_binary_download); /* Probe for ability to use "ThreadInfo" query, as required. */ use_threadinfo_query = 1; use_threadextra_query = 1; /* Without this, some commands which require an active target (such as kill) won't work. This variable serves (at least) double duty as both the pid of the target process (if it has such), and as a flag indicating that a target is active. These functions should be split out into seperate variables, especially since GDB will someday have a notion of debugging several processes. */ inferior_pid = MAGIC_NULL_PID; /* Start the remote connection; if error (0), discard this target. */ if (!catch_errors (remote_start_remote_dummy, (char *) 0, "Couldn't establish connection to remote target\n", RETURN_MASK_ALL)) { pop_target (); return; } } static void remote_cisco_close (int quitting) { remote_cisco_mode = 0; remote_close (quitting); } static void remote_cisco_mourn PARAMS ((void)) { remote_mourn_1 (&remote_cisco_ops); } enum { READ_MORE, FATAL_ERROR, ENTER_DEBUG, DISCONNECT_TELNET } minitelnet_return; /* shared between readsocket() and readtty() */ static char *tty_input; static int escape_count; static int echo_check; extern int quit_flag; static int readsocket (void) { int data; /* Loop until the socket doesn't have any more data */ while ((data = readchar (0)) >= 0) { /* Check for the escape sequence */ if (data == '|') { /* If this is the fourth escape, get out */ if (++escape_count == 4) { return ENTER_DEBUG; } else { /* This is a '|', but not the fourth in a row. Continue without echoing it. If it isn't actually one of four in a row, it'll be echoed later. */ continue; } } else /* Not a '|' */ { /* Ensure any pending '|'s are flushed. */ for (; escape_count > 0; escape_count--) putchar ('|'); } if (data == '\r') /* If this is a return character, */ continue; /* - just supress it. */ if (echo_check != -1) /* Check for echo of user input. */ { if (tty_input[echo_check] == data) { echo_check++; /* Character matched user input: */ continue; /* Continue without echoing it. */ } else if ((data == '\n') && (tty_input[echo_check] == '\r')) { /* End of the line (and of echo checking). */ echo_check = -1; /* No more echo supression */ continue; /* Continue without echoing. */ } else { /* Failed check for echo of user input. We now have some suppressed output to flush! */ int j; for (j = 0; j < echo_check; j++) putchar (tty_input[j]); echo_check = -1; } } putchar (data); /* Default case: output the char. */ } if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */ return READ_MORE; /* Try to read some more */ else return FATAL_ERROR; /* Trouble, bail out */ } static int readtty (void) { int tty_bytecount; /* First, read a buffer full from the terminal */ tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1); if (tty_bytecount == -1) { perror ("readtty: read failed"); return FATAL_ERROR; } /* Remove a quoted newline. */ if (tty_input[tty_bytecount - 1] == '\n' && tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */ { tty_input[--tty_bytecount] = 0; /* remove newline */ tty_input[--tty_bytecount] = 0; /* remove backslash */ } /* Turn trailing newlines into returns */ if (tty_input[tty_bytecount - 1] == '\n') tty_input[tty_bytecount - 1] = '\r'; /* If the line consists of a ~, enter debugging mode. */ if ((tty_input[0] == '~') && (tty_bytecount == 2)) return ENTER_DEBUG; /* Make this a zero terminated string and write it out */ tty_input[tty_bytecount] = 0; if (SERIAL_WRITE (remote_desc, tty_input, tty_bytecount)) { perror_with_name ("readtty: write failed"); return FATAL_ERROR; } return READ_MORE; } static int minitelnet (void) { fd_set input; /* file descriptors for select */ int tablesize; /* max number of FDs for select */ int status; int quit_count = 0; extern int escape_count; /* global shared by readsocket */ extern int echo_check; /* ditto */ escape_count = 0; echo_check = -1; tablesize = 8 * sizeof (input); for (;;) { /* Check for anything from our socket - doesn't block. Note that this must be done *before* the select as there may be buffered I/O waiting to be processed. */ if ((status = readsocket ()) == FATAL_ERROR) { error ("Debugging terminated by communications error"); } else if (status != READ_MORE) { return (status); } fflush (stdout); /* Flush output before blocking */ /* Now block on more socket input or TTY input */ FD_ZERO (&input); FD_SET (fileno (stdin), &input); FD_SET (DEPRECATED_SERIAL_FD (remote_desc), &input); status = select (tablesize, &input, 0, 0, 0); if ((status == -1) && (errno != EINTR)) { error ("Communications error on select %d", errno); } /* Handle Control-C typed */ if (quit_flag) { if ((++quit_count) == 2) { if (query ("Interrupt GDB? ")) { printf_filtered ("Interrupted by user.\n"); return_to_top_level (RETURN_QUIT); } quit_count = 0; } quit_flag = 0; if (remote_break) SERIAL_SEND_BREAK (remote_desc); else SERIAL_WRITE (remote_desc, "\003", 1); continue; } /* Handle console input */ if (FD_ISSET (fileno (stdin), &input)) { quit_count = 0; echo_check = 0; status = readtty (); if (status == READ_MORE) continue; return status; /* telnet session ended */ } } } static int remote_cisco_wait (int pid, struct target_waitstatus *status) { if (minitelnet () != ENTER_DEBUG) { error ("Debugging session terminated by protocol error"); } putpkt ("?"); return remote_wait (pid, status); } static void init_remote_cisco_ops () { remote_cisco_ops.to_shortname = "cisco"; remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol"; remote_cisco_ops.to_doc = "Use a remote machine via TCP, using a cisco-specific protocol.\n\ Specify the serial device it is connected to (e.g. host:2020)."; remote_cisco_ops.to_open = remote_cisco_open; remote_cisco_ops.to_close = remote_cisco_close; remote_cisco_ops.to_detach = remote_detach; remote_cisco_ops.to_resume = remote_resume; remote_cisco_ops.to_wait = remote_cisco_wait; remote_cisco_ops.to_fetch_registers = remote_fetch_registers; remote_cisco_ops.to_store_registers = remote_store_registers; remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store; remote_cisco_ops.to_xfer_memory = remote_xfer_memory; remote_cisco_ops.to_files_info = remote_files_info; remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint; remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint; remote_cisco_ops.to_kill = remote_kill; remote_cisco_ops.to_load = generic_load; remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn; remote_cisco_ops.to_thread_alive = remote_thread_alive; remote_cisco_ops.to_find_new_threads = remote_threads_info; remote_ops.to_extra_thread_info = remote_threads_extra_info; remote_cisco_ops.to_stratum = process_stratum; remote_cisco_ops.to_has_all_memory = 1; remote_cisco_ops.to_has_memory = 1; remote_cisco_ops.to_has_stack = 1; remote_cisco_ops.to_has_registers = 1; remote_cisco_ops.to_has_execution = 1; remote_cisco_ops.to_magic = OPS_MAGIC; } static int remote_can_async_p (void) { /* We're async whenever the serial device is. */ return (current_target.to_async_mask_value) && SERIAL_CAN_ASYNC_P (remote_desc); } static int remote_is_async_p (void) { /* We're async whenever the serial device is. */ return (current_target.to_async_mask_value) && SERIAL_IS_ASYNC_P (remote_desc); } /* Pass the SERIAL event on and up to the client. One day this code will be able to delay notifying the client of an event until the point where an entire packet has been received. */ static void (*async_client_callback) (enum inferior_event_type event_type, void *context); static void *async_client_context; static serial_event_ftype remote_async_serial_handler; static void remote_async_serial_handler (serial_t scb, void *context) { /* Don't propogate error information up to the client. Instead let the client find out about the error by querying the target. */ async_client_callback (INF_REG_EVENT, async_client_context); } static void remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context) { if (current_target.to_async_mask_value == 0) internal_error ("Calling remote_async when async is masked"); if (callback != NULL) { SERIAL_ASYNC (remote_desc, remote_async_serial_handler, NULL); async_client_callback = callback; async_client_context = context; } else SERIAL_ASYNC (remote_desc, NULL, NULL); } /* Target async and target extended-async. This are temporary targets, until it is all tested. Eventually async support will be incorporated int the usual 'remote' target. */ static void init_remote_async_ops (void) { remote_async_ops.to_shortname = "async"; remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol"; remote_async_ops.to_doc = "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ Specify the serial device it is connected to (e.g. /dev/ttya)."; remote_async_ops.to_open = remote_async_open; remote_async_ops.to_close = remote_close; remote_async_ops.to_detach = remote_async_detach; remote_async_ops.to_resume = remote_async_resume; remote_async_ops.to_wait = remote_async_wait; remote_async_ops.to_fetch_registers = remote_fetch_registers; remote_async_ops.to_store_registers = remote_store_registers; remote_async_ops.to_prepare_to_store = remote_prepare_to_store; remote_async_ops.to_xfer_memory = remote_xfer_memory; remote_async_ops.to_files_info = remote_files_info; remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint; remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint; remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior; remote_async_ops.to_terminal_ours = remote_async_terminal_ours; remote_async_ops.to_kill = remote_async_kill; remote_async_ops.to_load = generic_load; remote_async_ops.to_mourn_inferior = remote_async_mourn; remote_async_ops.to_thread_alive = remote_thread_alive; remote_async_ops.to_find_new_threads = remote_threads_info; remote_ops.to_extra_thread_info = remote_threads_extra_info; remote_async_ops.to_stop = remote_stop; remote_async_ops.to_query = remote_query; remote_async_ops.to_rcmd = remote_rcmd; remote_async_ops.to_stratum = process_stratum; remote_async_ops.to_has_all_memory = 1; remote_async_ops.to_has_memory = 1; remote_async_ops.to_has_stack = 1; remote_async_ops.to_has_registers = 1; remote_async_ops.to_has_execution = 1; remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */ remote_async_ops.to_can_async_p = remote_can_async_p; remote_async_ops.to_is_async_p = remote_is_async_p; remote_async_ops.to_async = remote_async; remote_async_ops.to_async_mask_value = 1; remote_async_ops.to_magic = OPS_MAGIC; } /* Set up the async extended remote vector by making a copy of the standard remote vector and adding to it. */ static void init_extended_async_remote_ops (void) { extended_async_remote_ops = remote_async_ops; extended_async_remote_ops.to_shortname = "extended-async"; extended_async_remote_ops.to_longname = "Extended remote serial target in async gdb-specific protocol"; extended_async_remote_ops.to_doc = "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\ Specify the serial device it is connected to (e.g. /dev/ttya).", extended_async_remote_ops.to_open = extended_remote_async_open; extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior; extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn; } static void set_remote_cmd (char *args, int from_tty) { } static void build_remote_gdbarch_data () { build_remote_packet_sizes (); /* Cisco stuff */ tty_input = xmalloc (PBUFSIZ); remote_address_size = TARGET_PTR_BIT; } void _initialize_remote () { static struct cmd_list_element *remote_set_cmdlist; static struct cmd_list_element *remote_show_cmdlist; struct cmd_list_element *tmpcmd; /* architecture specific data */ build_remote_gdbarch_data (); register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL); register_remote_packet_sizes (); register_gdbarch_swap (&remote_address_size, sizeof (&remote_address_size), NULL); register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data); init_remote_ops (); add_target (&remote_ops); init_extended_remote_ops (); add_target (&extended_remote_ops); init_remote_async_ops (); add_target (&remote_async_ops); init_extended_async_remote_ops (); add_target (&extended_async_remote_ops); init_remote_cisco_ops (); add_target (&remote_cisco_ops); #if 0 init_remote_threadtests (); #endif add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\ Remote protocol specific variables\n\ Configure various remote-protocol specific variables such as\n\ the packets being used", &remote_set_cmdlist, "set remote ", 0/*allow-unknown*/, &setlist); add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\ Remote protocol specific variables\n\ Configure various remote-protocol specific variables such as\n\ the packets being used", &remote_show_cmdlist, "show remote ", 0/*allow-unknown*/, &showlist); add_cmd ("compare-sections", class_obscure, compare_sections_command, "Compare section data on target to the exec file.\n\ Argument is a single section name (default: all loaded sections).", &cmdlist); add_cmd ("packet", class_maintenance, packet_command, "Send an arbitrary packet to a remote target.\n\ maintenance packet TEXT\n\ If GDB is talking to an inferior via the GDB serial protocol, then\n\ this command sends the string TEXT to the inferior, and displays the\n\ response packet. GDB supplies the initial `$' character, and the\n\ terminating `#' character and checksum.", &maintenancelist); add_show_from_set (add_set_cmd ("remotebreak", no_class, var_boolean, (char *) &remote_break, "Set whether to send break if interrupted.\n", &setlist), &showlist); /* Install commands for configuring memory read/write packets. */ add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, "Set the maximum number of bytes per memory write packet (deprecated).\n", &setlist); add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, "Show the maximum number of bytes per memory write packet (deprecated).\n", &showlist); add_cmd ("memory-write-packet-size", no_class, set_memory_write_packet_size, "Set the maximum number of bytes per memory-write packet.\n" "Specify the number of bytes in a packet or 0 (zero) for the\n" "default packet size. The actual limit is further reduced\n" "dependent on the target. Specify ``fixed'' to disable the\n" "further restriction and ``limit'' to enable that restriction\n", &remote_set_cmdlist); add_cmd ("memory-read-packet-size", no_class, set_memory_read_packet_size, "Set the maximum number of bytes per memory-read packet.\n" "Specify the number of bytes in a packet or 0 (zero) for the\n" "default packet size. The actual limit is further reduced\n" "dependent on the target. Specify ``fixed'' to disable the\n" "further restriction and ``limit'' to enable that restriction\n", &remote_set_cmdlist); add_cmd ("memory-write-packet-size", no_class, show_memory_write_packet_size, "Show the maximum number of bytes per memory-write packet.\n", &remote_show_cmdlist); add_cmd ("memory-read-packet-size", no_class, show_memory_read_packet_size, "Show the maximum number of bytes per memory-read packet.\n", &remote_show_cmdlist); add_show_from_set (add_set_cmd ("remoteaddresssize", class_obscure, var_integer, (char *) &remote_address_size, "Set the maximum size of the address (in bits) \ in a memory packet.\n", &setlist), &showlist); add_packet_config_cmd (&remote_protocol_binary_download, "X", "binary-download", set_remote_protocol_binary_download_cmd, show_remote_protocol_binary_download_cmd, &remote_set_cmdlist, &remote_show_cmdlist); #if 0 /* XXXX - should ``set remotebinarydownload'' be retained for compatibility. */ add_show_from_set (add_set_cmd ("remotebinarydownload", no_class, var_boolean, (char *) &remote_binary_download, "Set binary downloads.\n", &setlist), &showlist); #endif add_info ("remote-process", remote_info_process, "Query the remote system for process info."); add_packet_config_cmd (&remote_protocol_P, "P", "set-register", set_remote_protocol_P_packet_cmd, show_remote_protocol_P_packet_cmd, &remote_set_cmdlist, &remote_show_cmdlist); add_packet_config_cmd (&remote_protocol_Z, "Z", "breakpoint", set_remote_protocol_Z_packet_cmd, show_remote_protocol_Z_packet_cmd, &remote_set_cmdlist, &remote_show_cmdlist); }