URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [branches/] [oc/] [gdb-5.0/] [sim/] [common/] [sim-bits.h] - Rev 106
Go to most recent revision | Compare with Previous | Blame | View Log
/* This file is part of the program psim. Copyright (C) 1994-1996, Andrew Cagney <cagney@highland.com.au> Copyright (C) 1997, Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _SIM_BITS_H_ #define _SIM_BITS_H_ /* Bit manipulation routines: Bit numbering: The bits are numbered according to the target ISA's convention. That being controlled by WITH_TARGET_WORD_MSB. For the PowerPC (WITH_TARGET_WORD_MSB == 0) the numbering is 0..31 while for the MIPS (WITH_TARGET_WORD_MSB == 31) it is 31..0. Size convention: Each macro is in three forms - <MACRO>32 which operates in 32bit quantity (bits are numbered 0..31); <MACRO>64 which operates using 64bit quantites (and bits are numbered 0..63); and <MACRO> which operates using the bit size of the target architecture (bits are still numbered 0..63), with 32bit architectures ignoring the first 32bits leaving bit 32 as the most significant. NB: Use EXTRACTED, MSEXTRACTED and LSEXTRACTED as a guideline for naming. LSMASK and LSMASKED are wrong. BIT*(POS): `*' bit constant with just 1 bit set. LSBIT*(OFFSET): `*' bit constant with just 1 bit set - LS bit is zero. MSBIT*(OFFSET): `*' bit constant with just 1 bit set - MS bit is zero. MASK*(FIRST, LAST): `*' bit constant with bits [FIRST .. LAST] set. The <MACRO> (no size) version permits FIRST >= LAST and generates a wrapped bit mask vis ([0..LAST] | [FIRST..LSB]). LSMASK*(FIRST, LAST): Like MASK - LS bit is zero. MSMASK*(FIRST, LAST): Like MASK - LS bit is zero. MASKED*(VALUE, FIRST, LAST): Masks out all but bits [FIRST .. LAST]. LSMASKED*(VALUE, FIRST, LAST): Like MASKED - LS bit is zero. MSMASKED*(VALUE, FIRST, LAST): Like MASKED - MS bit is zero. EXTRACTED*(VALUE, FIRST, LAST): Masks out bits [FIRST .. LAST] but also right shifts the masked value so that bit LAST becomes the least significant (right most). LSEXTRACTED*(VALUE, FIRST, LAST): Same as extracted - LS bit is zero. MSEXTRACTED*(VALUE, FIRST, LAST): Same as extracted - MS bit is zero. SHUFFLED**(VALUE, OLD, NEW): Mask then move a single bit from OLD new NEW. MOVED**(VALUE, OLD_FIRST, OLD_LAST, NEW_FIRST, NEW_LAST): Moves things around so that bits OLD_FIRST..OLD_LAST are masked then moved to NEW_FIRST..NEW_LAST. INSERTED*(VALUE, FIRST, LAST): Takes VALUE and `inserts' the (LAST - FIRST + 1) least significant bits into bit positions [ FIRST .. LAST ]. This is almost the complement to EXTRACTED. IEA_MASKED(SHOULD_MASK, ADDR): Convert the address to the targets natural size. If in 32bit mode, discard the high 32bits. EXTEND*(VALUE): Convert the `*' bit value to the targets natural word size. Sign extend the value if needed. ALIGN_*(VALUE): Round the value upwards so that it is aligned to a `_*' byte boundary. FLOOR_*(VALUE): Truncate the value so that it is aligned to a `_*' byte boundary. ROT*(VALUE, NR_BITS): Return the `*' bit VALUE rotated by NR_BITS right (positive) or left (negative). ROTL*(VALUE, NR_BITS): Return the `*' bit value rotated by NR_BITS left. 0 <= NR_BITS <= `*'. ROTR*(VALUE, NR_BITS): Return the `*' bit value rotated by NR_BITS right. 0 <= NR_BITS <= N. SEXT*(VALUE, SIGN_BIT): Treat SIGN_BIT as VALUEs sign, extend it ti `*' bits. Note: Only the BIT* and MASK* macros return a constant that can be used in variable declarations. */ /* compute the number of bits between START and STOP */ #if (WITH_TARGET_WORD_MSB == 0) #define _MAKE_WIDTH(START, STOP) (STOP - START + 1) #else #define _MAKE_WIDTH(START, STOP) (START - STOP + 1) #endif /* compute the number shifts required to move a bit between LSB (MSB) and POS */ #if (WITH_TARGET_WORD_MSB == 0) #define _LSB_SHIFT(WIDTH, POS) (WIDTH - 1 - POS) #else #define _LSB_SHIFT(WIDTH, POS) (POS) #endif #if (WITH_TARGET_WORD_MSB == 0) #define _MSB_SHIFT(WIDTH, POS) (POS) #else #define _MSB_SHIFT(WIDTH, POS) (WIDTH - 1 - POS) #endif /* compute the absolute bit position given the OFFSET from the MSB(LSB) NB: _MAKE_xxx_POS (WIDTH, _MAKE_xxx_SHIFT (WIDTH, POS)) == POS */ #if (WITH_TARGET_WORD_MSB == 0) #define _MSB_POS(WIDTH, SHIFT) (SHIFT) #else #define _MSB_POS(WIDTH, SHIFT) (WIDTH - 1 - SHIFT) #endif #if (WITH_TARGET_WORD_MSB == 0) #define _LSB_POS(WIDTH, SHIFT) (WIDTH - 1 - SHIFT) #else #define _LSB_POS(WIDTH, SHIFT) (SHIFT) #endif /* convert a 64 bit position into a corresponding 32bit position. MSB pos handles the posibility that the bit lies beyond the 32bit boundary */ #if (WITH_TARGET_WORD_MSB == 0) #define _MSB_32(START, STOP) (START <= STOP \ ? (START < 32 ? 0 : START - 32) \ : (STOP < 32 ? 0 : STOP - 32)) #else #define _MSB_32(START, STOP) (START >= STOP \ ? (START >= 32 ? 31 : START) \ : (STOP >= 32 ? 31 : STOP)) #endif #if (WITH_TARGET_WORD_MSB == 0) #define _LSB_32(START, STOP) (START <= STOP \ ? (STOP < 32 ? 0 : STOP - 32) \ : (START < 32 ? 0 : START - 32)) #else #define _LSB_32(START, STOP) (START >= STOP \ ? (STOP >= 32 ? 31 : STOP) \ : (START >= 32 ? 31 : START)) #endif #if (WITH_TARGET_WORD_MSB == 0) #define _MSB(START, STOP) (START <= STOP ? START : STOP) #else #define _MSB(START, STOP) (START >= STOP ? START : STOP) #endif #if (WITH_TARGET_WORD_MSB == 0) #define _LSB(START, STOP) (START <= STOP ? STOP : START) #else #define _LSB(START, STOP) (START >= STOP ? STOP : START) #endif /* LS/MS Bit operations */ #define LSBIT8(POS) ((unsigned8) 1 << (POS)) #define LSBIT16(POS) ((unsigned16)1 << (POS)) #define LSBIT32(POS) ((unsigned32)1 << (POS)) #define LSBIT64(POS) ((unsigned64)1 << (POS)) #if (WITH_TARGET_WORD_BITSIZE == 64) #define LSBIT(POS) LSBIT64 (POS) #else #define LSBIT(POS) ((unsigned32)((POS) >= 32 \ ? 0 \ : (1 << ((POS) >= 32 ? 0 : (POS))))) #endif #define MSBIT8(POS) ((unsigned8) 1 << ( 8 - 1 - (POS))) #define MSBIT16(POS) ((unsigned16)1 << (16 - 1 - (POS))) #define MSBIT32(POS) ((unsigned32)1 << (32 - 1 - (POS))) #define MSBIT64(POS) ((unsigned64)1 << (64 - 1 - (POS))) #if (WITH_TARGET_WORD_BITSIZE == 64) #define MSBIT(POS) MSBIT64 (POS) #else #define MSBIT(POS) ((unsigned32)((POS) < 32 \ ? 0 \ : (1 << ((POS) < 32 ? 0 : (64 - 1) - (POS))))) #endif /* Bit operations */ #define BIT4(POS) (1 << _LSB_SHIFT (4, (POS))) #define BIT5(POS) (1 << _LSB_SHIFT (5, (POS))) #define BIT10(POS) (1 << _LSB_SHIFT (10, (POS))) #if (WITH_TARGET_WORD_MSB == 0) #define BIT8 MSBIT8 #define BIT16 MSBIT16 #define BIT32 MSBIT32 #define BIT64 MSBIT64 #define BIT MSBIT #else #define BIT8 LSBIT8 #define BIT16 LSBIT16 #define BIT32 LSBIT32 #define BIT64 LSBIT64 #define BIT LSBIT #endif /* multi bit mask */ /* 111111 -> mmll11 -> mm11ll */ #define _MASKn(WIDTH, START, STOP) (((unsigned##WIDTH)(-1) \ >> (_MSB_SHIFT (WIDTH, START) \ + _LSB_SHIFT (WIDTH, STOP))) \ << _LSB_SHIFT (WIDTH, STOP)) #if (WITH_TARGET_WORD_MSB == 0) #define _POS_LE(START, STOP) (START <= STOP) #else #define _POS_LE(START, STOP) (STOP <= START) #endif #if (WITH_TARGET_WORD_BITSIZE == 64) #define MASK(START, STOP) \ (_POS_LE ((START), (STOP)) \ ? _MASKn(64, \ _MSB ((START), (STOP)), \ _LSB ((START), (STOP)) ) \ : (_MASKn(64, _MSB_POS (64, 0), (STOP)) \ | _MASKn(64, (START), _LSB_POS (64, 0)))) #endif #if (WITH_TARGET_WORD_BITSIZE == 32) #define MASK(START, STOP) \ (_POS_LE ((START), (STOP)) \ ? (_POS_LE ((STOP), _MSB_POS (64, 31)) \ ? 0 \ : _MASKn (32, \ _MSB_32 ((START), (STOP)), \ _LSB_32 ((START), (STOP)))) \ : (_MASKn (32, \ _LSB_32 ((START), (STOP)), \ _LSB_POS (32, 0)) \ | (_POS_LE ((STOP), _MSB_POS (64, 31)) \ ? 0 \ : _MASKn (32, \ _MSB_POS (32, 0), \ _MSB_32 ((START), (STOP)))))) #endif #if !defined (MASK) #error "MASK never undefined" #endif /* Multi-bit mask on least significant bits */ #define _LSMASKn(WIDTH, FIRST, LAST) _MASKn (WIDTH, \ _LSB_POS (WIDTH, FIRST), \ _LSB_POS (WIDTH, LAST)) #define LSMASK8(FIRST, LAST) _LSMASKn ( 8, (FIRST), (LAST)) #define LSMASK16(FIRST, LAST) _LSMASKn (16, (FIRST), (LAST)) #define LSMASK32(FIRST, LAST) _LSMASKn (32, (FIRST), (LAST)) #define LSMASK64(FIRST, LAST) _LSMASKn (64, (FIRST), (LAST)) #define LSMASK(FIRST, LAST) (MASK (_LSB_POS (64, FIRST), _LSB_POS (64, LAST))) /* Multi-bit mask on most significant bits */ #define _MSMASKn(WIDTH, FIRST, LAST) _MASKn (WIDTH, \ _MSB_POS (WIDTH, FIRST), \ _MSB_POS (WIDTH, LAST)) #define MSMASK8(FIRST, LAST) _MSMASKn ( 8, (FIRST), (LAST)) #define MSMASK16(FIRST, LAST) _MSMASKn (16, (FIRST), (LAST)) #define MSMASK32(FIRST, LAST) _MSMASKn (32, (FIRST), (LAST)) #define MSMASK64(FIRST, LAST) _MSMASKn (64, (FIRST), (LAST)) #define MSMASK(FIRST, LAST) (MASK (_MSB_POS (64, FIRST), _MSB_POS (64, LAST))) #if (WITH_TARGET_WORD_MSB == 0) #define MASK8 MSMASK8 #define MASK16 MSMASK16 #define MASK32 MSMASK32 #define MASK64 MSMASK64 #else #define MASK8 LSMASK8 #define MASK16 LSMASK16 #define MASK32 LSMASK32 #define MASK64 LSMASK64 #endif /* mask the required bits, leaving them in place */ INLINE_SIM_BITS(unsigned8) LSMASKED8 (unsigned8 word, int first, int last); INLINE_SIM_BITS(unsigned16) LSMASKED16 (unsigned16 word, int first, int last); INLINE_SIM_BITS(unsigned32) LSMASKED32 (unsigned32 word, int first, int last); INLINE_SIM_BITS(unsigned64) LSMASKED64 (unsigned64 word, int first, int last); INLINE_SIM_BITS(unsigned_word) LSMASKED (unsigned_word word, int first, int last); INLINE_SIM_BITS(unsigned8) MSMASKED8 (unsigned8 word, int first, int last); INLINE_SIM_BITS(unsigned16) MSMASKED16 (unsigned16 word, int first, int last); INLINE_SIM_BITS(unsigned32) MSMASKED32 (unsigned32 word, int first, int last); INLINE_SIM_BITS(unsigned64) MSMASKED64 (unsigned64 word, int first, int last); INLINE_SIM_BITS(unsigned_word) MSMASKED (unsigned_word word, int first, int last); #if (WITH_TARGET_WORD_MSB == 0) #define MASKED8 MSMASKED8 #define MASKED16 MSMASKED16 #define MASKED32 MSMASKED32 #define MASKED64 MSMASKED64 #define MASKED MSMASKED #else #define MASKED8 LSMASKED8 #define MASKED16 LSMASKED16 #define MASKED32 LSMASKED32 #define MASKED64 LSMASKED64 #define MASKED LSMASKED #endif /* extract the required bits aligning them with the lsb */ INLINE_SIM_BITS(unsigned8) LSEXTRACTED8 (unsigned8 val, int start, int stop); INLINE_SIM_BITS(unsigned16) LSEXTRACTED16 (unsigned16 val, int start, int stop); INLINE_SIM_BITS(unsigned32) LSEXTRACTED32 (unsigned32 val, int start, int stop); INLINE_SIM_BITS(unsigned64) LSEXTRACTED64 (unsigned64 val, int start, int stop); INLINE_SIM_BITS(unsigned_word) LSEXTRACTED (unsigned_word val, int start, int stop); INLINE_SIM_BITS(unsigned8) MSEXTRACTED8 (unsigned8 val, int start, int stop); INLINE_SIM_BITS(unsigned16) MSEXTRACTED16 (unsigned16 val, int start, int stop); INLINE_SIM_BITS(unsigned32) MSEXTRACTED32 (unsigned32 val, int start, int stop); INLINE_SIM_BITS(unsigned64) MSEXTRACTED64 (unsigned64 val, int start, int stop); INLINE_SIM_BITS(unsigned_word) MSEXTRACTED (unsigned_word val, int start, int stop); #if (WITH_TARGET_WORD_MSB == 0) #define EXTRACTED8 MSEXTRACTED8 #define EXTRACTED16 MSEXTRACTED16 #define EXTRACTED32 MSEXTRACTED32 #define EXTRACTED64 MSEXTRACTED64 #define EXTRACTED MSEXTRACTED #else #define EXTRACTED8 LSEXTRACTED8 #define EXTRACTED16 LSEXTRACTED16 #define EXTRACTED32 LSEXTRACTED32 #define EXTRACTED64 LSEXTRACTED64 #define EXTRACTED LSEXTRACTED #endif /* move a single bit around */ /* NB: the wierdness (N>O?N-O:0) is to stop a warning from GCC */ #define _SHUFFLEDn(N, WORD, OLD, NEW) \ ((OLD) < (NEW) \ ? (((unsigned##N)(WORD) \ >> (((NEW) > (OLD)) ? ((NEW) - (OLD)) : 0)) \ & MASK32((NEW), (NEW))) \ : (((unsigned##N)(WORD) \ << (((OLD) > (NEW)) ? ((OLD) - (NEW)) : 0)) \ & MASK32((NEW), (NEW)))) #define SHUFFLED32(WORD, OLD, NEW) _SHUFFLEDn (32, WORD, OLD, NEW) #define SHUFFLED64(WORD, OLD, NEW) _SHUFFLEDn (64, WORD, OLD, NEW) #define SHUFFLED(WORD, OLD, NEW) _SHUFFLEDn (_word, WORD, OLD, NEW) /* Insert a group of bits into a bit position */ INLINE_SIM_BITS(unsigned8) LSINSERTED8 (unsigned8 val, int start, int stop); INLINE_SIM_BITS(unsigned16) LSINSERTED16 (unsigned16 val, int start, int stop); INLINE_SIM_BITS(unsigned32) LSINSERTED32 (unsigned32 val, int start, int stop); INLINE_SIM_BITS(unsigned64) LSINSERTED64 (unsigned64 val, int start, int stop); INLINE_SIM_BITS(unsigned_word) LSINSERTED (unsigned_word val, int start, int stop); INLINE_SIM_BITS(unsigned8) MSINSERTED8 (unsigned8 val, int start, int stop); INLINE_SIM_BITS(unsigned16) MSINSERTED16 (unsigned16 val, int start, int stop); INLINE_SIM_BITS(unsigned32) MSINSERTED32 (unsigned32 val, int start, int stop); INLINE_SIM_BITS(unsigned64) MSINSERTED64 (unsigned64 val, int start, int stop); INLINE_SIM_BITS(unsigned_word) MSINSERTED (unsigned_word val, int start, int stop); #if (WITH_TARGET_WORD_MSB == 0) #define INSERTED8 MSINSERTED8 #define INSERTED16 MSINSERTED16 #define INSERTED32 MSINSERTED32 #define INSERTED64 MSINSERTED64 #define INSERTED MSINSERTED #else #define INSERTED8 LSINSERTED8 #define INSERTED16 LSINSERTED16 #define INSERTED32 LSINSERTED32 #define INSERTED64 LSINSERTED64 #define INSERTED LSINSERTED #endif /* MOVE bits from one loc to another (combination of extract/insert) */ #define MOVED8(VAL,OH,OL,NH,NL) INSERTED8 (EXTRACTED8 ((VAL), OH, OL), NH, NL) #define MOVED16(VAL,OH,OL,NH,NL) INSERTED16(EXTRACTED16((VAL), OH, OL), NH, NL) #define MOVED32(VAL,OH,OL,NH,NL) INSERTED32(EXTRACTED32((VAL), OH, OL), NH, NL) #define MOVED64(VAL,OH,OL,NH,NL) INSERTED64(EXTRACTED64((VAL), OH, OL), NH, NL) #define MOVED(VAL,OH,OL,NH,NL) INSERTED (EXTRACTED ((VAL), OH, OL), NH, NL) /* Sign extend the quantity to the targets natural word size */ #define EXTEND4(X) (LSSEXT ((X), 3)) #define EXTEND5(X) (LSSEXT ((X), 4)) #define EXTEND8(X) ((signed_word)(signed8)(X)) #define EXTEND11(X) (LSSEXT ((X), 10)) #define EXTEND15(X) (LSSEXT ((X), 14)) #define EXTEND16(X) ((signed_word)(signed16)(X)) #define EXTEND24(X) (LSSEXT ((X), 23)) #define EXTEND32(X) ((signed_word)(signed32)(X)) #define EXTEND64(X) ((signed_word)(signed64)(X)) /* depending on MODE return a 64bit or 32bit (sign extended) value */ #if (WITH_TARGET_WORD_BITSIZE == 64) #define EXTENDED(X) ((signed64)(signed32)(X)) #endif #if (WITH_TARGET_WORD_BITSIZE == 32) #define EXTENDED(X) (X) #endif /* memory alignment macro's */ #define _ALIGNa(A,X) (((X) + ((A) - 1)) & ~((A) - 1)) #define _FLOORa(A,X) ((X) & ~((A) - 1)) #define ALIGN_8(X) _ALIGNa (8, X) #define ALIGN_16(X) _ALIGNa (16, X) #define ALIGN_PAGE(X) _ALIGNa (0x1000, X) #define FLOOR_PAGE(X) ((X) & ~(0x1000 - 1)) /* bit bliting macro's */ #define BLIT32(V, POS, BIT) \ do { \ if (BIT) \ V |= BIT32 (POS); \ else \ V &= ~BIT32 (POS); \ } while (0) #define MBLIT32(V, LO, HI, VAL) \ do { \ (V) = (((V) & ~MASK32 ((LO), (HI))) \ | INSERTED32 (VAL, LO, HI)); \ } while (0) /* some rotate functions. The generic macro's ROT, ROTL, ROTR are intentionally omited. */ INLINE_SIM_BITS(unsigned8) ROT8 (unsigned8 val, int shift); INLINE_SIM_BITS(unsigned16) ROT16 (unsigned16 val, int shift); INLINE_SIM_BITS(unsigned32) ROT32 (unsigned32 val, int shift); INLINE_SIM_BITS(unsigned64) ROT64 (unsigned64 val, int shift); INLINE_SIM_BITS(unsigned8) ROTL8 (unsigned8 val, int shift); INLINE_SIM_BITS(unsigned16) ROTL16 (unsigned16 val, int shift); INLINE_SIM_BITS(unsigned32) ROTL32 (unsigned32 val, int shift); INLINE_SIM_BITS(unsigned64) ROTL64 (unsigned64 val, int shift); INLINE_SIM_BITS(unsigned8) ROTR8 (unsigned8 val, int shift); INLINE_SIM_BITS(unsigned16) ROTR16 (unsigned16 val, int shift); INLINE_SIM_BITS(unsigned32) ROTR32 (unsigned32 val, int shift); INLINE_SIM_BITS(unsigned64) ROTR64 (unsigned64 val, int shift); /* Sign extension operations */ INLINE_SIM_BITS(unsigned8) LSSEXT8 (signed8 val, int sign_bit); INLINE_SIM_BITS(unsigned16) LSSEXT16 (signed16 val, int sign_bit); INLINE_SIM_BITS(unsigned32) LSSEXT32 (signed32 val, int sign_bit); INLINE_SIM_BITS(unsigned64) LSSEXT64 (signed64 val, int sign_bit); INLINE_SIM_BITS(unsigned_word) LSSEXT (signed_word val, int sign_bit); INLINE_SIM_BITS(unsigned8) MSSEXT8 (signed8 val, int sign_bit); INLINE_SIM_BITS(unsigned16) MSSEXT16 (signed16 val, int sign_bit); INLINE_SIM_BITS(unsigned32) MSSEXT32 (signed32 val, int sign_bit); INLINE_SIM_BITS(unsigned64) MSSEXT64 (signed64 val, int sign_bit); INLINE_SIM_BITS(unsigned_word) MSSEXT (signed_word val, int sign_bit); #if (WITH_TARGET_WORD_MSB == 0) #define SEXT8 MSSEXT8 #define SEXT16 MSSEXT16 #define SEXT32 MSSEXT32 #define SEXT64 MSSEXT64 #define SEXT MSSEXT #else #define SEXT8 LSSEXT8 #define SEXT16 LSSEXT16 #define SEXT32 LSSEXT32 #define SEXT64 LSSEXT64 #define SEXT LSSEXT #endif #if H_REVEALS_MODULE_P (SIM_BITS_INLINE) #include "sim-bits.c" #endif #endif /* _SIM_BITS_H_ */
Go to most recent revision | Compare with Previous | Blame | View Log