OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [branches/] [stable_0_2_x/] [or1ksim/] [cpu/] [common/] [parse.c] - Rev 1771

Go to most recent revision | Compare with Previous | Blame | View Log

/* parce.c -- Architecture independent load
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
 
This file is part of OpenRISC 1000 Architectural Simulator.
 
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
 
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
 
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
 
#include "config.h"
 
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
 
#include "port.h"
#include "arch.h"
#include "abstract.h"
#include "dmmu.h"
#include "coff.h"
 
#define OR32_TYPES
#include "elf.h"
 
#include "debug_unit.h"
#include "opcode/or32.h"
#include "parse.h"
#include "sim-config.h"
#include "labels.h"
#include "debug.h"
 
#define MEMORY_LEN 0x100000000
#define MAXLINE_LEN 18000
 
/* Whether to do immediate statistics */
#define IMM_STATS 0
 
extern char *disassembled;
 
/* Unused mem memory marker. It is used when allocating program and data memory
   during parsing */
unsigned int freemem;
 
/* Translation table provided by microkernel. Only used if simulating microkernel. */
static oraddr_t transl_table;
 
/* Used to signal whether during loading of programs a translation fault occured. */
static uint32_t transl_error;
 
char *
stripwhite (string)
     char *string;
{
  register char *s, *t;
 
  for (s = string; whitespace (*s); s++)
    ;
 
  if (*s == 0)
    return (s);
 
  t = s + strlen (s) - 1;
  while (t > s && whitespace (*t))
    t--;
  *++t = '\0';
 
  return s;
}
 
/* This function is very similar to strncpy, except it null terminates the string */
char *strstrip (char *dst, const char *src, int n)
{
  strncpy (dst, src, n);
  *(dst + n) = '\0';
  return dst;
}
 
/* Used only by the simulator loader to translate logical addresses into physical.
   If loadcode() is called with valid virtphy_transl pointer to a table of
   translations then translate() performs translation otherwise phy address is
   equal to logical. */
static oraddr_t translate(oraddr_t laddr,int* breakpoint)
{
  int i;
 
  /* No translation (i.e. when loading kernel into simulator) */
/*  PRINTF("transl_table=%x  laddr=%x\n", transl_table, laddr);
  PRINTF("laddr=%x\n", laddr);*/
  if (transl_table == 0)
    return laddr;
 
  /* Try to find our translation in the table. */
  for(i = 0; i < (MEMORY_LEN / PAGE_SIZE) * 16; i += 16)
    if ((laddr & ~(PAGE_SIZE - 1)) == eval_direct32(transl_table + i, 0, 0)) {
      /* Page modified */
      set_direct32(transl_table + i + 8, -2, 0, 0);
      PRINTF("found paddr=%"PRIx32"\n",
             eval_direct32(transl_table + i + 4, 0, 0) |
                                                     (laddr & (PAGE_SIZE - 1)));
      return (oraddr_t)eval_direct32(transl_table + i + 4, 0, 0) |
                                            (laddr & (oraddr_t)(PAGE_SIZE - 1));
    }
 
  /* Allocate new phy page for us. */
  for(i = 0; i < (MEMORY_LEN / PAGE_SIZE) * 16; i += 16)
    if (eval_direct32(transl_table + i + 8, 0, 0) == 0) {
      /* VPN */
      set_direct32(transl_table + i, laddr & ~(PAGE_SIZE - 1), 0, 0);
      /* PPN */
      set_direct32(transl_table + i + 4, (i/16) * PAGE_SIZE, 0, 0);
      /* Page modified */
      set_direct32(transl_table + i + 8, -2, 0, 0);
      PRINTF("newly allocated ppn=%"PRIx32"\n",
             eval_direct32(transl_table + i + 4, 0, 0));
      PRINTF("newly allocated .ppn=%"PRIxADDR"\n", transl_table + i + 4);
      PRINTF("newly allocated ofs=%"PRIxADDR"\n", (laddr & (PAGE_SIZE - 1)));
      PRINTF("newly allocated paddr=%"PRIx32"\n",
             eval_direct32(transl_table + i + 4, 0, 0) | 
                                                     (laddr & (PAGE_SIZE - 1)));
      return (oraddr_t)eval_direct32(transl_table + i + 4, 0, 0) |
                                            (laddr & (oraddr_t)(PAGE_SIZE - 1));
    }
  /* If we come this far then all phy memory is used and we can't find our page
     nor allocate new page. */
  transl_error = 1;
 
  PRINTF("can't translate %"PRIxADDR"\n", laddr);
  exit(1);
  return -1;
}
 
#if IMM_STATS
int bcnt[33][3] = {0};
int bsum[3] = {0};
uint32_t movhi = 0;
 
int bits (uint32_t val) {
  int i = 1;
  if (!val) return 0;
  while (val != 0 && (int32_t)val != -1) {i++; val = (int32_t)val >> 1;}
  return i;
}
 
void check_insn (uint32_t insn) {
  int insn_index = insn_decode (insn);
  struct insn_op_struct *opd = op_start[insn_index];
  uint32_t data = 0;
  int dis = 0;
  const char *name;
  if (!insn || insn_index < 0) return;
  name = insn_name (insn_index);
  if (strcmp (name, "l.nop") == 0 || strcmp (name, "l.sys") == 0) return;
 
  while (1)
    {
      uint32_t tmp = 0
      unsigned int nbits = 0;
      while (1)
        {         
          tmp |= ((insn >> (opd->type & OPTYPE_SHR)) & ((1 << opd->data) - 1)) << nbits;
          nbits += opd->data;
          if (opd->type & OPTYPE_OP)
            break;
          opd++;
        }
 
      /* Do we have to sign extend? */
      if (opd->type & OPTYPE_SIG)
        {
          int sbit = (opd->type & OPTYPE_SBIT) >> OPTYPE_SBIT_SHR;
          if (tmp & (1 << sbit))
            tmp |= 0xFFFFFFFF << sbit;
        }
      if (opd->type & OPTYPE_DIS) {
        /* We have to read register later.  */
        data += tmp;
        dis = 1;
      } else
        {
          if (!(opd->type & OPTYPE_REG) || dis) {
            if (!dis) data = tmp;
            if (strcmp (name, "l.movhi") == 0) {
              movhi = data << 16;
            } else {
              data |= movhi;
              //PRINTF ("%08x %s\n", data, name);
              if (!(or32_opcodes[insn_index].flags & OR32_IF_DELAY)) {
                bcnt[bits(data)][0]++; bsum[0]++;
              } else {
                if (strcmp (name, "l.bf") == 0 || strcmp (name, "l.bnf") == 0) {
                  bcnt[bits(data)][1]++; bsum[1]++;
                } else {
                  bcnt[bits(data)][2]++; bsum[2]++;
                }
              }
            }
          }
          data = 0;
          dis = 0;
        }
      if(opd->type & OPTYPE_LAST) {
        return;
      }
      opd++;
    }
}
#endif
 
/* Replaced several calls to translate(freemem) with vaddr */
/* Added new mode execution code */
/* Changed parameters so address can be passed as argument */
void addprogram(oraddr_t address, uint32_t insn, int* breakpoint)
{
  int vaddr = (!runtime.sim.filename) ? translate(address,breakpoint) : translate(freemem,breakpoint);
 
  /* We can't have set_program32 functions since it is not gauranteed that the
   * section we're loading is aligned on a 4-byte boundry */
  set_program8 (vaddr, (insn >> 24) & 0xff);
  set_program8 (vaddr + 1, (insn >> 16) & 0xff);
  set_program8 (vaddr + 2, (insn >> 8) & 0xff);
  set_program8 (vaddr + 3, insn & 0xff);
#if IMM_STATS
  check_insn (insn);
#endif
  if(runtime.sim.filename)
    freemem += insn_len (insn_decode (insn));
}
 
/* Load big-endian COFF file.  */
 
void readfile_coff(char *filename, short sections)
{
  FILE *inputfs;
  char inputbuf[4];
  uint32_t insn;
  int32_t sectsize;
  COFF_AOUTHDR coffaouthdr;
  struct COFF_scnhdr coffscnhdr;
  int len;
  int firstthree = 0;
  int breakpoint = 0;
 
  if (!(inputfs = fopen(filename, "r"))) {
    perror("readfile_coff");
    exit(1);
  }
 
  if (fseek(inputfs, sizeof(struct COFF_filehdr), SEEK_SET) == -1) {
    fclose(inputfs);
    perror("readfile_coff");
    exit(1);
  }
 
  if (fread(&coffaouthdr, sizeof(coffaouthdr), 1, inputfs) != 1) {
    fclose(inputfs);
    perror("readfile_coff");
    exit(1);
  }
 
  while(sections--) {
    uint32_t scnhdr_pos = sizeof(struct COFF_filehdr) + sizeof(coffaouthdr)
        + sizeof(struct COFF_scnhdr) * firstthree;
    if (fseek(inputfs, scnhdr_pos, SEEK_SET) == -1) {
      fclose(inputfs);
      perror("readfile_coff");
      exit(1);
    }
    if (fread(&coffscnhdr, sizeof(struct COFF_scnhdr), 1, inputfs) != 1) {
      fclose(inputfs);
      perror("readfile_coff");
      exit(1);
    }
    PRINTF("Section: %s,", coffscnhdr.s_name);
    PRINTF(" paddr: 0x%.8lx,", COFF_LONG_H(coffscnhdr.s_paddr));
    PRINTF(" vaddr: 0x%.8lx,", COFF_LONG_H(coffscnhdr.s_vaddr));
    PRINTF(" size: 0x%.8lx,", COFF_LONG_H(coffscnhdr.s_size));
    PRINTF(" scnptr: 0x%.8lx\n", COFF_LONG_H(coffscnhdr.s_scnptr));
 
    sectsize = COFF_LONG_H(coffscnhdr.s_size);
#if 0
    /* A couple of sanity checks. */
    if (translate(COFF_LONG_H(coffscnhdr.s_vaddr),&breakpoint) < MEMORY_START) {
      PRINTF("Section %s starts out of ", coffscnhdr.s_name);
      PRINTF("memory (at %x)\n", COFF_LONG_H(coffscnhdr.s_vaddr));
      exit(1);
    }
    if (translate(COFF_LONG_H(coffscnhdr.s_vaddr) + sectsize,&breakpoint) >
        MEMORY_START + MEMORY_LEN) {
      PRINTF("Section %s ends out of ", coffscnhdr.s_name);
      PRINTF("memory.\n");
      exit(1);
    }
#endif
#if 0
    if (++firstthree == 1 && strcmp(coffscnhdr.s_name, ".text") != 0) {
      PRINTF("First section should be .text (%s instead)\n", coffscnhdr.s_name);
      exit(1);
    }
    if (firstthree == 2 && strcmp(coffscnhdr.s_name, ".data") != 0) {
      PRINTF("Second section should be .data (%s instead)\n", coffscnhdr.s_name);
      exit(1);
    }
    if (firstthree == 3 && strcmp(coffscnhdr.s_name, ".bss") != 0) {
      PRINTF("Third section should be .bss (%s instead)\n", coffscnhdr.s_name);
      exit(1);
    }
#else
    ++firstthree;
#endif
 
    /* loading section */
    freemem = COFF_LONG_H(coffscnhdr.s_paddr);
    debug(2,"Starting to load at 0x%x\n", freemem);
    if (fseek(inputfs, COFF_LONG_H(coffscnhdr.s_scnptr), SEEK_SET) == -1) {
      fclose(inputfs);
      perror("readfile_coff");
      exit(1);
    }
    while (sectsize > 0 && (len = fread(&inputbuf, sizeof(inputbuf), 1, inputfs))) {
      insn = COFF_LONG_H(inputbuf);
      len = insn_len (insn_decode (insn));
      if (len == 2)
        {
          fseek(inputfs, -2, SEEK_CUR);
          debug(8,"readfile_coff: %"PRIx32" 0x%x   \n", sectsize, insn >> 16);
        }
      else
        debug(8,"readfile_coff: %"PRIx32" 0x%x   \n", sectsize, insn);
      addprogram (freemem, insn, &breakpoint);
      sectsize -= len;
    }
  }
  if (firstthree < 3) {
    PRINTF("One or more missing sections. At least");
    PRINTF(" three sections expected (.text, .data, .bss).\n");
    exit(1);
  }
  if (firstthree > 3) {
    PRINTF("Warning: one or more extra sections. These");
    PRINTF(" sections were handled as .data sections.\n");
  }
 
  fclose(inputfs);
  PRINTF("Finished loading COFF.\n");
  return;
}
 
/* Load symbols from big-endian COFF file. */
 
void readsyms_coff(char *filename, uint32_t symptr, uint32_t syms)
{
  FILE *inputfs;
  struct COFF_syment coffsymhdr;
  int count = 0;
  uint32_t nsyms = syms;
  if (!(inputfs = fopen(filename, "r"))) {
    perror("readsyms_coff");
    exit(1);
  }
 
  if (fseek(inputfs, symptr, SEEK_SET) == -1) {
    fclose(inputfs);
    perror("readsyms_coff");
    exit(1);
  }
 
  while(syms--) {
    int i, n;
    if (fread(&coffsymhdr, COFF_SYMESZ, 1, inputfs) != 1) {
      fclose(inputfs);
      perror("readsyms_coff");
      exit(1);
    }
 
    n = (unsigned char)coffsymhdr.e_numaux[0];
 
    /* check whether this symbol belongs to a section and is external symbol; ignore all others */
    if (COFF_SHORT_H(coffsymhdr.e_scnum) >= 0 && coffsymhdr.e_sclass[0] == C_EXT) {
#if 0
    /* If not important or not in text, skip. */
    if(COFF_SHORT_H(coffsymhdr.e_type) & COFF_N_TMASK & COFF_STYP_TEXT) {
#endif
 
      if (*((uint32_t *)coffsymhdr.e.e.e_zeroes)) {
        if (strlen(coffsymhdr.e.e_name) && strlen(coffsymhdr.e.e_name) < 9)
          add_label(COFF_LONG_H(coffsymhdr.e_value), coffsymhdr.e.e_name);
        debug(8, "[%i] Symbol: %s,", count++, coffsymhdr.e.e_name);
      } else {
        uint32_t fpos = ftell (inputfs);
 
        if (fseek(inputfs, symptr + nsyms * COFF_SYMESZ + COFF_LONG_H(coffsymhdr.e.e.e_offset), SEEK_SET) == 0) {
          char tmp[33], *s = &tmp[0];     
          while (s != &tmp[32])
            if ((*(s++) = fgetc(inputfs)) == 0) break;
          tmp[32] = 0;
          add_label(COFF_LONG_H(coffsymhdr.e_value), &tmp[0]);
          debug(8, "[%i] Symbol: %s,", count++, &tmp[0]);
        }
        fseek(inputfs, fpos, SEEK_SET);
      }
 
      debug(9, " val: 0x%.8lx,", COFF_LONG_H(coffsymhdr.e_value));
      debug(9, " type: %x, %x, auxs: %i\n", COFF_SHORT_H(coffsymhdr.e_type), *((unsigned short *)coffsymhdr.e_type), n);
    }
 
    for (i = 0; i < n; i++)
      if (fread(&coffsymhdr, COFF_SYMESZ, 1, inputfs) != 1) {
        fclose(inputfs);
        perror("readsyms_coff3");
        exit(1);
      }
    syms -= n;
    count += n;
  }
 
  fclose(inputfs);
  PRINTF("Finished loading symbols.\n");
  return;
}
 
void readfile_elf(char *filename)
{
 
  FILE *inputfs;
  struct elf32_hdr elfhdr;
  struct elf32_phdr *elf_phdata = NULL;
  struct elf32_shdr *elf_spnt, *elf_shdata;
  struct elf32_sym *sym_tbl = (struct elf32_sym *)0;
  uint32_t syms = 0;
  char *str_tbl = (char *)0;
  char *s_str = (char *)0;
  int breakpoint = 0;
  uint32_t inputbuf;
  uint32_t padd;
  uint32_t insn;
  int i, j, sectsize, len;
 
  if (!(inputfs = fopen(filename, "r"))) {
    perror("readfile_elf");
    exit(1);
  }
 
  if (fread(&elfhdr, sizeof(elfhdr), 1, inputfs) != 1) {
    perror("readfile_elf");
    exit(1);
  }
 
  if ((elf_shdata = (struct elf32_shdr *)malloc(ELF_SHORT_H(elfhdr.e_shentsize) * ELF_SHORT_H(elfhdr.e_shnum))) == NULL) {
     perror("readfile_elf");
     exit(1);
  }  
 
  if (fseek(inputfs, ELF_LONG_H(elfhdr.e_shoff), SEEK_SET) != 0) {
    perror("readfile_elf");
    exit(1);
  }
 
  if (fread(elf_shdata, ELF_SHORT_H(elfhdr.e_shentsize) * ELF_SHORT_H(elfhdr.e_shnum), 1, inputfs) != 1) {
    perror("readfile_elf");
    exit(1);
  }
 
  if (ELF_LONG_H(elfhdr.e_phoff)) {
 
    if((elf_phdata = (struct elf32_phdr *)malloc(ELF_SHORT_H(elfhdr.e_phnum) * ELF_SHORT_H(elfhdr.e_phentsize))) == NULL) {
      perror("readfile_elf");
      exit(1);
    }
 
    if (fseek(inputfs, ELF_LONG_H(elfhdr.e_phoff), SEEK_SET) != 0) {
      perror("readfile_elf");
      exit(1);
    }
 
    if (fread(elf_phdata, ELF_SHORT_H(elfhdr.e_phnum) * ELF_SHORT_H(elfhdr.e_phentsize), 1, inputfs) != 1) {
      perror("readfile_elf");
      exit(1);
    }
  }
 
  for(i = 0, elf_spnt = elf_shdata; i < ELF_SHORT_H(elfhdr.e_shnum); i++, elf_spnt++) {
 
    if(ELF_LONG_H(elf_spnt->sh_type) == SHT_STRTAB) {
 
      if((str_tbl = (char *)malloc(ELF_LONG_H(elf_spnt->sh_size))) == NULL) {
        perror("readfile_elf");
        exit(1);
      }
 
      if (fseek(inputfs, ELF_LONG_H(elf_spnt->sh_offset), SEEK_SET) != 0) {
        perror("readfile_elf");
        exit(1);
      }
 
      if (fread(str_tbl, ELF_LONG_H(elf_spnt->sh_size), 1, inputfs) != 1) {
        perror("readfile_elf");
        exit(1);
      }
    }
    else if(ELF_LONG_H(elf_spnt->sh_type) == SHT_SYMTAB) {
 
      if((sym_tbl = (struct elf32_sym *)malloc(ELF_LONG_H(elf_spnt->sh_size))) == NULL) {
        perror("readfile_elf");
        exit(1);
      }
 
      if (fseek(inputfs, ELF_LONG_H(elf_spnt->sh_offset), SEEK_SET) != 0) {
        perror("readfile_elf");
        exit(1);
      }
 
      if (fread(sym_tbl, ELF_LONG_H(elf_spnt->sh_size), 1, inputfs) != 1) {
        perror("readfile_elf");
        exit(1);
      }
 
      syms = ELF_LONG_H(elf_spnt->sh_size) / ELF_LONG_H(elf_spnt->sh_entsize);
    }
  }
 
  if (ELF_SHORT_H(elfhdr.e_shstrndx) != SHN_UNDEF) {
    elf_spnt = &elf_shdata[ELF_SHORT_H(elfhdr.e_shstrndx)];
 
    if((s_str = (char *)malloc(ELF_LONG_H(elf_spnt->sh_size))) == NULL) {
      perror("readfile_elf");
      exit(1);
    }
 
    if (fseek(inputfs, ELF_LONG_H(elf_spnt->sh_offset), SEEK_SET) != 0) {
      perror("readfile_elf");
      exit(1);
    }
 
    if (fread(s_str, ELF_LONG_H(elf_spnt->sh_size), 1, inputfs) != 1) {
      perror("readfile_elf");
      exit(1);
    }
  }
 
 
  for(i = 0, elf_spnt = elf_shdata; i < ELF_SHORT_H(elfhdr.e_shnum); i++, elf_spnt++) {
 
    if((ELF_LONG_H(elf_spnt->sh_type) & SHT_PROGBITS) && (ELF_LONG_H(elf_spnt->sh_flags) & SHF_ALLOC)) {
 
      padd = ELF_LONG_H(elf_spnt->sh_addr);
      for(j = 0; j < ELF_SHORT_H(elfhdr.e_phnum); j++) {
        if(ELF_LONG_H(elf_phdata[j].p_offset) &&
           ELF_LONG_H(elf_phdata[j].p_offset) <= ELF_LONG_H(elf_spnt->sh_offset) &&
          (ELF_LONG_H(elf_phdata[j].p_offset) + ELF_LONG_H(elf_phdata[j].p_memsz)) > ELF_LONG_H(elf_spnt->sh_offset))
          padd = ELF_LONG_H(elf_phdata[j].p_paddr) + ELF_LONG_H(elf_spnt->sh_offset) - ELF_LONG_H(elf_phdata[j].p_offset);
      }
 
 
 
      if (ELF_LONG_H(elf_spnt->sh_name) && s_str)
        PRINTF("Section: %s,", &s_str[ELF_LONG_H(elf_spnt->sh_name)]);
      else
        PRINTF("Section: noname,");
      PRINTF(" vaddr: 0x%.8lx,", ELF_LONG_H(elf_spnt->sh_addr));
      PRINTF(" paddr: 0x%"PRIx32, padd);
      PRINTF(" offset: 0x%.8lx,", ELF_LONG_H(elf_spnt->sh_offset));
      PRINTF(" size: 0x%.8lx\n", ELF_LONG_H(elf_spnt->sh_size));
 
      freemem = padd;
      sectsize = ELF_LONG_H(elf_spnt->sh_size);
 
      if (fseek(inputfs, ELF_LONG_H(elf_spnt->sh_offset), SEEK_SET) != 0) {
        perror("readfile_elf");
        exit(1);
      }
 
      while (sectsize > 0 && (len = fread(&inputbuf, sizeof(inputbuf), 1, inputfs))) {
        insn = ELF_LONG_H(inputbuf);
        len = insn_len (insn_decode (insn));
        if (len == 2)
          {
            fseek(inputfs, -2, SEEK_CUR);
            debug(8, "readfile_elf: %x 0x%x   \n", sectsize, insn >> 16);
          }
        else
          debug(8, "readfile_elf: %x 0x%x   \n", sectsize, insn);
        addprogram (freemem, insn, &breakpoint);
        sectsize -= len;
      }
    }
  }
 
  if (str_tbl) {
    i = 0;
    while(syms--) {
      if (sym_tbl[i].st_name && sym_tbl[i].st_info && ELF_SHORT_H(sym_tbl[i].st_shndx) < 0x8000) {
        add_label(ELF_LONG_H(sym_tbl[i].st_value), &str_tbl[ELF_LONG_H(sym_tbl[i].st_name)]);
        debug (8, "%08lx(%s): %x %x %x\n", ELF_LONG_H(sym_tbl[i].st_value), &str_tbl[ELF_LONG_H(sym_tbl[i].st_name)], sym_tbl[i].st_info, sym_tbl[i].st_other, ELF_SHORT_H(sym_tbl[i].st_shndx));
      }
      i++;
    }
  }
}
 
/* Identify file type and call appropriate readfile_X routine. It only
handles orX-coff-big executables at the moment. */
 
void identifyfile(char *filename)
{
  FILE *inputfs;
  struct COFF_filehdr coffhdr;
  struct elf32_hdr elfhdr;
 
  if (!(inputfs = fopen(filename, "r"))) {
    perror(filename);
    fflush(stdout);
    fflush(stderr);
    exit(1);
  }
 
  if (fread(&coffhdr, sizeof(coffhdr), 1, inputfs) == 1) {
    if (COFF_SHORT_H(coffhdr.f_magic) == 0x17a) {
          uint32_t opthdr_size;
      PRINTF("COFF magic: 0x%.4x\n", COFF_SHORT_H(coffhdr.f_magic));
      PRINTF("COFF flags: 0x%.4x\n", COFF_SHORT_H(coffhdr.f_flags));
      PRINTF("COFF symptr: 0x%.8lx\n", COFF_LONG_H(coffhdr.f_symptr));
      if ((COFF_SHORT_H(coffhdr.f_flags) & COFF_F_EXEC) != COFF_F_EXEC) {
        PRINTF("This COFF is not an executable.\n");
        exit(1);
      }
      opthdr_size = COFF_SHORT_H(coffhdr.f_opthdr);
      if (opthdr_size != sizeof(COFF_AOUTHDR)) {
        PRINTF("COFF optional header is missing or not recognized.\n");
        PRINTF("COFF f_opthdr: 0x%"PRIx32"\n", opthdr_size);
        exit(1);
      }
      fclose(inputfs);
      readfile_coff(filename, COFF_SHORT_H(coffhdr.f_nscns));
      readsyms_coff(filename, COFF_LONG_H(coffhdr.f_symptr), COFF_LONG_H(coffhdr.f_nsyms));
      return;
    }
    else {
      PRINTF("Not COFF file format\n");
      fseek(inputfs, 0, SEEK_SET);
    }
  }
  if (fread(&elfhdr, sizeof(elfhdr), 1, inputfs) == 1) {
    if (elfhdr.e_ident[0] == 0x7f && elfhdr.e_ident[1] == 0x45 && elfhdr.e_ident[2] == 0x4c && elfhdr.e_ident[3] == 0x46) {
      PRINTF("ELF type: 0x%.4x\n", ELF_SHORT_H(elfhdr.e_type));
      PRINTF("ELF machine: 0x%.4x\n", ELF_SHORT_H(elfhdr.e_machine));
      PRINTF("ELF version: 0x%.8lx\n", ELF_LONG_H(elfhdr.e_version));
      PRINTF("ELF sec = %d\n", ELF_SHORT_H(elfhdr.e_shnum));
      if (ELF_SHORT_H(elfhdr.e_type) != ET_EXEC ) {
        PRINTF("This ELF is not an executable.\n");
        exit(1);
      }
      fclose(inputfs);
      readfile_elf(filename);
      return;
    }
    else {
      PRINTF("Not ELF file format.\n");
      fseek(inputfs, 0, SEEK_SET);
    }
  }
 
  perror("identifyfile2");
  fclose(inputfs);
 
  return;
}
 
 
/* Loads file to memory starting at address startaddr and returns freemem. */
uint32_t loadcode(char *filename, oraddr_t startaddr, oraddr_t virtphy_transl)
{
  int breakpoint = 0;
 
  transl_error = 0;
  transl_table = virtphy_transl;
  freemem = startaddr;
  PRINTF("loadcode: filename %s  startaddr=%"PRIxADDR"  virtphy_transl=%"PRIxADDR"\n",
         filename, startaddr, virtphy_transl);
  identifyfile(filename);
 
#if IMM_STATS  
  {
    int i = 0, a = 0, b = 0, c = 0;
    PRINTF ("index:arith/branch/jump\n");
    for (i = 0; i < 33; i++)
      PRINTF ("%2i:\t%3.0f%% / %3.0f%%/ %3.0f%%\t%5i / %5i / %5i\n", i,
              100.* (a += bcnt[i][0])/bsum[0], 100.* (b += bcnt[i][1])/bsum[1],
              100.* (c += bcnt[i][2])/bsum[2], bcnt[i][0], bcnt[i][1], bcnt[i][2]);
    PRINTF ("\nsum %i %i %i\n", bsum[0], bsum[1], bsum[2]);
  }
#endif
 
  if (transl_error)
    return -1;
  else
    return translate(freemem,&breakpoint);
 
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.