OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [branches/] [stable_0_2_x/] [or1ksim/] [peripheral/] [mc.c] - Rev 1646

Go to most recent revision | Compare with Previous | Blame | View Log

/* mc.c -- Simulation of Memory Controller
	 Copyright (C) 2001 by Marko Mlinar, markom@opencores.org
 
	 This file is part of OpenRISC 1000 Architectural Simulator.
 
	 This program is free software; you can redistribute it and/or modify
	 it under the terms of the GNU General Public License as published by
	 the Free Software Foundation; either version 2 of the License, or
	 (at your option) any later version.
 
	 This program is distributed in the hope that it will be useful,
	 but WITHOUT ANY WARRANTY; without even the implied warranty of
	 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
	 GNU General Public License for more details.
 
	 You should have received a copy of the GNU General Public License
	 along with this program; if not, write to the Free Software
	 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
 
/* Enable memory controller, via:
  section mc
    enable = 1
    POC = 0x13243545
  end
 
   Limitations:
    - memory refresh is not simulated
*/
 
#include <string.h>
 
#include "config.h"
 
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
 
#include "port.h"
#include "arch.h"
#include "mc.h"
#include "abstract.h"
#include "sim-config.h"
#include "debug.h"
 
DEFAULT_DEBUG_CHANNEL(mc);
 
struct mc_area {
  struct dev_memarea *mem;
  unsigned int cs;
  int mc;
  struct mc_area *next;
};
 
struct mc {
  uint32_t csr;
  uint32_t poc;
  uint32_t ba_mask;
  uint32_t csc[N_CE];
  uint32_t tms[N_CE];
  oraddr_t baseaddr;
  int enabled;
 
  /* Index of this memory controler amongst all the memory controlers */
  int index;
  /* List of memory devices under this mc's control */
  struct mc_area *mc_areas;
 
  struct mc *next;
};
 
static struct mc *mcs = NULL;
 
/* List used to temporarily hold memory areas registered with the mc, while the
 * mc configureation has not been loaded */
static struct mc_area *mc_areas = NULL;
 
void set_csc_tms (int cs, uint32_t csc, uint32_t tms, struct mc *mc)
{
  struct mc_area *cur = mc->mc_areas;
 
  while (cur) {
    if (cur->cs == cs) {
      /* FIXME: No peripheral should _ever_ acess a dev_memarea structure
       * directly */
      TRACE("Remapping %"PRIxADDR"-%"PRIxADDR" to %"PRIxADDR"-%"PRIxADDR"\n",
            cur->mem->addr_compare,
            cur->mem->addr_compare | cur->mem->size_mask,
            (csc >> MC_CSC_SEL_OFFSET) << 22,
            ((csc >> MC_CSC_SEL_OFFSET) << 22) | cur->mem->size_mask);
 
      cur->mem->addr_mask = mc->ba_mask << 22;
      cur->mem->addr_compare = ((csc >> MC_CSC_SEL_OFFSET) /* & 0xff*/) << 22;
      set_mem_valid(cur->mem, (csc >> MC_CSC_EN_OFFSET) & 0x01);
 
      if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_ASYNC) {
        adjust_rw_delay(cur->mem, (tms & 0xff) + ((tms >> 8) & 0x0f),
                        ((tms >> 12)  & 0x0f) + ((tms >> 16) & 0x0f) + ((tms >> 20) & 0x3f));
      } else if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SDRAM) {
        adjust_rw_delay(cur->mem, 3 + ((tms >> 4) & 0x03),
                        3 + ((tms >> 4) & 0x03));
      } else if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SSRAM) {
        adjust_rw_delay(cur->mem, 2, 2);
      } else if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SYNC) {
        adjust_rw_delay(cur->mem, 2, 2);
      }
      return;
    }
    cur = cur->next;
  }
}
 
/* Set a specific MC register with value. */
void mc_write_word(oraddr_t addr, uint32_t value, void *dat)
{
    struct mc *mc = dat;
	int chipsel;
 
	TRACE("mc_write_word(%"PRIxADDR",%08"PRIx32")\n", addr, value);
 
	switch (addr) {
	  case MC_CSR:
	    mc->csr = value;
	    break;
	  case MC_POC:
	    WARN("warning: write to MC's POC register!");
	    break;	    
	  case MC_BA_MASK:
	    mc->ba_mask = value & MC_BA_MASK_VALID;
      for (chipsel = 0; chipsel < N_CE; chipsel++)
        set_csc_tms (chipsel, mc->csc[chipsel], mc->tms[chipsel], mc);
	    break;
		default:
		  if (addr >= MC_CSC(0) && addr <= MC_TMS(N_CE - 1)) {
		    addr -= MC_CSC(0);
		    if ((addr >> 2) & 1)
		      mc->tms[addr >> 3] = value;
		    else
		      mc->csc[addr >> 3] = value;
 
		    set_csc_tms (addr >> 3, mc->csc[addr >> 3], mc->tms[addr >> 3], mc);
		    break;
		  } else
		  	TRACE("write out of range (addr %"PRIxADDR")\n", addr + mc->baseaddr);
	} 
}
 
/* Read a specific MC register. */
uint32_t mc_read_word(oraddr_t addr, void *dat)
{
    struct mc *mc = dat;
	uint32_t value = 0;
 
	TRACE("mc_read_word(%"PRIxADDR")", addr);
 
	switch (addr) {
	  case MC_CSR:
	    value = mc->csr;
	    break;
	  case MC_POC:
	    value = mc->poc;
	    break;	    
	  case MC_BA_MASK:
	    value = mc->ba_mask;
	    break;
		default:
		  if (addr >= MC_CSC(0) && addr <= MC_TMS(N_CE - 1)) {
		    addr -= MC_CSC(0);
		    if ((addr >> 2) & 1)
		      value = mc->tms[addr >> 3];
		    else
		      value = mc->csc[addr >> 3];
		  } else
  			TRACE(" read out of range (addr %"PRIxADDR")\n", addr + mc->baseaddr);
	    break;
	}
	TRACE(" value(%"PRIx32")\n", value);
	return value;
}
 
/* Read POC register and init memory controler regs. */
void mc_reset(void *dat)
{
  struct mc *mc = dat;
  struct mc_area *cur, *prev, *tmp;
 
  PRINTF("Resetting memory controller.\n");
 
  memset(mc->csc, 0, sizeof(mc->csc));
  memset(mc->tms, 0, sizeof(mc->tms));
 
  mc->csr = 0;
  mc->ba_mask = 0;
 
  /* Set CS0 */
  mc->csc[0] = (((mc->poc & 0x0c) >> 2) << MC_CSC_MEMTYPE_OFFSET) | ((mc->poc & 0x03) << MC_CSC_BW_OFFSET) | 1;
 
  if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_ASYNC) {
    mc->tms[0] = MC_TMS_ASYNC_VALID;
  } else if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SDRAM) {
    mc->tms[0] = MC_TMS_SDRAM_VALID;
  } else if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SSRAM) {
    mc->tms[0] = MC_TMS_SSRAM_VALID;
  } else if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SYNC) {
    mc->tms[0] = MC_TMS_SYNC_VALID;
  }
 
  /* Grab control over all the devices we are destined to control */
  cur = mc_areas;
  prev = NULL;
  while (cur) {
    if (cur->mc == mc->index) {
      if (prev) prev->next = cur->next;
      else mc_areas = cur->next;
      prev = cur;
      tmp = cur->next;
      cur->next = mc->mc_areas;
      mc->mc_areas = cur;
      cur = tmp;
    } else {
      prev = cur;
      cur = cur->next;
    }
  }
 
  for (cur = mc->mc_areas; cur; cur = cur->next)
    set_mem_valid(cur->mem, 0);
 
  set_csc_tms (0, mc->csc[0], mc->tms[0], mc);
}
 
void mc_status(void *dat)
{
    struct mc *mc = dat;
    int i;
 
    PRINTF( "\nMemory Controller at 0x%"PRIxADDR":\n", mc->baseaddr );
    PRINTF( "POC: 0x%"PRIx32"\n", mc->poc );
    PRINTF( "BAS: 0x%"PRIx32"\n", mc->ba_mask );
    PRINTF( "CSR: 0x%"PRIx32"\n", mc->csr );
 
    for (i=0; i<N_CE; i++) {
        PRINTF( "CE %02d -  CSC: 0x%"PRIx32"  TMS: 0x%"PRIx32"\n", i,
                mc->csc[i], mc->tms[i]);
    }
}
 
/*--------------------------------------------[ Peripheral<->MC interface ]---*/
/* Registers some memory to be under the memory controllers control */
void mc_reg_mem_area(struct dev_memarea *mem, unsigned int cs, int mc)
{
  struct mc_area *new;
 
  if(!(new = malloc(sizeof(struct mc_area)))) {
    fprintf(stderr, "Out-of-memory\n");
    exit(-1);
  }
  new->cs = cs;
  new->mem = mem;
  new->mc = mc;
 
  new->next = mc_areas;
  mc_areas = new;
}
 
/*-----------------------------------------------------[ MC configuration ]---*/
void mc_enabled(union param_val val, void *dat)
{
  struct mc *mc = dat;
  mc->enabled = val.int_val;
}
 
void mc_baseaddr(union param_val val, void *dat)
{
  struct mc *mc = dat;
  mc->baseaddr = val.addr_val;
}
 
void mc_POC(union param_val val, void *dat)
{
  struct mc *mc = dat;
  mc->poc = val.int_val;
}
 
void mc_index(union param_val val, void *dat)
{
  struct mc *mc = dat;
  mc->index = val.int_val;
}
 
void *mc_sec_start(void)
{
  struct mc *new = malloc(sizeof(struct mc));
 
  if(!new) {
    fprintf(stderr, "Peripheral MC: Run out of memory\n");
    exit(-1);
  }
 
  new->index = 0;
  new->enabled = 0;
  new->mc_areas = NULL;
 
  return new;
}
 
void mc_sec_end(void *dat)
{
  struct mc *mc = dat;
  struct mem_ops ops;
 
  if(!mc->enabled) {
    free(dat);
    return;
  }
 
  /* FIXME: Check to see that the index given to this mc is unique */
 
  mc->next = mcs;
  mcs = mc;
 
  memset(&ops, 0, sizeof(struct mem_ops));
 
  ops.readfunc32 = mc_read_word;
  ops.writefunc32 = mc_write_word;
  ops.write_dat32 = dat;
  ops.read_dat32 = dat;
 
  /* FIXME: Correct delays? */
  ops.delayr = 2;
  ops.delayw = 2;
 
  reg_mem_area(mc->baseaddr, MC_ADDR_SPACE, 1, &ops);
  reg_sim_reset(mc_reset, dat);
  reg_sim_stat(mc_status, dat);
}
 
void reg_mc_sec(void)
{
  struct config_section *sec = reg_config_sec("mc", mc_sec_start, mc_sec_end);
 
  reg_config_param(sec, "enabled", paramt_int, mc_enabled);
  reg_config_param(sec, "baseaddr", paramt_addr, mc_baseaddr);
  reg_config_param(sec, "POC", paramt_int, mc_POC);
  reg_config_param(sec, "index", paramt_int, mc_index);
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.