OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [nog_patch_47/] [or1ksim/] [cpu/] [common/] [abstract.c] - Rev 1308

Go to most recent revision | Compare with Previous | Blame | View Log

/* abstract.c -- Abstract entities
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
 
This file is part of OpenRISC 1000 Architectural Simulator.
 
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
 
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
 
/* Abstract memory and routines that go with this. I need to
add all sorts of other abstract entities. Currently we have
only memory. */
 
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
 
#include "config.h"
#include "sim-config.h"
 
#include "parse.h"
#include "abstract.h"
#include "labels.h"
#include "arch.h"
#include "execute.h"
#include "sprs.h"
#include "stats.h"
#include "except.h"
#include "debug_unit.h"
#include "opcode/or32.h"
#include "support/profile.h"
#include "dmmu.h"
#include "dcache_model.h"
#include "icache_model.h"
#include "debug.h"
 
extern unsigned long reg[];
extern char *disassembled;
 
/* This is an abstract+physical memory array rather than only physical
   memory array */
static unsigned long *simmem32;
 
/* Pointer to memory area descriptions that are assigned to individual
   peripheral devices. */
struct dev_memarea *dev_list;
 
/* Temporary variable to increase speed.  */
struct dev_memarea *cur_area;
 
/* Pointer to memory controller device descriptor.  */
struct dev_memarea *mc_area = (struct dev_memarea *)0;
 
/* These are set by mmu if cache inhibit bit is set for current acces.  */
int data_ci, insn_ci;
 
/* Virtual address of current access. */
unsigned long cur_vadd;
 
/* Calculates bit mask to fit the data */
unsigned long bit_mask (unsigned long data) {
  int i = 0;
  data--;
  while (data >> i)
    data |= 1 << i++;
  return data;
}
 
/* Register read and write function for a memory area.
   addr is inside the area, if addr & addr_mask == addr_compare
   (used also by peripheral devices like 16450 UART etc.) */
void register_memoryarea_mask(unsigned long addr_mask, unsigned long addr_compare,
                         unsigned long size, unsigned granularity, unsigned mc_dev,
                         unsigned long (readfunc)(unsigned long),
                         void (writefunc)(unsigned long, unsigned long))
{
  struct dev_memarea **pptmp;
  unsigned long size_mask = bit_mask (size);
  int found_error = 0;
  addr_compare &= addr_mask;
 
  debug(5, "addr & %08x == %08x to %08x, size %08x, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity);
  /* Go to the end of the list. */
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
    if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)
     || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) {
      if (!found_error) {
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "\taddr & %08lx == %08lx to %08lx, size %08lx, gran %iB\n",
                 addr_mask, addr_compare, addr_compare | bit_mask (size), size,
                 granularity);
      }
      found_error = 1;
      fprintf (stderr, "and\taddr & %08lx == %08lx to %08lx, size %08lx, gran %liB\n",
               (*pptmp)->addr_mask, (*pptmp)->addr_compare,
               (*pptmp)->addr_compare | (*pptmp)->size_mask,
               (*pptmp)->size, (*pptmp)->granularity);
    }
 
  if (found_error)
    exit (-1);
 
  cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea));
 
  if (mc_dev)
    mc_area = *pptmp;
 
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->size = size;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->granularity = granularity;
  (*pptmp)->readfunc = readfunc;
  (*pptmp)->writefunc = writefunc;
  (*pptmp)->log = 0;
  (*pptmp)->delayr = 2;
  (*pptmp)->delayw = 2;
  (*pptmp)->next = NULL;
}
 
/* Register read and write function for a memory area.   
   Memory areas should be aligned. Memory area is rounded up to
   fit the nearest 2^n aligment.
   (used also by peripheral devices like 16450 UART etc.) 
   If mc_dev is 1, this means that this device will be checked first for match
   and will be accessed in case in overlaping memory spaces.
   Only one device can have this set to 1 (used for memory controller) */
void register_memoryarea(unsigned long addr,
                         unsigned long size, unsigned granularity, unsigned mc_dev,
                         unsigned long (readfunc)(unsigned long),
                         void (writefunc)(unsigned long, unsigned long))
{
  unsigned long size_mask = bit_mask (size);
  unsigned long addr_mask = ~size_mask;
  register_memoryarea_mask (addr_mask, addr & addr_mask,
                      size_mask + 1, granularity, mc_dev,
                      readfunc, writefunc);
}
 
 
/* Check if access is to registered area of memory. */
inline struct dev_memarea *verify_memoryarea(unsigned long addr)
{
  struct dev_memarea *ptmp;
 
  /* Check memory controller space first */
  if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask))
    return cur_area = mc_area;
 
  /* Check cached value */
  if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask))
    return cur_area;
 
  /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */
  IFF (config.mc.enabled) {
    /* Check list of registered devices. */
    for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
      if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
        return cur_area = ptmp;
  } else {
    /* Check list of registered devices. */
    for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
      if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask))
        return cur_area = ptmp;
  }
  return cur_area = NULL;
}
 
/* Finds the memory area for the address and adjust the read and write delays for it. */
void adjust_rw_delay(unsigned long memaddr, unsigned long delayr, unsigned long delayw)
{
  if (verify_memoryarea(memaddr)) {
    cur_area->delayr = delayr;
    cur_area->delayw = delayw;
  }
}
 
inline unsigned long evalsim_mem32(unsigned long memaddr)
{
  unsigned long temp;
 
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    case 4:
      temp = cur_area->readfunc(memaddr);
      runtime.sim.mem_cycles += cur_area->delayr;
      break;
    case 1:
      temp = cur_area->readfunc(memaddr) << 24;
      temp |= cur_area->readfunc(memaddr + 1) << 16;
      temp |= cur_area->readfunc(memaddr + 2) << 8;
      temp |= cur_area->readfunc(memaddr + 3);
      runtime.sim.mem_cycles += cur_area->delayr * 4;
      break;
    case 2:
      temp = cur_area->readfunc(memaddr) << 16;
      temp |= cur_area->readfunc(memaddr + 2);
      runtime.sim.mem_cycles += cur_area->delayr * 2;
      break;
    }
  }
  return temp;
}
 
unsigned short evalsim_mem16(unsigned long memaddr)
{
  unsigned long temp;
 
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    case 1:
      temp = cur_area->readfunc(memaddr) << 8;
      temp |= cur_area->readfunc(memaddr + 1);
      runtime.sim.mem_cycles += cur_area->delayr * 2;
      break;
    case 2:
      temp = cur_area->readfunc(memaddr);
      runtime.sim.mem_cycles += cur_area->delayr;
      break;
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      if (memaddr & 2)
        temp &= 0xffff;
      else
        temp >>= 16;
      break;
    } 
  }
  return temp;
}
 
unsigned char evalsim_mem8(unsigned long memaddr)
{
  unsigned long temp;
 
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    case 1:
      temp = cur_area->readfunc(memaddr);
      runtime.sim.mem_cycles += cur_area->delayr;
      break;
    case 2:
      temp = evalsim_mem16 (memaddr & ~1ul);
      if (memaddr & 1)
        temp &= 0xff;
      else
        temp >>= 8;
      break;
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp >>= 8 * (3 - (memaddr & 3));
      temp &= 0xff;
      break;
    } 
  }
  return temp;
}
 
/* Returns 32-bit values from mem array. Big endian version. */
unsigned long read_mem(unsigned long memaddr,int* breakpoint)
{
  unsigned long temp;
 
  cur_vadd = memaddr;
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
  temp = evalsim_mem32(memaddr);
  if (!cur_area) {
    PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    temp = 0;
  }
 
  if (!pending.valid && cur_area->log)
    fprintf (cur_area->log, "[%08lx] -> read %08lx\n", memaddr, temp);
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
}
 
/* Returns 32-bit values from mem array. Big endian version. */
unsigned long eval_mem32(unsigned long memaddr,int* breakpoint)
{
 
  unsigned long temp;
 
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_READ);
 
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    return 0;
  }
 
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
  cur_vadd = memaddr;
 
  memaddr = dmmu_translate(memaddr, 0);
  if (pending.valid)
    return 0;
 
  if (config.dc.enabled) 
    temp = dc_simulate_read(memaddr, 4);
  else {
    temp = evalsim_mem32(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
 
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
}
 
unsigned long eval_direct32(unsigned long memaddr, int *breakpoint,
			    int through_mmu, int through_dc)
{
  unsigned long temp;
 
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); 
      return 0;
  }
 
  cur_vadd = memaddr;
 
  if (through_mmu)
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
  if (through_dc) 
    temp = dc_simulate_read(memaddr, 4);
  else {
    temp = evalsim_mem32(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx) in eval_direct32()\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
 
  return temp;
}
 
 
/* Returns 32-bit values from mem array. Big endian version. */
unsigned long eval_insn(unsigned long memaddr,int* breakpoint)
{
  unsigned long temp;
 
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
  cur_vadd = pc;
 
  // I think this does not belong into eval_insn() 2004-01-30 HP
//  if (config.debug.enabled)
//    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
  // We could place the CheckDebugUnit(DebugInstructionFetch) here, but it is currently done
  // in decode_execute_wrapper, so I leave it like this. 2004-01-30 HP
 
  if (config.ic.enabled) 
    temp = ic_simulate_fetch(memaddr);
  else {
    temp = evalsim_mem32(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
 
  // I think this does not belong into eval_insn() 2004-01-30 HP
//  if (config.debug.enabled)
//    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
}
 
/* Returns 16-bit values from mem array. Big endian version. */
 
unsigned short eval_mem16(unsigned long memaddr,int* breakpoint)
{
  unsigned short temp;
 
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_READ);
 
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    return 0;
  }
 
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
  cur_vadd = memaddr;
 
  memaddr = dmmu_translate(memaddr, 0);
  if (pending.valid)
    return 0;
 
  if (config.dc.enabled) 
    temp = (unsigned short)dc_simulate_read(memaddr, 2);
  else {
    temp = evalsim_mem16(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
 
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
}
 
unsigned short eval_direct16(unsigned long memaddr, int *breakpoint,
			     int through_mmu, int through_dc)
{
  unsigned long temp;
 
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); 
      return 0;
  }
 
  cur_vadd = memaddr;
 
  if (through_mmu)
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
  if (through_dc) 
    temp = dc_simulate_read(memaddr, 2);
  else {
    temp = evalsim_mem16(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx) in eval_direct16()\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
 
  return temp;
}
 
 
/* Returns 8-bit values from mem array. */
 
unsigned char eval_mem8(unsigned long memaddr,int* breakpoint)
{
  unsigned char temp;
 
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_READ);
 
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
 
  cur_vadd = memaddr;
 
  memaddr = dmmu_translate(memaddr, 0);
  if (pending.valid)
    return 0;
 
  if (config.dc.enabled) 
    temp = (unsigned char)dc_simulate_read(memaddr, 1);
  else {
    temp = evalsim_mem8(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (8-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
 
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
}
 
unsigned char eval_direct8(unsigned long memaddr, int *breakpoint,
			   int through_mmu, int through_dc)
{
  unsigned char temp;
 
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__); 
    return 0;
  }
 
  cur_vadd = memaddr;
 
  if (through_mmu)
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
  if (through_dc) 
    temp = (unsigned char)dc_simulate_read(memaddr, 1);
  else {
    temp = evalsim_mem8(memaddr);
    if (!cur_area) {
      PRINTF("EXCEPTION: read out of memory (8-bit access to %.8lx) in eval_direct8()\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
    }
  }
  return temp;
}
 
 
void setsim_mem32(unsigned long memaddr, unsigned long value)
{
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    case 4:
      cur_area->writefunc(memaddr, value);
      runtime.sim.mem_cycles += cur_area->delayw;
      break;
    case 1:
      cur_area->writefunc(memaddr    , (value >> 24) & 0xFF);
      cur_area->writefunc(memaddr + 1, (value >> 16) & 0xFF);
      cur_area->writefunc(memaddr + 2, (value >>  8) & 0xFF);
      cur_area->writefunc(memaddr + 3, (value      ) & 0xFF);
      runtime.sim.mem_cycles += cur_area->delayw * 4;
      break;
    case 2:
      cur_area->writefunc(memaddr, (value >> 16) & 0xFFFF);
      cur_area->writefunc(memaddr + 2, value & 0xFFFF);
      runtime.sim.mem_cycles += cur_area->delayw * 2;
      break;
    }
  } else {
    PRINTF("EXCEPTION: write out of memory (32-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
  }
}
 
void setsim_mem16(unsigned long memaddr, unsigned short value)
{
  unsigned long temp;
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    case 1:
      cur_area->writefunc(memaddr, (value >> 8) & 0xFF);
      cur_area->writefunc(memaddr + 1, value & 0xFF);
      runtime.sim.mem_cycles += cur_area->delayw * 2;
      break;
    case 2:
      cur_area->writefunc(memaddr, value & 0xFFFF);
      runtime.sim.mem_cycles += cur_area->delayw;
      break;
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp &= 0xffff << ((memaddr & 2) ? 16 : 0);
      temp |= (unsigned long)(value & 0xffff) << ((memaddr & 2) ? 0 : 16);
      setsim_mem32 (memaddr & ~3ul, temp);
      break;
    } 
  } else {
    PRINTF("EXCEPTION: write out of memory (16-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
  }
}
 
void setsim_mem8(unsigned long memaddr, unsigned char value)
{
  unsigned long temp;
  if (verify_memoryarea(memaddr)) {
    switch (cur_area->granularity) {
    case 1:
      cur_area->writefunc(memaddr, value);
      runtime.sim.mem_cycles += cur_area->delayw;
      break;
    case 2:
      temp = evalsim_mem16 (memaddr & ~1ul);
      temp &= 0xff << ((memaddr & 1) ? 8 : 0);
      temp |= (unsigned short)(value & 0xff) << ((memaddr & 1) ? 0 : 8);
      setsim_mem16 (memaddr & ~1ul, temp);
      break;
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp &= ~(0xff << (8 * (3 - (memaddr & 3))));
      temp |= (unsigned long)(value & 0xff) << (8 * (3 - (memaddr & 3)));
      setsim_mem32 (memaddr & ~3ul, temp);
      break;
    }
  } else {
    PRINTF("EXCEPTION: write out of memory (8-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
  }
}
 
/* Set mem, 32-bit. Big endian version. */
 
void set_mem32(unsigned long memaddr, unsigned long value,int* breakpoint)
{
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
 
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
  }
 
  cur_vadd = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  if (pending.valid)
    return;
 
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
 
  dc_simulate_write(memaddr, value, 4); 
 
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%08lx] -> write %08lx\n", memaddr, value);
}
 
void set_direct32(unsigned long memaddr, unsigned long value,int* breakpoint,
		  int through_mmu, int through_dc)
{
 
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
  }
 
  cur_vadd = memaddr;
 
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
    memaddr = peek_into_dtlb(memaddr, 1, through_dc);
  }
 
 
  /* __PHX__ fixme: in principle we should write around the cache if 
   *                through_dc is set, but i believe we this will work 
   *                just fine anyway
   */
  dc_simulate_write(memaddr, value, 4); 
 
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%08lx] -> write %08lx\n", memaddr, value);
}
 
 
/* Set mem, 16-bit. Big endian version. */
 
void set_mem16(unsigned long memaddr, unsigned short value, int* breakpoint)
{
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
 
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
  }
 
  cur_vadd = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  if (pending.valid)
    return;
 
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
 
  dc_simulate_write(memaddr, (unsigned long)value, 2); 
 
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%08lx] -> write %08x\n", memaddr, value);
}
 
void set_direct16(unsigned long memaddr, unsigned short value, int* breakpoint,
		  int through_mmu, int through_dc)
{
 
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
  }
 
  cur_vadd = memaddr;
 
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
  }
 
  /* __PHX__ fixme: in principle we should write around the cache if 
   *                through_dc is set, but i believe we this will work 
   *                just fine anyway
   */
  dc_simulate_write(memaddr, value, 2);
 
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%08lx] -> write %08x\n", memaddr, value);
}
 
/* Set mem, 8-bit. */
 
void set_mem8(unsigned long memaddr, unsigned char value, int* breakpoint)
{
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
 
  cur_vadd = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  if (pending.valid) return;
 
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
 
  dc_simulate_write(memaddr, (unsigned long)value, 1); 
 
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%08lx] -> write %08x\n", memaddr, value);
}
 
void set_direct8(unsigned long memaddr, unsigned char value, int* breakpoint,
		 int through_mmu, int through_dc)
{
 
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
  }
 
  cur_vadd = memaddr;
 
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
    memaddr = peek_into_dtlb(memaddr, 0, through_dc);
  }
 
  /* __PHX__ fixme: in principle we should write around the cache if 
   *                through_dc is set, but i believe we this will work 
   *                just fine anyway
   */
  dc_simulate_write(memaddr, value, 1);
 
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
}
 
 
 
void dumpmemory(unsigned int from, unsigned int to, int disasm, int nl)
{
  unsigned int i, j;
  struct label_entry *tmp;
  int ilen = disasm ? 4 : 16;
 
  for(i = from; i < to; i += ilen) {
    PRINTF("%.8x: ", i);
    for (j = 0; j < ilen;) {
      int data = -1;
      if (!disasm) {
        tmp = NULL;
        if (verify_memoryarea(i+j)) {
          struct label_entry *entry;
          entry = get_label(i + j);
          if (entry)
            PRINTF("(%s)", entry->name);
          PRINTF("%02x ", data = evalsim_mem8(i+j));
        } else PRINTF("XX ");  
        j++;
      } else {
        int breakpoint;
        unsigned int _insn = read_mem(i, &breakpoint);
        int index = insn_decode (_insn);
        int len = insn_len (index);
 
        tmp = NULL;
        if (verify_memoryarea(i+j)) {
          struct label_entry *entry;
          entry = get_label(i + j);
          if (entry)
            PRINTF("(%s)", entry->name);
 
          PRINTF(": %08lx ", (unsigned long)_insn);
          if (index >= 0) {
            disassemble_insn (_insn);
            PRINTF(" %s", disassembled);
          } else
            PRINTF("<invalid>");
        } else PRINTF("XXXXXXXX");
        j += len;
      }
    }
    if (nl)
      PRINTF ("\n");
  }
}
 
unsigned long simmem_read_word(unsigned long addr) {
  return simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2];
}
 
void simmem_write_word(unsigned long addr, unsigned long value) {
  simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2] = value;
}
 
unsigned long simmem_read_zero(unsigned long addr) {
  if (config.sim.verbose)
    fprintf (stderr, "WARNING: memory read from non-read memory area 0x%08x.\n", addr);
  return 0;
}
 
void simmem_write_null(unsigned long addr, unsigned long value) {
  if (config.sim.verbose)
    fprintf (stderr, "WARNING: memory write to 0x%08lx, non-write memory area (value 0x%08lx).\n", addr, value);
}
 
/* Initialize memory table from a config struct */
 
void init_memory_table ()
{
  unsigned long memory_needed = 0;
 
  /* If nothing was defined, use default memory block */
  if (config.memory.nmemories) {
    int i;
    for (i = 0; i < config.memory.nmemories; i++) {
      unsigned long start = config.memory.table[i].baseaddr;
      unsigned long length = config.memory.table[i].size;
      char *type = config.memory.table[i].name;
      int rd = config.memory.table[i].delayr;
      int wd = config.memory.table[i].delayw;
      int ce = config.memory.table[i].ce;
      if (config.sim.verbose)
        debug (1, "%08X %08X (%i KB): %s (activated by CE%i; read delay = %icyc, write delay = %icyc)\n",
          start, length, length >> 10, type, ce, rd, wd);
      register_memoryarea(start, length, 4, 0, &simmem_read_word, &simmem_write_word);
      cur_area->misc = memory_needed;
      cur_area->chip_select = ce;
      cur_area->valid = 1;
      cur_area->delayw = wd;
      cur_area->delayr = rd;
      if (config.memory.table[i].log[0] != '\0') {
        if ((cur_area->log = fopen (config.memory.table[i].log, "wt+")) == NULL)
          fprintf (stderr, "WARNING: Cannot open '%s'.\n", config.memory.table[i].log);
      } else
        cur_area->log = NULL;
      memory_needed += cur_area->size;
    }
    PRINTF ("\n");
  } else {
    if (config.sim.verbose)
      fprintf (stderr, "WARNING: Memory not defined, assuming standard configuration.\n");
    register_memoryarea(DEFAULT_MEMORY_START, DEFAULT_MEMORY_LEN, 4, 0, &simmem_read_word, &simmem_write_word);
    cur_area->misc = memory_needed;
    cur_area->chip_select = 0;
    cur_area->valid = 1;
    cur_area->delayw = 1;
    cur_area->delayr = 1;
    cur_area->log = NULL;      
    memory_needed += cur_area->size;
  }
 
  simmem32 = (unsigned long *) malloc (sizeof (unsigned long) * ((memory_needed + 3) / 4));
  if (!simmem32) {
    fprintf (stderr, "Failed to allocate sim memory. Aborting\n");
    exit (-1);
  }
}
 
/* Changes read/write memory in read/write only */
 
void lock_memory_table ()
{
  struct dev_memarea *ptmp;
 
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    if (ptmp->delayr < 0 && ptmp->readfunc == &simmem_read_word)
      ptmp->readfunc = &simmem_read_zero;
    if (ptmp->delayw < 0 && ptmp->writefunc == &simmem_write_word)
      ptmp->writefunc = &simmem_write_null;
 
    /* If this mem area is not for memory chip under MC control
       then this area is valid all the time */
    if (ptmp->readfunc != &simmem_read_word) {
      ptmp->valid = 1;
      ptmp->chip_select = -1;
    }
  }
}
 
/* Closes files, etc. */
 
void done_memory_table ()
{
  struct dev_memarea *ptmp;
 
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    if (ptmp->log)
      fclose (ptmp->log);
  }
}
 
/* Displays current memory configuration */
 
void memory_table_status ()
{
  struct dev_memarea *ptmp;
 
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    PRINTF ("addr & %08lx == %08lx to %08lx, size %08lx, gran %liB\n",
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->size, ptmp->granularity);
    PRINTF ("\t");
    if (ptmp->delayr >= 0)
      PRINTF ("read delay = %i cycles, ", ptmp->delayr);
    else
      PRINTF ("reads not possible, ");
 
    if (ptmp->delayw >= 0)
      PRINTF ("write delay = %i cycles", ptmp->delayw);
    else
      PRINTF ("writes not possible");
 
    if (ptmp->log)
      PRINTF (", (logged)\n");
    else
      PRINTF ("\n");
  }
}
 
/* Outputs time in pretty form to dest string */
 
char *generate_time_pretty (char *dest, long time_ps)
{
  int exp3 = 0;
  if (time_ps) {
    while ((time_ps % 1000) == 0) {
      time_ps /= 1000;
      exp3++;
    }
  }
  sprintf (dest, "%li%cs", time_ps, "pnum"[exp3]);
  return dest;
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.