URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [ecos-2.0/] [packages/] [hal/] [i386/] [arch/] [v2_0/] [include/] [hal_arch.h] - Rev 1765
Compare with Previous | Blame | View Log
#ifndef CYGONCE_HAL_HAL_ARCH_H #define CYGONCE_HAL_HAL_ARCH_H //============================================================================= // // hal_arch.h // // Architecture specific abstractions // //============================================================================= //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): proven // Contributors:proven, pjo, nickg // Date: 1998-10-05 // Purpose: Define architecture abstractions // Usage: #include <cyg/hal/hal_arch.h> // //####DESCRIPTIONEND#### // //============================================================================= #include <pkgconf/hal.h> #include <cyg/infra/cyg_type.h> #include <cyg/hal/var_arch.h> //----------------------------------------------------------------------------- // Processor saved states. This structure is also defined in i386.inc for // assembly code. Do not change this without changing that (or vice versa). #ifdef CYGHWR_HAL_I386_FPU typedef struct { cyg_uint32 fpstate_valid; cyg_uint32 fpstate[108/sizeof(cyg_uint32)]; #ifdef CYGHWR_HAL_I386_PENTIUM_SSE cyg_uint32 xmm0[4]; cyg_uint32 xmm1[4]; cyg_uint32 xmm2[4]; cyg_uint32 xmm3[4]; cyg_uint32 xmm4[4]; cyg_uint32 xmm5[4]; cyg_uint32 xmm6[4]; cyg_uint32 xmm7[4]; cyg_uint32 mxcsr; #endif } HAL_FPU_Context; #endif typedef struct { #ifdef CYGHWR_HAL_I386_FPU #ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY HAL_FPU_Context *fpucontext; #else HAL_FPU_Context fpucontext; #endif #endif cyg_uint32 edi; cyg_uint32 esi; cyg_uint32 ebp; cyg_uint32 esp; cyg_uint32 ebx; cyg_uint32 edx; cyg_uint32 ecx; cyg_uint32 eax; cyg_uint32 vector; // if saved on interrupt contains intr vector cyg_uint32 pc; cyg_uint32 cs; cyg_uint32 eflags; } HAL_SavedRegisters; //----------------------------------------------------------------------------- // Exception handling function. // This function is defined by the kernel according to this prototype. It is // invoked from the HAL to deal with any CPU exceptions that the HAL does // not want to deal with itself. It usually invokes the kernel's exception // delivery mechanism. externC void cyg_hal_deliver_exception( CYG_WORD code, CYG_ADDRWORD data ); //----------------------------------------------------------------------------- // Bit manipulation routines #define HAL_LSBIT_INDEX(index, mask) \ CYG_MACRO_START \ asm volatile( "bsfl %1,%0\n" \ : "=r" (index) \ : "r" (mask) \ ); \ CYG_MACRO_END #define HAL_MSBIT_INDEX(index, mask) \ CYG_MACRO_START \ asm volatile( "bsrl %1,%0\n" \ : "=r" (index) \ : "r" (mask) \ ); \ CYG_MACRO_END //----------------------------------------------------------------------------- // Context Initialization // Initialize the context of a thread. // Arguments: // _sp_ name of variable containing current sp, will be written with new sp // _thread_ thread object address, passed as argument to entry point // _entry_ entry point address. // _id_ bit pattern used in initializing registers, for debugging. #ifndef CYG_HAL_DEFAULT_CS #define CYG_HAL_DEFAULT_CS 0x0008 #endif #ifdef CYGHWR_HAL_I386_FPU # ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY # define HAL_THREAD_INIT_FPU_CONTEXT_SPACE( __sp, __fpspace ) \ __sp -= sizeof(HAL_FPU_Context); \ __fpspace = __sp; # define HAL_THREAD_INIT_FPU_CONTEXT( __regs, __fpspace ) \ CYG_MACRO_START \ cyg_ucount8 __i; \ HAL_FPU_Context *__fpspace_ = (HAL_FPU_Context *)(__fpspace); \ (__regs)->fpucontext = __fpspace_; \ __fpspace_->fpstate_valid = 0; \ for( __i = 0; __i < (sizeof(__fpspace_->fpstate)/sizeof(cyg_uint32)); __i++ ) \ __fpspace_->fpstate[__i] = 0; \ CYG_MACRO_END # else # define HAL_THREAD_INIT_FPU_CONTEXT_SPACE( __sp, __fpspace ) \ (__fpspace) = (__fpspace); # define HAL_THREAD_INIT_FPU_CONTEXT( __regs, __fpspace ) \ CYG_MACRO_START \ cyg_ucount8 __i; \ HAL_FPU_Context *__fpspace_ = &((__regs)->fpucontext); \ __fpspace_->fpstate_valid = 0; \ for( __i = 0; __i < (sizeof(__fpspace_->fpstate)/sizeof(cyg_uint32)); __i++ ) \ __fpspace_->fpstate[__i] = 0; \ CYG_MACRO_END # endif #else # define HAL_THREAD_INIT_FPU_CONTEXT_SPACE( __sp, __fpspace ) \ (__fpspace) = (__fpspace); # define HAL_THREAD_INIT_FPU_CONTEXT( __regs, __fpspace ) #endif #define HAL_THREAD_INIT_CONTEXT( _sparg_, _thread_, _entry_, _id_ ) \ CYG_MACRO_START \ register CYG_WORD* _sp_ = ((CYG_WORD*)((_sparg_) &~15)); \ register CYG_WORD *_fpspace_ = NULL; \ register HAL_SavedRegisters *_regs_; \ \ HAL_THREAD_INIT_FPU_CONTEXT_SPACE( _sp_, _fpspace_ ); \ *(--_sp_) = (CYG_WORD)(0); \ *(--_sp_) = (CYG_WORD)(0); \ *(--_sp_) = (CYG_WORD)(_thread_); \ *(--_sp_) = (CYG_WORD)(0); \ \ _regs_ = (HAL_SavedRegisters *) \ ((unsigned long)_sp_ - sizeof(HAL_SavedRegisters)); \ HAL_THREAD_INIT_FPU_CONTEXT( _regs_, _fpspace_ ); \ _regs_->eflags = (CYG_WORD)(0x00000200); \ _regs_->cs = (CYG_WORD)(CYG_HAL_DEFAULT_CS); \ _regs_->pc = (CYG_WORD)(_entry_); \ _regs_->vector = (CYG_WORD)(_id_); \ _regs_->esp = (CYG_WORD) _sp_-4; \ _regs_->ebp = (CYG_WORD)(_id_); \ _regs_->esi = (CYG_WORD)(_id_); \ _regs_->edi = (CYG_WORD)(_id_); \ _regs_->eax = (CYG_WORD)(_id_); \ _regs_->ebx = (CYG_WORD)(_id_); \ _regs_->ecx = (CYG_WORD)(_id_); \ _regs_->edx = (CYG_WORD)(_id_); \ (_sparg_) = (CYG_ADDRESS) _regs_; \ CYG_MACRO_END //----------------------------------------------------------------------------- // Context switch macros. // The arguments are pointers to locations where the stack pointer // of the current thread is to be stored, and from where the sp of the // next thread is to be fetched. externC void hal_thread_switch_context( CYG_ADDRESS to, CYG_ADDRESS from ); externC void hal_thread_load_context( CYG_ADDRESS to ) __attribute__ ((noreturn)); #define HAL_THREAD_SWITCH_CONTEXT(_fspptr_,_tspptr_) \ hal_thread_switch_context((CYG_ADDRESS)_tspptr_,(CYG_ADDRESS)_fspptr_); #define HAL_THREAD_LOAD_CONTEXT(_tspptr_) \ hal_thread_load_context( (CYG_ADDRESS)_tspptr_ ); //----------------------------------------------------------------------------- // Execution reorder barrier. // When optimizing the compiler can reorder code. In multithreaded systems // where the order of actions is vital, this can sometimes cause problems. // This macro may be inserted into places where reordering should not happen. #define HAL_REORDER_BARRIER() asm volatile ( "" : : : "memory" ) //----------------------------------------------------------------------------- // Breakpoint support // HAL_BREAKPOINT() is a code sequence that will cause a breakpoint to happen // if executed. // HAL_BREAKINST is the value of the breakpoint instruction and // HAL_BREAKINST_SIZE is its size in bytes. #define HAL_BREAKPOINT(_label_) \ CYG_MACRO_START \ asm volatile (" .globl " #_label_ ";" \ #_label_":" \ "int $3" \ ); \ CYG_MACRO_END #define HAL_BREAKINST 0xCC #define HAL_BREAKINST_SIZE 1 //----------------------------------------------------------------------------- // Thread register state manipulation for GDB support. // Translate a stack pointer as saved by the thread context macros above into // a pointer to a HAL_SavedRegisters structure. #define HAL_THREAD_GET_SAVED_REGISTERS( _sp_, _regs_ ) \ (_regs_) = (HAL_SavedRegisters *)(_sp_) // Copy a set of registers from a HAL_SavedRegisters structure into a // GDB ordered array. externC void hal_get_gdb_registers(CYG_ADDRWORD *, HAL_SavedRegisters *); externC void hal_set_gdb_registers(HAL_SavedRegisters *, CYG_ADDRWORD *); #define HAL_GET_GDB_REGISTERS( _aregval_, _regs_ ) \ hal_get_gdb_registers((CYG_ADDRWORD *)(_aregval_), (_regs_)) // Copy a GDB ordered array into a HAL_SavedRegisters structure. #define HAL_SET_GDB_REGISTERS( _regs_ , _aregval_ ) \ hal_set_gdb_registers((_regs_), (CYG_ADDRWORD *)(_aregval_)) //----------------------------------------------------------------------------- // HAL setjmp #define CYGARC_JMP_BUF_SP 0 #define CYGARC_JMP_BUF_EBP 1 #define CYGARC_JMP_BUF_EBX 2 #define CYGARC_JMP_BUF_ESI 3 #define CYGARC_JMP_BUF_EDI 4 #define CYGARC_JMP_BUF_PC 5 #define CYGARC_JMP_BUF_SIZE 6 typedef cyg_uint32 hal_jmp_buf[CYGARC_JMP_BUF_SIZE]; externC int hal_setjmp(hal_jmp_buf env); externC void hal_longjmp(hal_jmp_buf env, int val); //----------------------------------------------------------------------------- // Idle thread code. // This macro is called in the idle thread loop, and gives the HAL the // chance to insert code. Typical idle thread behaviour might be to halt the // processor. externC void hal_idle_thread_action(cyg_uint32 loop_count); #define HAL_IDLE_THREAD_ACTION(_count_) hal_idle_thread_action(_count_) //----------------------------------------------------------------------------- // Minimal and sensible stack sizes: the intention is that applications // will use these to provide a stack size in the first instance prior to // proper analysis. Idle thread stack should be this big. // THESE ARE NOT INTENDED TO BE MICROMETRICALLY ACCURATE FIGURES. // THEY ARE HOWEVER ENOUGH TO START PROGRAMMING. // YOU MUST MAKE YOUR STACKS LARGER IF YOU HAVE LARGE "AUTO" VARIABLES! // This is not a config option because it should not be adjusted except // under "enough rope" sort of disclaimers. // Stack frame overhead per call. Four arguments, 3 local registers // (edi, esi, ebx), four local variables and return address. #define CYGNUM_HAL_STACK_FRAME_SIZE (12 * 4) // Stack needed for a context switch ( sizeof(HAL_SavedRegisters) ). #ifdef CYGHWR_HAL_I386_FPU # define CYGNUM_HAL_STACK_CONTEXT_SIZE ((4 * 12) + 108) #else # define CYGNUM_HAL_STACK_CONTEXT_SIZE (4 * 12) #endif // Interrupt + call to ISR, interrupt_end() and the DSR #define CYGNUM_HAL_STACK_INTERRUPT_SIZE \ ((4*CYGNUM_HAL_STACK_CONTEXT_SIZE) + 4 * CYGNUM_HAL_STACK_FRAME_SIZE) // We define a minimum stack size as the minimum any thread could ever // legitimately get away with. We can throw asserts if users ask for less // than this. Allow enough for three interrupt sources - clock, serial and // one other #if defined(CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK) // An interrupt stack which is large enough for all possible interrupt // conditions (and only used for that purpose) exists. "User" stacks // can therefore be much smaller # define CYGNUM_HAL_STACK_SIZE_MINIMUM \ (2*CYGNUM_HAL_STACK_FRAME_SIZE + 2*CYGNUM_HAL_STACK_INTERRUPT_SIZE) #else // No separate interrupt stack exists. Make sure all threads contain // a stack sufficiently large # define CYGNUM_HAL_STACK_SIZE_MINIMUM \ (((2+3+10)*CYGNUM_HAL_STACK_INTERRUPT_SIZE) + \ (2*CYGNUM_HAL_STACK_FRAME_SIZE)) #endif // Now make a reasonable choice for a typical thread size. Pluck figures // from thin air and say 15 call frames with an average of 16 words of // automatic variables per call frame #define CYGNUM_HAL_STACK_SIZE_TYPICAL \ (CYGNUM_HAL_STACK_SIZE_MINIMUM + \ 15 * (CYGNUM_HAL_STACK_FRAME_SIZE+(16*4))) //-------------------------------------------------------------------------- // Memory access macros #define CYGARC_CACHED_ADDRESS(x) (x) #define CYGARC_UNCACHED_ADDRESS(x) (x) #define CYGARC_PHYSICAL_ADDRESS(x) (x) //-------------------------------------------------------------------------- // Region size finder #if CYGINT_HAL_I386_MEM_REAL_REGION_TOP externC cyg_uint8 *hal_i386_mem_real_region_top( cyg_uint8 *_regionend_ ); # define HAL_MEM_REAL_REGION_TOP( _regionend_ ) \ hal_i386_mem_real_region_top( _regionend_ ) #endif //-------------------------------------------------------------------------- // Macros for switching context between two eCos instances (jump from // code in ROM to code in RAM or vice versa). #define CYGARC_HAL_SAVE_GP() #define CYGARC_HAL_RESTORE_GP() //-------------------------------------------------------------------------- #endif // CYGONCE_HAL_HAL_ARCH_H // End of hal_arch.h