URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [alpha-nat.c] - Rev 1765
Compare with Previous | Blame | View Log
/* Low level Alpha interface, for GDB when running native. Copyright 1993, 1995, 1996, 1998 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "target.h" #include <sys/ptrace.h> #ifdef __linux__ #include <asm/reg.h> #include <alpha/ptrace.h> #else #include <machine/reg.h> #endif #include <sys/user.h> /* Prototypes for local functions. */ static void fetch_osf_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR)); static void fetch_elf_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR)); /* Size of elements in jmpbuf */ #define JB_ELEMENT_SIZE 8 /* The definition for JB_PC in machine/reg.h is wrong. And we can't get at the correct definition in setjmp.h as it is not always available (eg. if _POSIX_SOURCE is defined which is the default). As the defintion is unlikely to change (see comment in <setjmp.h>, define the correct value here. */ #undef JB_PC #define JB_PC 2 /* Figure out where the longjmp will land. We expect the first arg to be a pointer to the jmp_buf structure from which we extract the pc (JB_PC) that we will land at. The pc is copied into PC. This routine returns true on success. */ int get_longjmp_target (pc) CORE_ADDR *pc; { CORE_ADDR jb_addr; char raw_buffer[MAX_REGISTER_RAW_SIZE]; jb_addr = read_register (A0_REGNUM); if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer, sizeof (CORE_ADDR))) return 0; *pc = extract_address (raw_buffer, sizeof (CORE_ADDR)); return 1; } /* Extract the register values out of the core file and store them where `read_register' will find them. CORE_REG_SECT points to the register values themselves, read into memory. CORE_REG_SIZE is the size of that area. WHICH says which set of registers we are handling (0 = int, 2 = float on machines where they are discontiguous). REG_ADDR is the offset from u.u_ar0 to the register values relative to core_reg_sect. This is used with old-fashioned core files to locate the registers in a large upage-plus-stack ".reg" section. Original upage address X is at location core_reg_sect+x+reg_addr. */ static void fetch_osf_core_registers (core_reg_sect, core_reg_size, which, reg_addr) char *core_reg_sect; unsigned core_reg_size; int which; CORE_ADDR reg_addr; { register int regno; register int addr; int bad_reg = -1; /* Table to map a gdb regnum to an index in the core register section. The floating point register values are garbage in OSF/1.2 core files. */ static int core_reg_mapping[NUM_REGS] = { #define EFL (EF_SIZE / 8) EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6, EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6, EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9, EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1, EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7, EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15, EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23, EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31, EF_PC, -1 }; static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_FETCH_REGISTER (regno)) { supply_register (regno, zerobuf); continue; } addr = 8 * core_reg_mapping[regno]; if (addr < 0 || addr >= core_reg_size) { if (bad_reg < 0) bad_reg = regno; } else { supply_register (regno, core_reg_sect + addr); } } if (bad_reg >= 0) { error ("Register %s not found in core file.", REGISTER_NAME (bad_reg)); } } static void fetch_elf_core_registers (core_reg_sect, core_reg_size, which, reg_addr) char *core_reg_sect; unsigned core_reg_size; int which; CORE_ADDR reg_addr; { if (core_reg_size < 32 * 8) { error ("Core file register section too small (%u bytes).", core_reg_size); return; } if (which == 2) { /* The FPU Registers. */ memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31 * 8); memset (®isters[REGISTER_BYTE (FP0_REGNUM + 31)], 0, 8); memset (®ister_valid[FP0_REGNUM], 1, 32); } else { /* The General Registers. */ memcpy (®isters[REGISTER_BYTE (V0_REGNUM)], core_reg_sect, 31 * 8); memcpy (®isters[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8); memset (®isters[REGISTER_BYTE (ZERO_REGNUM)], 0, 8); memset (®ister_valid[V0_REGNUM], 1, 32); register_valid[PC_REGNUM] = 1; } } /* Map gdb internal register number to a ptrace ``address''. These ``addresses'' are defined in <sys/ptrace.h> */ #define REGISTER_PTRACE_ADDR(regno) \ (regno < FP0_REGNUM ? GPR_BASE + (regno) \ : regno == PC_REGNUM ? PC \ : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \ : 0) /* Return the ptrace ``address'' of register REGNO. */ CORE_ADDR register_addr (regno, blockend) int regno; CORE_ADDR blockend; { return REGISTER_PTRACE_ADDR (regno); } int kernel_u_size () { return (sizeof (struct user)); } #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T) #include <sys/procfs.h> /* * See the comment in m68k-tdep.c regarding the utility of these functions. */ void supply_gregset (gregsetp) gregset_t *gregsetp; { register int regi; register long *regp = ALPHA_REGSET_BASE (gregsetp); static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; for (regi = 0; regi < 31; regi++) supply_register (regi, (char *) (regp + regi)); supply_register (PC_REGNUM, (char *) (regp + 31)); /* Fill inaccessible registers with zero. */ supply_register (ZERO_REGNUM, zerobuf); supply_register (FP_REGNUM, zerobuf); } void fill_gregset (gregsetp, regno) gregset_t *gregsetp; int regno; { int regi; register long *regp = ALPHA_REGSET_BASE (gregsetp); for (regi = 0; regi < 31; regi++) if ((regno == -1) || (regno == regi)) *(regp + regi) = *(long *) ®isters[REGISTER_BYTE (regi)]; if ((regno == -1) || (regno == PC_REGNUM)) *(regp + 31) = *(long *) ®isters[REGISTER_BYTE (PC_REGNUM)]; } /* * Now we do the same thing for floating-point registers. * Again, see the comments in m68k-tdep.c. */ void supply_fpregset (fpregsetp) fpregset_t *fpregsetp; { register int regi; register long *regp = ALPHA_REGSET_BASE (fpregsetp); for (regi = 0; regi < 32; regi++) supply_register (regi + FP0_REGNUM, (char *) (regp + regi)); } void fill_fpregset (fpregsetp, regno) fpregset_t *fpregsetp; int regno; { int regi; register long *regp = ALPHA_REGSET_BASE (fpregsetp); for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++) { if ((regno == -1) || (regno == regi)) { *(regp + regi - FP0_REGNUM) = *(long *) ®isters[REGISTER_BYTE (regi)]; } } } #endif /* Register that we are able to handle alpha core file formats. */ static struct core_fns alpha_osf_core_fns = { /* This really is bfd_target_unknown_flavour. */ bfd_target_unknown_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_osf_core_registers, /* core_read_registers */ NULL /* next */ }; static struct core_fns alpha_elf_core_fns = { bfd_target_elf_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_elf_core_registers, /* core_read_registers */ NULL /* next */ }; void _initialize_core_alpha () { add_core_fns (&alpha_osf_core_fns); add_core_fns (&alpha_elf_core_fns); }