URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [gdb-5.0/] [sim/] [mips/] [mips.igen] - Rev 1780
Go to most recent revision | Compare with Previous | Blame | View Log
// -*- C -*-
//
// In mips.igen, the semantics for many of the instructions were created
// using code generated by gencode. Those semantic segments could be
// greatly simplified.
//
// <insn> ::=
// <insn-word> { "+" <insn-word> }
// ":" <format-name>
// ":" <filter-flags>
// ":" <options>
// ":" <name>
// <nl>
// { <insn-model> }
// { <insn-mnemonic> }
// <code-block>
//
// IGEN config - mips16
// :option:16::insn-bit-size:16
// :option:16::hi-bit-nr:15
:option:16::insn-specifying-widths:true
:option:16::gen-delayed-branch:false
// IGEN config - mips32/64..
// :option:32::insn-bit-size:32
// :option:32::hi-bit-nr:31
:option:32::insn-specifying-widths:true
:option:32::gen-delayed-branch:false
// Generate separate simulators for each target
// :option:::multi-sim:true
// Models known by this simulator
:model:::mipsI:mips3000:
:model:::mipsII:mips6000:
:model:::mipsIII:mips4000:
:model:::mipsIV:mips8000:
:model:::mips16:mips16:
:model:::r3900:mips3900:
:model:::vr4100:mips4100:
:model:::vr5000:mips5000:
// Pseudo instructions known by IGEN
:internal::::illegal:
{
SignalException (ReservedInstruction, 0);
}
// Pseudo instructions known by interp.c
// For grep - RSVD_INSTRUCTION, RSVD_INSTRUCTION_MASK
000000,5.*,5.*,5.*,5.OP,000101:SPECIAL:32::RSVD
"rsvd <OP>"
{
SignalException (ReservedInstruction, instruction_0);
}
// Helper:
//
// Simulate a 32 bit delayslot instruction
//
:function:::address_word:delayslot32:address_word target
{
instruction_word delay_insn;
sim_events_slip (SD, 1);
DSPC = CIA;
CIA = CIA + 4; /* NOTE not mips16 */
STATE |= simDELAYSLOT;
delay_insn = IMEM32 (CIA); /* NOTE not mips16 */
ENGINE_ISSUE_PREFIX_HOOK();
idecode_issue (CPU_, delay_insn, (CIA));
STATE &= ~simDELAYSLOT;
return target;
}
:function:::address_word:nullify_next_insn32:
{
sim_events_slip (SD, 1);
dotrace (SD, CPU, tracefh, 2, CIA + 4, 4, "load instruction");
return CIA + 8;
}
// Helper:
//
// Check that an access to a HI/LO register meets timing requirements
//
// The following requirements exist:
//
// - A MT {HI,LO} update was not immediatly preceeded by a MF {HI,LO} read
// - A OP {HI,LO} update was not immediatly preceeded by a MF {HI,LO} read
// - A MF {HI,LO} read was not corrupted by a preceeding MT{LO,HI} update
// corruption occures when MT{LO,HI} is preceeded by a OP {HI,LO}.
//
:function:::int:check_mf_cycles:hilo_history *history, signed64 time, const char *new
{
if (history->mf.timestamp + 3 > time)
{
sim_engine_abort (SD, CPU, CIA, "HILO: %s: %s at 0x%08lx too close to MF at 0x%08lx\n",
itable[MY_INDEX].name,
new, (long) CIA,
(long) history->mf.cia);
return 0;
}
return 1;
}
:function:::int:check_mt_hilo:hilo_history *history
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
{
signed64 time = sim_events_time (SD);
int ok = check_mf_cycles (SD_, history, time, "MT");
history->mt.timestamp = time;
history->mt.cia = CIA;
return ok;
}
:function:::int:check_mt_hilo:hilo_history *history
*r3900:
{
signed64 time = sim_events_time (SD);
history->mt.timestamp = time;
history->mt.cia = CIA;
return 1;
}
:function:::int:check_mf_hilo:hilo_history *history, hilo_history *peer
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
signed64 time = sim_events_time (SD);
int ok = 1;
if (peer != NULL
&& peer->mt.timestamp > history->op.timestamp
&& history->mt.timestamp < history->op.timestamp
&& ! (history->mf.timestamp > history->op.timestamp
&& history->mf.timestamp < peer->mt.timestamp)
&& ! (peer->mf.timestamp > history->op.timestamp
&& peer->mf.timestamp < peer->mt.timestamp))
{
/* The peer has been written to since the last OP yet we have
not */
sim_engine_abort (SD, CPU, CIA, "HILO: %s: MF at 0x%08lx following OP at 0x%08lx corrupted by MT at 0x%08lx\n",
itable[MY_INDEX].name,
(long) CIA,
(long) history->op.cia,
(long) peer->mt.cia);
ok = 0;
}
history->mf.timestamp = time;
history->mf.cia = CIA;
return ok;
}
:function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
{
signed64 time = sim_events_time (SD);
int ok = (check_mf_cycles (SD_, hi, time, "OP")
&& check_mf_cycles (SD_, lo, time, "OP"));
hi->op.timestamp = time;
lo->op.timestamp = time;
hi->op.cia = CIA;
lo->op.cia = CIA;
return ok;
}
// The r3900 mult and multu insns _can_ be exectuted immediatly after
// a mf{hi,lo}
:function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo
*r3900:
{
/* FIXME: could record the fact that a stall occured if we want */
signed64 time = sim_events_time (SD);
hi->op.timestamp = time;
lo->op.timestamp = time;
hi->op.cia = CIA;
lo->op.cia = CIA;
return 1;
}
:function:::int:check_div_hilo:hilo_history *hi, hilo_history *lo
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
signed64 time = sim_events_time (SD);
int ok = (check_mf_cycles (SD_, hi, time, "OP")
&& check_mf_cycles (SD_, lo, time, "OP"));
hi->op.timestamp = time;
lo->op.timestamp = time;
hi->op.cia = CIA;
lo->op.cia = CIA;
return ok;
}
//
// Mips Architecture:
//
// CPU Instruction Set (mipsI - mipsIV)
//
000000,5.RS,5.RT,5.RD,00000,100000:SPECIAL:32::ADD
"add r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
{
ALU32_BEGIN (GPR[RS]);
ALU32_ADD (GPR[RT]);
ALU32_END (GPR[RD]);
}
TRACE_ALU_RESULT (GPR[RD]);
}
001000,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDI
"addi r<RT>, r<RS>, IMMEDIATE"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE));
{
ALU32_BEGIN (GPR[RS]);
ALU32_ADD (EXTEND16 (IMMEDIATE));
ALU32_END (GPR[RT]);
}
TRACE_ALU_RESULT (GPR[RT]);
}
:function:::void:do_addiu:int rs, int rt, unsigned16 immediate
{
TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
GPR[rt] = EXTEND32 (GPR[rs] + EXTEND16 (immediate));
TRACE_ALU_RESULT (GPR[rt]);
}
001001,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDIU
"addiu r<RT>, r<RS>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_addiu (SD_, RS, RT, IMMEDIATE);
}
:function:::void:do_addu:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = EXTEND32 (GPR[rs] + GPR[rt]);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000,100001:SPECIAL:32::ADDU
"addu r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_addu (SD_, RS, RT, RD);
}
:function:::void:do_and:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = GPR[rs] & GPR[rt];
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000,100100:SPECIAL:32::AND
"and r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_and (SD_, RS, RT, RD);
}
001100,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ANDI
"and r<RT>, r<RS>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
TRACE_ALU_INPUT2 (GPR[RS], IMMEDIATE);
GPR[RT] = GPR[RS] & IMMEDIATE;
TRACE_ALU_RESULT (GPR[RT]);
}
000100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQ
"beq r<RS>, r<RT>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
010100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQL
"beql r<RS>, r<RT>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000001,5.RS,00001,16.OFFSET:REGIMM:32::BGEZ
"bgez r<RS>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] >= 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
000001,5.RS!31,10001,16.OFFSET:REGIMM:32::BGEZAL
"bgezal r<RS>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
RA = (CIA + 8);
if ((signed_word) GPR[RS] >= 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
000001,5.RS!31,10011,16.OFFSET:REGIMM:32::BGEZALL
"bgezall r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
RA = (CIA + 8);
/* NOTE: The branch occurs AFTER the next instruction has been
executed */
if ((signed_word) GPR[RS] >= 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000001,5.RS,00011,16.OFFSET:REGIMM:32::BGEZL
"bgezl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] >= 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZ
"bgtz r<RS>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] > 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
010111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZL
"bgtzl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
/* NOTE: The branch occurs AFTER the next instruction has been
executed */
if ((signed_word) GPR[RS] > 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZ
"blez r<RS>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
/* NOTE: The branch occurs AFTER the next instruction has been
executed */
if ((signed_word) GPR[RS] <= 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
010110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZL
"bgezl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] <= 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000001,5.RS,00000,16.OFFSET:REGIMM:32::BLTZ
"bltz r<RS>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] < 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
000001,5.RS!31,10000,16.OFFSET:REGIMM:32::BLTZAL
"bltzal r<RS>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
RA = (CIA + 8);
/* NOTE: The branch occurs AFTER the next instruction has been
executed */
if ((signed_word) GPR[RS] < 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
000001,5.RS!31,10010,16.OFFSET:REGIMM:32::BLTZALL
"bltzall r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
RA = (CIA + 8);
if ((signed_word) GPR[RS] < 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000001,5.RS,00010,16.OFFSET:REGIMM:32::BLTZL
"bltzl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
/* NOTE: The branch occurs AFTER the next instruction has been
executed */
if ((signed_word) GPR[RS] < 0)
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNE
"bne r<RS>, r<RT>, <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
}
010101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNEL
"bnel r<RS>, r<RT>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word offset = EXTEND16 (OFFSET) << 2;
check_branch_bug ();
if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
{
mark_branch_bug (NIA+offset);
DELAY_SLOT (NIA + offset);
}
else
NULLIFY_NEXT_INSTRUCTION ();
}
000000,20.CODE,001101:SPECIAL:32::BREAK
"break"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
/* Check for some break instruction which are reserved for use by the simulator. */
unsigned int break_code = instruction_0 & HALT_INSTRUCTION_MASK;
if (break_code == (HALT_INSTRUCTION & HALT_INSTRUCTION_MASK) ||
break_code == (HALT_INSTRUCTION2 & HALT_INSTRUCTION_MASK))
{
sim_engine_halt (SD, CPU, NULL, cia,
sim_exited, (unsigned int)(A0 & 0xFFFFFFFF));
}
else if (break_code == (BREAKPOINT_INSTRUCTION & HALT_INSTRUCTION_MASK) ||
break_code == (BREAKPOINT_INSTRUCTION2 & HALT_INSTRUCTION_MASK))
{
if (STATE & simDELAYSLOT)
PC = cia - 4; /* reference the branch instruction */
else
PC = cia;
SignalException(BreakPoint, instruction_0);
}
else
{
/* If we get this far, we're not an instruction reserved by the sim. Raise
the exception. */
SignalException(BreakPoint, instruction_0);
}
}
000000,5.RS,5.RT,5.RD,00000,101100:SPECIAL:64::DADD
"dadd r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
/* this check's for overflow */
TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
{
ALU64_BEGIN (GPR[RS]);
ALU64_ADD (GPR[RT]);
ALU64_END (GPR[RD]);
}
TRACE_ALU_RESULT (GPR[RD]);
}
011000,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDI
"daddi r<RT>, r<RS>, <IMMEDIATE>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE));
{
ALU64_BEGIN (GPR[RS]);
ALU64_ADD (EXTEND16 (IMMEDIATE));
ALU64_END (GPR[RT]);
}
TRACE_ALU_RESULT (GPR[RT]);
}
:function:::void:do_daddiu:int rs, int rt, unsigned16 immediate
{
TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
GPR[rt] = GPR[rs] + EXTEND16 (immediate);
TRACE_ALU_RESULT (GPR[rt]);
}
011001,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDIU
"daddu r<RT>, r<RS>, <IMMEDIATE>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_daddiu (SD_, RS, RT, IMMEDIATE);
}
:function:::void:do_daddu:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = GPR[rs] + GPR[rt];
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000,101101:SPECIAL:64::DADDU
"daddu r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_daddu (SD_, RS, RT, RD);
}
:function:::void:do_ddiv:int rs, int rt
{
check_div_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
{
signed64 n = GPR[rs];
signed64 d = GPR[rt];
signed64 hi;
signed64 lo;
if (d == 0)
{
lo = SIGNED64 (0x8000000000000000);
hi = 0;
}
else if (d == -1 && n == SIGNED64 (0x8000000000000000))
{
lo = SIGNED64 (0x8000000000000000);
hi = 0;
}
else
{
lo = (n / d);
hi = (n % d);
}
HI = hi;
LO = lo;
}
TRACE_ALU_RESULT2 (HI, LO);
}
000000,5.RS,5.RT,0000000000011110:SPECIAL:64::DDIV
"ddiv r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_ddiv (SD_, RS, RT);
}
:function:::void:do_ddivu:int rs, int rt
{
check_div_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
{
unsigned64 n = GPR[rs];
unsigned64 d = GPR[rt];
unsigned64 hi;
unsigned64 lo;
if (d == 0)
{
lo = SIGNED64 (0x8000000000000000);
hi = 0;
}
else
{
lo = (n / d);
hi = (n % d);
}
HI = hi;
LO = lo;
}
TRACE_ALU_RESULT2 (HI, LO);
}
000000,5.RS,5.RT,0000000000,011111:SPECIAL:64::DDIVU
"ddivu r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_ddivu (SD_, RS, RT);
}
:function:::void:do_div:int rs, int rt
{
check_div_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
{
signed32 n = GPR[rs];
signed32 d = GPR[rt];
if (d == 0)
{
LO = EXTEND32 (0x80000000);
HI = EXTEND32 (0);
}
else if (n == SIGNED32 (0x80000000) && d == -1)
{
LO = EXTEND32 (0x80000000);
HI = EXTEND32 (0);
}
else
{
LO = EXTEND32 (n / d);
HI = EXTEND32 (n % d);
}
}
TRACE_ALU_RESULT2 (HI, LO);
}
000000,5.RS,5.RT,0000000000011010:SPECIAL:32::DIV
"div r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_div (SD_, RS, RT);
}
:function:::void:do_divu:int rs, int rt
{
check_div_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
{
unsigned32 n = GPR[rs];
unsigned32 d = GPR[rt];
if (d == 0)
{
LO = EXTEND32 (0x80000000);
HI = EXTEND32 (0);
}
else
{
LO = EXTEND32 (n / d);
HI = EXTEND32 (n % d);
}
}
TRACE_ALU_RESULT2 (HI, LO);
}
000000,5.RS,5.RT,0000000000011011:SPECIAL:32::DIVU
"divu r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_divu (SD_, RS, RT);
}
:function:::void:do_dmultx:int rs, int rt, int rd, int signed_p
{
unsigned64 lo;
unsigned64 hi;
unsigned64 m00;
unsigned64 m01;
unsigned64 m10;
unsigned64 m11;
unsigned64 mid;
int sign;
unsigned64 op1 = GPR[rs];
unsigned64 op2 = GPR[rt];
check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
/* make signed multiply unsigned */
sign = 0;
if (signed_p)
{
if (op1 < 0)
{
op1 = - op1;
++sign;
}
if (op2 < 0)
{
op2 = - op2;
++sign;
}
}
/* multuply out the 4 sub products */
m00 = ((unsigned64) VL4_8 (op1) * (unsigned64) VL4_8 (op2));
m10 = ((unsigned64) VH4_8 (op1) * (unsigned64) VL4_8 (op2));
m01 = ((unsigned64) VL4_8 (op1) * (unsigned64) VH4_8 (op2));
m11 = ((unsigned64) VH4_8 (op1) * (unsigned64) VH4_8 (op2));
/* add the products */
mid = ((unsigned64) VH4_8 (m00)
+ (unsigned64) VL4_8 (m10)
+ (unsigned64) VL4_8 (m01));
lo = U8_4 (mid, m00);
hi = (m11
+ (unsigned64) VH4_8 (mid)
+ (unsigned64) VH4_8 (m01)
+ (unsigned64) VH4_8 (m10));
/* fix the sign */
if (sign & 1)
{
lo = -lo;
if (lo == 0)
hi = -hi;
else
hi = -hi - 1;
}
/* save the result HI/LO (and a gpr) */
LO = lo;
HI = hi;
if (rd != 0)
GPR[rd] = lo;
TRACE_ALU_RESULT2 (HI, LO);
}
:function:::void:do_dmult:int rs, int rt, int rd
{
do_dmultx (SD_, rs, rt, rd, 1);
}
000000,5.RS,5.RT,0000000000011100:SPECIAL:64::DMULT
"dmult r<RS>, r<RT>"
*mipsIII,mipsIV:
*vr4100:
{
do_dmult (SD_, RS, RT, 0);
}
000000,5.RS,5.RT,5.RD,00000011100:SPECIAL:64::DMULT
"dmult r<RS>, r<RT>":RD == 0
"dmult r<RD>, r<RS>, r<RT>"
*vr5000:
{
do_dmult (SD_, RS, RT, RD);
}
:function:::void:do_dmultu:int rs, int rt, int rd
{
do_dmultx (SD_, rs, rt, rd, 0);
}
000000,5.RS,5.RT,0000000000011101:SPECIAL:64::DMULTU
"dmultu r<RS>, r<RT>"
*mipsIII,mipsIV:
*vr4100:
{
do_dmultu (SD_, RS, RT, 0);
}
000000,5.RS,5.RT,5.RD,00000011101:SPECIAL:64::DMULTU
"dmultu r<RD>, r<RS>, r<RT>":RD == 0
"dmultu r<RS>, r<RT>"
*vr5000:
{
do_dmultu (SD_, RS, RT, RD);
}
:function:::void:do_dsll:int rt, int rd, int shift
{
GPR[rd] = GPR[rt] << shift;
}
:function:::void:do_dsllv:int rs, int rt, int rd
{
int s = MASKED64 (GPR[rs], 5, 0);
GPR[rd] = GPR[rt] << s;
}
00000000000,5.RT,5.RD,5.SHIFT,111000:SPECIAL:64::DSLL
"dsll r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsll (SD_, RT, RD, SHIFT);
}
00000000000,5.RT,5.RD,5.SHIFT,111100:SPECIAL:64::DSLL32
"dsll32 r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
int s = 32 + SHIFT;
GPR[RD] = GPR[RT] << s;
}
000000,5.RS,5.RT,5.RD,00000010100:SPECIAL:64::DSLLV
"dsllv r<RD>, r<RT>, r<RS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsllv (SD_, RS, RT, RD);
}
:function:::void:do_dsra:int rt, int rd, int shift
{
GPR[rd] = ((signed64) GPR[rt]) >> shift;
}
00000000000,5.RT,5.RD,5.SHIFT,111011:SPECIAL:64::DSRA
"dsra r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsra (SD_, RT, RD, SHIFT);
}
00000000000,5.RT,5.RD,5.SHIFT,111111:SPECIAL:64::DSRA32
"dsra32 r<RT>, r<RD>, <SHIFT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
int s = 32 + SHIFT;
GPR[RD] = ((signed64) GPR[RT]) >> s;
}
:function:::void:do_dsrav:int rs, int rt, int rd
{
int s = MASKED64 (GPR[rs], 5, 0);
TRACE_ALU_INPUT2 (GPR[rt], s);
GPR[rd] = ((signed64) GPR[rt]) >> s;
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000010111:SPECIAL:64::DSRAV
"dsra32 r<RT>, r<RD>, r<RS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsrav (SD_, RS, RT, RD);
}
:function:::void:do_dsrl:int rt, int rd, int shift
{
GPR[rd] = (unsigned64) GPR[rt] >> shift;
}
00000000000,5.RT,5.RD,5.SHIFT,111010:SPECIAL:64::DSRL
"dsrl r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsrl (SD_, RT, RD, SHIFT);
}
00000000000,5.RT,5.RD,5.SHIFT,111110:SPECIAL:64::DSRL32
"dsrl32 r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
int s = 32 + SHIFT;
GPR[RD] = (unsigned64) GPR[RT] >> s;
}
:function:::void:do_dsrlv:int rs, int rt, int rd
{
int s = MASKED64 (GPR[rs], 5, 0);
GPR[rd] = (unsigned64) GPR[rt] >> s;
}
000000,5.RS,5.RT,5.RD,00000010110:SPECIAL:64::DSRLV
"dsrl32 r<RD>, r<RT>, r<RS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsrlv (SD_, RS, RT, RD);
}
000000,5.RS,5.RT,5.RD,00000101110:SPECIAL:64::DSUB
"dsub r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
{
ALU64_BEGIN (GPR[RS]);
ALU64_SUB (GPR[RT]);
ALU64_END (GPR[RD]);
}
TRACE_ALU_RESULT (GPR[RD]);
}
:function:::void:do_dsubu:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = GPR[rs] - GPR[rt];
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000101111:SPECIAL:64::DSUBU
"dsubu r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_dsubu (SD_, RS, RT, RD);
}
000010,26.INSTR_INDEX:NORMAL:32::J
"j <INSTR_INDEX>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
/* NOTE: The region used is that of the delay slot NIA and NOT the
current instruction */
address_word region = (NIA & MASK (63, 28));
DELAY_SLOT (region | (INSTR_INDEX << 2));
}
000011,26.INSTR_INDEX:NORMAL:32::JAL
"jal <INSTR_INDEX>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
/* NOTE: The region used is that of the delay slot and NOT the
current instruction */
address_word region = (NIA & MASK (63, 28));
GPR[31] = CIA + 8;
DELAY_SLOT (region | (INSTR_INDEX << 2));
}
000000,5.RS,00000,5.RD,00000001001:SPECIAL:32::JALR
"jalr r<RS>":RD == 31
"jalr r<RD>, r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
address_word temp = GPR[RS];
GPR[RD] = CIA + 8;
DELAY_SLOT (temp);
}
000000,5.RS,000000000000000001000:SPECIAL:32::JR
"jr r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
DELAY_SLOT (GPR[RS]);
}
:function:::unsigned_word:do_load:unsigned access, address_word base, address_word offset
{
address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
unsigned int byte;
address_word paddr;
int uncached;
unsigned64 memval;
address_word vaddr;
vaddr = base + offset;
if ((vaddr & access) != 0)
{
SIM_CORE_SIGNAL (SD, STATE_CPU (SD, 0), cia, read_map, access+1, vaddr, read_transfer, sim_core_unaligned_signal);
}
AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isDATA, isREAL);
byte = ((vaddr & mask) ^ bigendiancpu);
return (memval >> (8 * byte));
}
100000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LB
"lb r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = EXTEND8 (do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET)));
}
100100,5.BASE,5.RT,16.OFFSET:NORMAL:32::LBU
"lbu r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET));
}
110111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LD
"ld r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
GPR[RT] = EXTEND64 (do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
}
1101,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDCz
"ldc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
COP_LD (ZZ, RT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
}
011010,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDL
"ldl r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
GPR[RT] = do_load_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
011011,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDR
"ldr r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
GPR[RT] = do_load_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
100001,5.BASE,5.RT,16.OFFSET:NORMAL:32::LH
"lh r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = EXTEND16 (do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET)));
}
100101,5.BASE,5.RT,16.OFFSET:NORMAL:32::LHU
"lhu r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET));
}
110000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LL
"ll r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
unsigned32 instruction = instruction_0;
signed_word offset = SIGNEXTEND((signed_word)((instruction >> 0) & 0x0000FFFF),16);
int destreg = ((instruction >> 16) & 0x0000001F);
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + offset);
address_word paddr;
int uncached;
if ((vaddr & 3) != 0)
{
SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, read_transfer, sim_core_unaligned_signal);
}
else
{
if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
{
unsigned64 memval = 0;
unsigned64 memval1 = 0;
unsigned64 mask = 0x7;
unsigned int shift = 2;
unsigned int reverse = (ReverseEndian ? (mask >> shift) : 0);
unsigned int bigend = (BigEndianCPU ? (mask >> shift) : 0);
unsigned int byte;
paddr = ((paddr & ~mask) | ((paddr & mask) ^ (reverse << shift)));
LoadMemory(&memval,&memval1,uncached,AccessLength_WORD,paddr,vaddr,isDATA,isREAL);
byte = ((vaddr & mask) ^ (bigend << shift));
GPR[destreg] = (SIGNEXTEND(((memval >> (8 * byte)) & 0xFFFFFFFF),32));
LLBIT = 1;
}
}
}
}
110100,5.BASE,5.RT,16.OFFSET:NORMAL:64::LLD
"lld r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
unsigned32 instruction = instruction_0;
signed_word offset = SIGNEXTEND((signed_word)((instruction >> 0) & 0x0000FFFF),16);
int destreg = ((instruction >> 16) & 0x0000001F);
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + offset);
address_word paddr;
int uncached;
if ((vaddr & 7) != 0)
{
SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, read_transfer, sim_core_unaligned_signal);
}
else
{
if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
{
unsigned64 memval = 0;
unsigned64 memval1 = 0;
LoadMemory(&memval,&memval1,uncached,AccessLength_DOUBLEWORD,paddr,vaddr,isDATA,isREAL);
GPR[destreg] = memval;
LLBIT = 1;
}
}
}
}
001111,00000,5.RT,16.IMMEDIATE:NORMAL:32::LUI
"lui r<RT>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
TRACE_ALU_INPUT1 (IMMEDIATE);
GPR[RT] = EXTEND32 (IMMEDIATE << 16);
TRACE_ALU_RESULT (GPR[RT]);
}
100011,5.BASE,5.RT,16.OFFSET:NORMAL:32::LW
"lw r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = EXTEND32 (do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
}
1100,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWCz
"lwc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
COP_LW (ZZ, RT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
}
:function:::unsigned_word:do_load_left:unsigned access, address_word base, address_word offset, unsigned_word rt
{
address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ? -1 : 0);
address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
unsigned int byte;
unsigned int word;
address_word paddr;
int uncached;
unsigned64 memval;
address_word vaddr;
int nr_lhs_bits;
int nr_rhs_bits;
unsigned_word lhs_mask;
unsigned_word temp;
vaddr = base + offset;
AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
paddr = (paddr ^ (reverseendian & mask));
if (BigEndianMem == 0)
paddr = paddr & ~access;
/* compute where within the word/mem we are */
byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */
word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */
nr_lhs_bits = 8 * byte + 8;
nr_rhs_bits = 8 * access - 8 * byte;
/* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */
/* fprintf (stderr, "l[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n",
(long) ((unsigned64) vaddr >> 32), (long) vaddr,
(long) ((unsigned64) paddr >> 32), (long) paddr,
word, byte, nr_lhs_bits, nr_rhs_bits); */
LoadMemory (&memval, NULL, uncached, byte, paddr, vaddr, isDATA, isREAL);
if (word == 0)
{
/* GPR{31..32-NR_LHS_BITS} = memval{NR_LHS_BITS-1..0} */
temp = (memval << nr_rhs_bits);
}
else
{
/* GPR{31..32-NR_LHS_BITS = memval{32+NR_LHS_BITS..32} */
temp = (memval >> nr_lhs_bits);
}
lhs_mask = LSMASK (nr_lhs_bits + nr_rhs_bits - 1, nr_rhs_bits);
rt = (rt & ~lhs_mask) | (temp & lhs_mask);
/* fprintf (stderr, "l[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx & 0x%08lx%08lx -> 0x%08lx%08lx\n",
(long) ((unsigned64) memval >> 32), (long) memval,
(long) ((unsigned64) temp >> 32), (long) temp,
(long) ((unsigned64) lhs_mask >> 32), (long) lhs_mask,
(long) (rt >> 32), (long) rt); */
return rt;
}
100010,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWL
"lwl r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = EXTEND32 (do_load_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]));
}
:function:::unsigned_word:do_load_right:unsigned access, address_word base, address_word offset, unsigned_word rt
{
address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ? -1 : 0);
address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
unsigned int byte;
address_word paddr;
int uncached;
unsigned64 memval;
address_word vaddr;
vaddr = base + offset;
AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
/* NOTE: SPEC is wrong, has `BigEndianMem == 0' not `BigEndianMem != 0' */
paddr = (paddr ^ (reverseendian & mask));
if (BigEndianMem != 0)
paddr = paddr & ~access;
byte = ((vaddr & mask) ^ (bigendiancpu & mask));
/* NOTE: SPEC is wrong, had `byte' not `access - byte'. See SW. */
LoadMemory (&memval, NULL, uncached, access - (access & byte), paddr, vaddr, isDATA, isREAL);
/* printf ("lr: 0x%08lx %d@0x%08lx 0x%08lx\n",
(long) paddr, byte, (long) paddr, (long) memval); */
{
unsigned_word screen = LSMASK (8 * (access - (byte & access) + 1) - 1, 0);
rt &= ~screen;
rt |= (memval >> (8 * byte)) & screen;
}
return rt;
}
100110,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWR
"lwr r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
GPR[RT] = EXTEND32 (do_load_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]));
}
100111,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWU
"lwu r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
GPR[RT] = do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET));
}
:function:::void:do_mfhi:int rd
{
check_mf_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT1 (HI);
GPR[rd] = HI;
TRACE_ALU_RESULT (GPR[rd]);
}
000000,0000000000,5.RD,00000,010000:SPECIAL:32::MFHI
"mfhi r<RD>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_mfhi (SD_, RD);
}
:function:::void:do_mflo:int rd
{
check_mf_hilo (SD_, LOHISTORY, HIHISTORY);
TRACE_ALU_INPUT1 (LO);
GPR[rd] = LO;
TRACE_ALU_RESULT (GPR[rd]);
}
000000,0000000000,5.RD,00000,010010:SPECIAL:32::MFLO
"mflo r<RD>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_mflo (SD_, RD);
}
000000,5.RS,5.RT,5.RD,00000001011:SPECIAL:32::MOVN
"movn r<RD>, r<RS>, r<RT>"
*mipsIV:
*vr5000:
{
if (GPR[RT] != 0)
GPR[RD] = GPR[RS];
}
000000,5.RS,5.RT,5.RD,00000001010:SPECIAL:32::MOVZ
"movz r<RD>, r<RS>, r<RT>"
*mipsIV:
*vr5000:
{
if (GPR[RT] == 0)
GPR[RD] = GPR[RS];
}
000000,5.RS,000000000000000,010001:SPECIAL:32::MTHI
"mthi r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
check_mt_hilo (SD_, HIHISTORY);
HI = GPR[RS];
}
000000,5.RS,000000000000000010011:SPECIAL:32::MTLO
"mtlo r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
check_mt_hilo (SD_, LOHISTORY);
LO = GPR[RS];
}
:function:::void:do_mult:int rs, int rt, int rd
{
signed64 prod;
check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
prod = (((signed64)(signed32) GPR[rs])
* ((signed64)(signed32) GPR[rt]));
LO = EXTEND32 (VL4_8 (prod));
HI = EXTEND32 (VH4_8 (prod));
if (rd != 0)
GPR[rd] = LO;
TRACE_ALU_RESULT2 (HI, LO);
}
000000,5.RS,5.RT,00000,00000011000:SPECIAL:32::MULT
"mult r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
{
do_mult (SD_, RS, RT, 0);
}
000000,5.RS,5.RT,5.RD,00000011000:SPECIAL:32::MULT
"mult r<RS>, r<RT>":RD == 0
"mult r<RD>, r<RS>, r<RT>"
*vr5000:
*r3900:
{
do_mult (SD_, RS, RT, RD);
}
:function:::void:do_multu:int rs, int rt, int rd
{
unsigned64 prod;
check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
prod = (((unsigned64)(unsigned32) GPR[rs])
* ((unsigned64)(unsigned32) GPR[rt]));
LO = EXTEND32 (VL4_8 (prod));
HI = EXTEND32 (VH4_8 (prod));
if (rd != 0)
GPR[rd] = LO;
TRACE_ALU_RESULT2 (HI, LO);
}
000000,5.RS,5.RT,00000,00000011001:SPECIAL:32::MULTU
"multu r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
{
do_multu (SD_, RS, RT, 0);
}
000000,5.RS,5.RT,5.RD,00000011001:SPECIAL:32::MULTU
"multu r<RS>, r<RT>":RD == 0
"multu r<RD>, r<RS>, r<RT>"
*vr5000:
*r3900:
{
do_multu (SD_, RS, RT, RD);
}
:function:::void:do_nor:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = ~ (GPR[rs] | GPR[rt]);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000,100111:SPECIAL:32::NOR
"nor r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_nor (SD_, RS, RT, RD);
}
:function:::void:do_or:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = (GPR[rs] | GPR[rt]);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000,100101:SPECIAL:32::OR
"or r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_or (SD_, RS, RT, RD);
}
:function:::void:do_ori:int rs, int rt, unsigned immediate
{
TRACE_ALU_INPUT2 (GPR[rs], immediate);
GPR[rt] = (GPR[rs] | immediate);
TRACE_ALU_RESULT (GPR[rt]);
}
001101,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ORI
"ori r<RT>, r<RS>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_ori (SD_, RS, RT, IMMEDIATE);
}
110011,5.RS,nnnnn,16.OFFSET:NORMAL:32::PREF
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
signed_word offset = SIGNEXTEND((signed_word)((instruction >> 0) & 0x0000FFFF),16);
int hint = ((instruction >> 16) & 0x0000001F);
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + offset);
address_word paddr;
int uncached;
{
if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
Prefetch(uncached,paddr,vaddr,isDATA,hint);
}
}
}
:function:::void:do_store:unsigned access, address_word base, address_word offset, unsigned_word word
{
address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
unsigned int byte;
address_word paddr;
int uncached;
unsigned64 memval;
address_word vaddr;
vaddr = base + offset;
if ((vaddr & access) != 0)
{
SIM_CORE_SIGNAL (SD, STATE_CPU(SD, 0), cia, read_map, access+1, vaddr, write_transfer, sim_core_unaligned_signal);
}
AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
byte = ((vaddr & mask) ^ bigendiancpu);
memval = (word << (8 * byte));
StoreMemory (uncached, access, memval, 0, paddr, vaddr, isREAL);
}
101000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SB
"sb r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_store (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
111000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SC
"sc r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
unsigned32 instruction = instruction_0;
signed_word offset = SIGNEXTEND((signed_word)((instruction >> 0) & 0x0000FFFF),16);
signed_word op2 = GPR[((instruction >> 16) & 0x0000001F)];
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + offset);
address_word paddr;
int uncached;
if ((vaddr & 3) != 0)
{
SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal);
}
else
{
if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
{
unsigned64 memval = 0;
unsigned64 memval1 = 0;
unsigned64 mask = 0x7;
unsigned int byte;
paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)));
byte = ((vaddr & mask) ^ (BigEndianCPU << 2));
memval = ((unsigned64) op2 << (8 * byte));
if (LLBIT)
{
StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
}
GPR[(instruction >> 16) & 0x0000001F] = LLBIT;
}
}
}
}
111100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SCD
"scd r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
unsigned32 instruction = instruction_0;
signed_word offset = SIGNEXTEND((signed_word)((instruction >> 0) & 0x0000FFFF),16);
signed_word op2 = GPR[((instruction >> 16) & 0x0000001F)];
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + offset);
address_word paddr;
int uncached;
if ((vaddr & 7) != 0)
{
SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, write_transfer, sim_core_unaligned_signal);
}
else
{
if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
{
unsigned64 memval = 0;
unsigned64 memval1 = 0;
memval = op2;
if (LLBIT)
{
StoreMemory(uncached,AccessLength_DOUBLEWORD,memval,memval1,paddr,vaddr,isREAL);
}
GPR[(instruction >> 16) & 0x0000001F] = LLBIT;
}
}
}
}
111111,5.BASE,5.RT,16.OFFSET:NORMAL:64::SD
"sd r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
1111,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDCz
"sdc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (ZZ, RT));
}
101100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDL
"sdl r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_store_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
101101,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDR
"sdr r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
do_store_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
101001,5.BASE,5.RT,16.OFFSET:NORMAL:32::SH
"sh r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_store (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
:function:::void:do_sll:int rt, int rd, int shift
{
unsigned32 temp = (GPR[rt] << shift);
TRACE_ALU_INPUT2 (GPR[rt], shift);
GPR[rd] = EXTEND32 (temp);
TRACE_ALU_RESULT (GPR[rd]);
}
00000000000,5.RT,5.RD,5.SHIFT,000000:SPECIAL:32::SLL
"sll r<RD>, r<RT>, <SHIFT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_sll (SD_, RT, RD, SHIFT);
}
:function:::void:do_sllv:int rs, int rt, int rd
{
int s = MASKED (GPR[rs], 4, 0);
unsigned32 temp = (GPR[rt] << s);
TRACE_ALU_INPUT2 (GPR[rt], s);
GPR[rd] = EXTEND32 (temp);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000000100:SPECIAL:32::SLLV
"sllv r<RD>, r<RT>, r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_sllv (SD_, RS, RT, RD);
}
:function:::void:do_slt:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = ((signed_word) GPR[rs] < (signed_word) GPR[rt]);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000101010:SPECIAL:32::SLT
"slt r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_slt (SD_, RS, RT, RD);
}
:function:::void:do_slti:int rs, int rt, unsigned16 immediate
{
TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
GPR[rt] = ((signed_word) GPR[rs] < (signed_word) EXTEND16 (immediate));
TRACE_ALU_RESULT (GPR[rt]);
}
001010,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTI
"slti r<RT>, r<RS>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_slti (SD_, RS, RT, IMMEDIATE);
}
:function:::void:do_sltiu:int rs, int rt, unsigned16 immediate
{
TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
GPR[rt] = ((unsigned_word) GPR[rs] < (unsigned_word) EXTEND16 (immediate));
TRACE_ALU_RESULT (GPR[rt]);
}
001011,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTIU
"sltiu r<RT>, r<RS>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_sltiu (SD_, RS, RT, IMMEDIATE);
}
:function:::void:do_sltu:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = ((unsigned_word) GPR[rs] < (unsigned_word) GPR[rt]);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000101011:SPECIAL:32::SLTU
"sltu r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_sltu (SD_, RS, RT, RD);
}
:function:::void:do_sra:int rt, int rd, int shift
{
signed32 temp = (signed32) GPR[rt] >> shift;
TRACE_ALU_INPUT2 (GPR[rt], shift);
GPR[rd] = EXTEND32 (temp);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,00000,5.RT,5.RD,5.SHIFT,000011:SPECIAL:32::SRA
"sra r<RD>, r<RT>, <SHIFT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_sra (SD_, RT, RD, SHIFT);
}
:function:::void:do_srav:int rs, int rt, int rd
{
int s = MASKED (GPR[rs], 4, 0);
signed32 temp = (signed32) GPR[rt] >> s;
TRACE_ALU_INPUT2 (GPR[rt], s);
GPR[rd] = EXTEND32 (temp);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000000111:SPECIAL:32::SRAV
"srav r<RD>, r<RT>, r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_srav (SD_, RS, RT, RD);
}
:function:::void:do_srl:int rt, int rd, int shift
{
unsigned32 temp = (unsigned32) GPR[rt] >> shift;
TRACE_ALU_INPUT2 (GPR[rt], shift);
GPR[rd] = EXTEND32 (temp);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,00000,5.RT,5.RD,5.SHIFT,000010:SPECIAL:32::SRL
"srl r<RD>, r<RT>, <SHIFT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_srl (SD_, RT, RD, SHIFT);
}
:function:::void:do_srlv:int rs, int rt, int rd
{
int s = MASKED (GPR[rs], 4, 0);
unsigned32 temp = (unsigned32) GPR[rt] >> s;
TRACE_ALU_INPUT2 (GPR[rt], s);
GPR[rd] = EXTEND32 (temp);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000000110:SPECIAL:32::SRLV
"srlv r<RD>, r<RT>, r<RS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_srlv (SD_, RS, RT, RD);
}
000000,5.RS,5.RT,5.RD,00000100010:SPECIAL:32::SUB
"sub r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
{
ALU32_BEGIN (GPR[RS]);
ALU32_SUB (GPR[RT]);
ALU32_END (GPR[RD]);
}
TRACE_ALU_RESULT (GPR[RD]);
}
:function:::void:do_subu:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = EXTEND32 (GPR[rs] - GPR[rt]);
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000100011:SPECIAL:32::SUBU
"subu r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_subu (SD_, RS, RT, RD);
}
101011,5.BASE,5.RT,16.OFFSET:NORMAL:32::SW
"sw r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*r3900:
*vr5000:
{
do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
1110,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWCz
"swc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), COP_SW (ZZ, RT));
}
:function:::void:do_store_left:unsigned access, address_word base, address_word offset, unsigned_word rt
{
address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ? -1 : 0);
address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
unsigned int byte;
unsigned int word;
address_word paddr;
int uncached;
unsigned64 memval;
address_word vaddr;
int nr_lhs_bits;
int nr_rhs_bits;
vaddr = base + offset;
AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
paddr = (paddr ^ (reverseendian & mask));
if (BigEndianMem == 0)
paddr = paddr & ~access;
/* compute where within the word/mem we are */
byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */
word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */
nr_lhs_bits = 8 * byte + 8;
nr_rhs_bits = 8 * access - 8 * byte;
/* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */
/* fprintf (stderr, "s[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n",
(long) ((unsigned64) vaddr >> 32), (long) vaddr,
(long) ((unsigned64) paddr >> 32), (long) paddr,
word, byte, nr_lhs_bits, nr_rhs_bits); */
if (word == 0)
{
memval = (rt >> nr_rhs_bits);
}
else
{
memval = (rt << nr_lhs_bits);
}
/* fprintf (stderr, "s[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx\n",
(long) ((unsigned64) rt >> 32), (long) rt,
(long) ((unsigned64) memval >> 32), (long) memval); */
StoreMemory (uncached, byte, memval, 0, paddr, vaddr, isREAL);
}
101010,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWL
"swl r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_store_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
:function:::void:do_store_right:unsigned access, address_word base, address_word offset, unsigned_word rt
{
address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ? -1 : 0);
address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
unsigned int byte;
address_word paddr;
int uncached;
unsigned64 memval;
address_word vaddr;
vaddr = base + offset;
AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
paddr = (paddr ^ (reverseendian & mask));
if (BigEndianMem != 0)
paddr &= ~access;
byte = ((vaddr & mask) ^ (bigendiancpu & mask));
memval = (rt << (byte * 8));
StoreMemory (uncached, access - (access & byte), memval, 0, paddr, vaddr, isREAL);
}
101110,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWR
"swr r<RT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_store_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}
000000000000000000000,5.STYPE,001111:SPECIAL:32::SYNC
"sync":STYPE == 0
"sync <STYPE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
SyncOperation (STYPE);
}
000000,20.CODE,001100:SPECIAL:32::SYSCALL
"syscall <CODE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
SignalException(SystemCall, instruction_0);
}
000000,5.RS,5.RT,10.CODE,110100:SPECIAL:32::TEQ
"teq r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
SignalException(Trap, instruction_0);
}
000001,5.RS,01100,16.IMMEDIATE:REGIMM:32::TEQI
"teqi r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] == (signed_word) EXTEND16 (IMMEDIATE))
SignalException(Trap, instruction_0);
}
000000,5.RS,5.RT,10.CODE,110000:SPECIAL:32::TGE
"tge r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] >= (signed_word) GPR[RT])
SignalException(Trap, instruction_0);
}
000001,5.RS,01000,16.IMMEDIATE:REGIMM:32::TGEI
"tgei r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] >= (signed_word) EXTEND16 (IMMEDIATE))
SignalException(Trap, instruction_0);
}
000001,5.RS,01001,16.IMMEDIATE:REGIMM:32::TGEIU
"tgeiu r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((unsigned_word) GPR[RS] >= (unsigned_word) EXTEND16 (IMMEDIATE))
SignalException(Trap, instruction_0);
}
000000,5.RS,5.RT,10.CODE,110001:SPECIAL:32::TGEU
"tgeu r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((unsigned_word) GPR[RS] >= (unsigned_word) GPR[RT])
SignalException(Trap, instruction_0);
}
000000,5.RS,5.RT,10.CODE,110010:SPECIAL:32::TLT
"tlt r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] < (signed_word) GPR[RT])
SignalException(Trap, instruction_0);
}
000001,5.RS,01010,16.IMMEDIATE:REGIMM:32::TLTI
"tlti r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] < (signed_word) EXTEND16 (IMMEDIATE))
SignalException(Trap, instruction_0);
}
000001,5.RS,01011,16.IMMEDIATE:REGIMM:32::TLTIU
"tltiu r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((unsigned_word) GPR[RS] < (unsigned_word) EXTEND16 (IMMEDIATE))
SignalException(Trap, instruction_0);
}
000000,5.RS,5.RT,10.CODE,110011:SPECIAL:32::TLTU
"tltu r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((unsigned_word) GPR[RS] < (unsigned_word) GPR[RT])
SignalException(Trap, instruction_0);
}
000000,5.RS,5.RT,10.CODE,110110:SPECIAL:32::TNE
"tne r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
SignalException(Trap, instruction_0);
}
000001,5.RS,01110,16.IMMEDIATE:REGIMM:32::TNEI
"tne r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if ((signed_word) GPR[RS] != (signed_word) EXTEND16 (IMMEDIATE))
SignalException(Trap, instruction_0);
}
:function:::void:do_xor:int rs, int rt, int rd
{
TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
GPR[rd] = GPR[rs] ^ GPR[rt];
TRACE_ALU_RESULT (GPR[rd]);
}
000000,5.RS,5.RT,5.RD,00000100110:SPECIAL:32::XOR
"xor r<RD>, r<RS>, r<RT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_xor (SD_, RS, RT, RD);
}
:function:::void:do_xori:int rs, int rt, unsigned16 immediate
{
TRACE_ALU_INPUT2 (GPR[rs], immediate);
GPR[rt] = GPR[rs] ^ immediate;
TRACE_ALU_RESULT (GPR[rt]);
}
001110,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::XORI
"xori r<RT>, r<RS>, <IMMEDIATE>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_xori (SD_, RS, RT, IMMEDIATE);
}
//
// MIPS Architecture:
//
// FPU Instruction Set (COP1 & COP1X)
//
:%s::::FMT:int fmt
{
switch (fmt)
{
case fmt_single: return "s";
case fmt_double: return "d";
case fmt_word: return "w";
case fmt_long: return "l";
default: return "?";
}
}
:%s::::X:int x
{
switch (x)
{
case 0: return "f";
case 1: return "t";
default: return "?";
}
}
:%s::::TF:int tf
{
if (tf)
return "t";
else
return "f";
}
:%s::::ND:int nd
{
if (nd)
return "l";
else
return "";
}
:%s::::COND:int cond
{
switch (cond)
{
case 00: return "f";
case 01: return "un";
case 02: return "eq";
case 03: return "ueq";
case 04: return "olt";
case 05: return "ult";
case 06: return "ole";
case 07: return "ule";
case 010: return "sf";
case 011: return "ngle";
case 012: return "seq";
case 013: return "ngl";
case 014: return "lt";
case 015: return "nge";
case 016: return "le";
case 017: return "ngt";
default: return "?";
}
}
010001,10,3.FMT,00000,5.FS,5.FD,000101:COP1:32,f::ABS.fmt
"abs.%s<FMT> f<FD>, f<FS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,AbsoluteValue(ValueFPR(fs,format),format));
}
}
010001,10,3.FMT,5.FT,5.FS,5.FD,000000:COP1:32,f::ADD.fmt
"add.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction, instruction);
else
StoreFPR(destreg,format,Add(ValueFPR(fs,format),ValueFPR(ft,format),format));
}
}
// BC1F
// BC1FL
// BC1T
// BC1TL
010001,01000,3.0,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1a
"bc1%s<TF>%s<ND> <OFFSET>"
*mipsI,mipsII,mipsIII:
{
check_branch_bug ();
TRACE_BRANCH_INPUT (PREVCOC1());
if (PREVCOC1() == TF)
{
address_word dest = NIA + (EXTEND16 (OFFSET) << 2);
TRACE_BRANCH_RESULT (dest);
mark_branch_bug (dest);
DELAY_SLOT (dest);
}
else if (ND)
{
TRACE_BRANCH_RESULT (0);
NULLIFY_NEXT_INSTRUCTION ();
}
else
{
TRACE_BRANCH_RESULT (NIA);
}
}
010001,01000,3.CC,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1b
"bc1%s<TF>%s<ND> <OFFSET>":CC == 0
"bc1%s<TF>%s<ND> <CC>, <OFFSET>"
*mipsIV:
*vr5000:
#*vr4100:
*r3900:
{
check_branch_bug ();
if (GETFCC(CC) == TF)
{
address_word dest = NIA + (EXTEND16 (OFFSET) << 2);
mark_branch_bug (dest);
DELAY_SLOT (dest);
}
else if (ND)
{
NULLIFY_NEXT_INSTRUCTION ();
}
}
// C.EQ.S
// C.EQ.D
// ...
:function:::void:do_c_cond_fmt:int fmt, int ft, int fs, int cc, int cond, instruction_word insn
{
if ((fmt != fmt_single) && (fmt != fmt_double))
SignalException (ReservedInstruction, insn);
else
{
int less;
int equal;
int unordered;
int condition;
unsigned64 ofs = ValueFPR (fs, fmt);
unsigned64 oft = ValueFPR (ft, fmt);
if (NaN (ofs, fmt) || NaN (oft, fmt))
{
if (FCSR & FP_ENABLE (IO))
{
FCSR |= FP_CAUSE (IO);
SignalExceptionFPE ();
}
less = 0;
equal = 0;
unordered = 1;
}
else
{
less = Less (ofs, oft, fmt);
equal = Equal (ofs, oft, fmt);
unordered = 0;
}
condition = (((cond & (1 << 2)) && less)
|| ((cond & (1 << 1)) && equal)
|| ((cond & (1 << 0)) && unordered));
SETFCC (cc, condition);
}
}
010001,10,3.FMT,5.FT,5.FS,3.0,00,11,4.COND:COP1:32::C.cond.fmta
"c.%s<COND>.%s<FMT> f<FS>, f<FT>"
*mipsI,mipsII,mipsIII:
{
do_c_cond_fmt (SD_, FMT, FT, FS, 0, COND, instruction_0);
}
010001,10,3.FMT,5.FT,5.FS,3.CC,00,11,4.COND:COP1:32::C.cond.fmtb
"c.%s<COND>.%s<FMT> f<FS>, f<FT>":CC == 0
"c.%s<COND>.%s<FMT> <CC>, f<FS>, f<FT>"
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_c_cond_fmt (SD_, FMT, FT, FS, CC, COND, instruction_0);
}
010001,10,3.FMT,00000,5.FS,5.FD,001010:COP1:64::CEIL.L.fmt
"ceil.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_long,Convert(FP_RM_TOPINF,ValueFPR(fs,format),format,fmt_long));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001110:COP1:32::CEIL.W
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_word,Convert(FP_RM_TOPINF,ValueFPR(fs,format),format,fmt_word));
}
}
// CFC1
// CTC1
010001,00,X,10,5.RT,5.FS,00000000000:COP1Sa:32::CxC1
"c%s<X>c1 r<RT>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
{
if (X)
{
if (FS == 0)
PENDING_FILL((FS + FCR0IDX),VL4_8(GPR[RT]));
else if (FS == 31)
PENDING_FILL((FS + FCR31IDX),VL4_8(GPR[RT]));
/* else NOP */
PENDING_FILL(COCIDX,0); /* special case */
}
else
{ /* control from */
if (FS == 0)
PENDING_FILL(RT,SIGNEXTEND(FCR0,32));
else if (FS == 31)
PENDING_FILL(RT,SIGNEXTEND(FCR31,32));
/* else NOP */
}
}
010001,00,X,10,5.RT,5.FS,00000000000:COP1Sb:32::CxC1
"c%s<X>c1 r<RT>, f<FS>"
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
if (X)
{
/* control to */
TRACE_ALU_INPUT1 (GPR[RT]);
if (FS == 0)
{
FCR0 = VL4_8(GPR[RT]);
TRACE_ALU_RESULT (FCR0);
}
else if (FS == 31)
{
FCR31 = VL4_8(GPR[RT]);
SETFCC(0,((FCR31 & (1 << 23)) ? 1 : 0));
TRACE_ALU_RESULT (FCR31);
}
else
{
TRACE_ALU_RESULT0 ();
}
/* else NOP */
}
else
{ /* control from */
if (FS == 0)
{
TRACE_ALU_INPUT1 (FCR0);
GPR[RT] = SIGNEXTEND (FCR0, 32);
}
else if (FS == 31)
{
TRACE_ALU_INPUT1 (FCR31);
GPR[RT] = SIGNEXTEND (FCR31, 32);
}
TRACE_ALU_RESULT (GPR[RT]);
/* else NOP */
}
}
//
// FIXME: Does not correctly differentiate between mips*
//
010001,10,3.FMT,00000,5.FS,5.FD,100001:COP1:32::CVT.D.fmt
"cvt.d.%s<FMT> f<FD>, f<FS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format == fmt_double) | 0)
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_double,Convert(GETRM(),ValueFPR(fs,format),format,fmt_double));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,100101:COP1:64::CVT.L.fmt
"cvt.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format == fmt_long) | ((format == fmt_long) || (format == fmt_word)))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_long,Convert(GETRM(),ValueFPR(fs,format),format,fmt_long));
}
}
//
// FIXME: Does not correctly differentiate between mips*
//
010001,10,3.FMT,00000,5.FS,5.FD,100000:COP1:32::CVT.S.fmt
"cvt.s.%s<FMT> f<FD>, f<FS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format == fmt_single) | 0)
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_single,Convert(GETRM(),ValueFPR(fs,format),format,fmt_single));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,100100:COP1:32::CVT.W.fmt
"cvt.w.%s<FMT> f<FD>, f<FS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format == fmt_word) | ((format == fmt_long) || (format == fmt_word)))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_word,Convert(GETRM(),ValueFPR(fs,format),format,fmt_word));
}
}
010001,10,3.FMT,5.FT,5.FS,5.FD,000011:COP1:32::DIV.fmt
"div.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,Divide(ValueFPR(fs,format),ValueFPR(ft,format),format));
}
}
// DMFC1
// DMTC1
010001,00,X,01,5.RT,5.FS,00000000000:COP1Sa:64::DMxC1
"dm%s<X>c1 r<RT>, f<FS>"
*mipsIII:
{
if (X)
{
if (SizeFGR() == 64)
PENDING_FILL((FS + FGRIDX),GPR[RT]);
else if ((FS & 0x1) == 0)
{
PENDING_FILL(((FS + 1) + FGRIDX),VH4_8(GPR[RT]));
PENDING_FILL((FS + FGRIDX),VL4_8(GPR[RT]));
}
}
else
{
if (SizeFGR() == 64)
PENDING_FILL(RT,FGR[FS]);
else if ((FS & 0x1) == 0)
PENDING_FILL(RT,(SET64HI(FGR[FS+1]) | FGR[FS]));
else
{
if (STATE_VERBOSE_P(SD))
sim_io_eprintf (SD,
"Warning: PC 0x%x: semantic_DMxC1_COP1Sa 32-bit use of odd FPR number\n",
CIA);
PENDING_FILL(RT,SET64HI(0xDEADC0DE) | 0xBAD0BAD0);
}
}
}
010001,00,X,01,5.RT,5.FS,00000000000:COP1Sb:64::DMxC1
"dm%s<X>c1 r<RT>, f<FS>"
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
if (X)
{
if (SizeFGR() == 64)
StoreFPR (FS, fmt_uninterpreted_64, GPR[RT]);
else if ((FS & 0x1) == 0)
StoreFPR (FS, fmt_uninterpreted_64, SET64HI (FGR[FS+1]) | FGR[FS]);
}
else
{
if (SizeFGR() == 64)
GPR[RT] = FGR[FS];
else if ((FS & 0x1) == 0)
GPR[RT] = SET64HI (FGR[FS+1]) | FGR[FS];
else
{
if (STATE_VERBOSE_P(SD))
sim_io_eprintf (SD,
"Warning: PC 0x%x: DMxC1 32-bit use of odd FPR number\n", CIA);
GPR[RT] = SET64HI (0xDEADC0DE) | 0xBAD0BAD0;
}
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001011:COP1:64::FLOOR.L.fmt
"floor.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_long,Convert(FP_RM_TOMINF,ValueFPR(fs,format),format,fmt_long));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001111:COP1:32::FLOOR.W.fmt
"floor.w.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_word,Convert(FP_RM_TOMINF,ValueFPR(fs,format),format,fmt_word));
}
}
110101,5.BASE,5.FT,16.OFFSET:COP1:64::LDC1
"ldc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
COP_LD (1, FT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
}
010011,5.BASE,5.INDEX,5.0,5.FD,000001:COP1X:64::LDXC1
"ldxc1 f<FD>, r<INDEX>(r<BASE>)"
*mipsIV:
*vr5000:
{
COP_LD (1, FD, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX]));
}
110001,5.BASE,5.FT,16.OFFSET:COP1:32::LWC1
"lwc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
COP_LW (1, FT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
}
010011,5.BASE,5.INDEX,5.0,5.FD,000000:COP1X:32::LWXC1
"lwxc1 f<FD>, r<INDEX>(r<BASE>)"
*mipsIV:
*vr5000:
{
COP_LW (1, FD, do_load (SD_, AccessLength_WORD, GPR[BASE], GPR[INDEX]));
}
//
// FIXME: Not correct for mips*
//
010011,5.FR,5.FT,5.FS,5.FD,100,001:COP1X:32,f::MADD.D
"madd.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_double,Add(Multiply(ValueFPR(fs,fmt_double),ValueFPR(ft,fmt_double),fmt_double),ValueFPR(fr,fmt_double),fmt_double));
}
}
010011,5.FR,5.FT,5.FS,5.FD,100,000:COP1X:32,f::MADD.S
"madd.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_single,Add(Multiply(ValueFPR(fs,fmt_single),ValueFPR(ft,fmt_single),fmt_single),ValueFPR(fr,fmt_single),fmt_single));
}
}
// MFC1
// MTC1
010001,00,X,00,5.RT,5.FS,00000000000:COP1Sa:32::MxC1
"m%s<X>c1 r<RT>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
{
if (X)
{ /*MTC1*/
if (SizeFGR() == 64)
{
if (STATE_VERBOSE_P(SD))
sim_io_eprintf (SD,
"Warning: PC 0x%x: MTC1 not DMTC1 with 64 bit regs\n", CIA);
PENDING_FILL ((FS + FGRIDX), (SET64HI(0xDEADC0DE) | VL4_8(GPR[RT])));
}
else
PENDING_FILL ((FS + FGRIDX), VL4_8(GPR[RT]));
}
else /*MFC1*/
PENDING_FILL (RT, SIGNEXTEND(FGR[FS],32));
}
010001,00,X,00,5.RT,5.FS,00000000000:COP1Sb:32::MxC1
"m%s<X>c1 r<RT>, f<FS>"
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
int fs = FS;
if (X)
/*MTC1*/
StoreFPR (FS, fmt_uninterpreted_32, VL4_8 (GPR[RT]));
else /*MFC1*/
GPR[RT] = SIGNEXTEND(FGR[FS],32);
}
010001,10,3.FMT,00000,5.FS,5.FD,000110:COP1:32::MOV.fmt
"mov.%s<FMT> f<FD>, f<FS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
StoreFPR(destreg,format,ValueFPR(fs,format));
}
}
// MOVF
// MOVT
000000,5.RS,3.CC,0,1.TF,5.RD,00000000001:SPECIAL:32::MOVtf
"mov%s<TF> r<RD>, r<RS>, <CC>"
*mipsIV:
*vr5000:
{
if (GETFCC(CC) == TF)
GPR[RD] = GPR[RS];
}
// MOVF.fmt
// MOVT.fmt
010001,10,3.FMT,3.CC,0,1.TF,5.FS,5.FD,010001:COP1:32::MOVtf.fmt
"mov%s<TF>.%s<FMT> f<FD>, f<FS>, <CC>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int format = ((instruction >> 21) & 0x00000007);
{
if (GETFCC(CC) == TF)
StoreFPR (FD, format, ValueFPR (FS, format));
else
StoreFPR (FD, format, ValueFPR (FD, format));
}
}
010001,10,3.FMT,5.RT,5.FS,5.FD,010011:COP1:32::MOVN.fmt
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
StoreFPR(destreg,format,ValueFPR(fs,format));
}
}
// MOVT see MOVtf
// MOVT.fmt see MOVtf.fmt
010001,10,3.FMT,5.RT,5.FS,5.FD,010010:COP1:32::MOVZ.fmt
"movz.%s<FMT> f<FD>, f<FS>, r<RT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
StoreFPR(destreg,format,ValueFPR(fs,format));
}
}
// MSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,101,001:COP1X:32::MSUB.D
"msub.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_double,Sub(Multiply(ValueFPR(fs,fmt_double),ValueFPR(ft,fmt_double),fmt_double),ValueFPR(fr,fmt_double),fmt_double));
}
}
// MSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,101000:COP1X:32::MSUB.S
"msub.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_single,Sub(Multiply(ValueFPR(fs,fmt_single),ValueFPR(ft,fmt_single),fmt_single),ValueFPR(fr,fmt_single),fmt_single));
}
}
// MTC1 see MxC1
010001,10,3.FMT,5.FT,5.FS,5.FD,000010:COP1:32::MUL.fmt
"mul.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,Multiply(ValueFPR(fs,format),ValueFPR(ft,format),format));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,000111:COP1:32::NEG.fmt
"neg.%s<FMT> f<FD>, f<FS>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,Negate(ValueFPR(fs,format),format));
}
}
// NMADD.fmt
010011,5.FR,5.FT,5.FS,5.FD,110001:COP1X:32::NMADD.D
"nmadd.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_double,Negate(Add(Multiply(ValueFPR(fs,fmt_double),ValueFPR(ft,fmt_double),fmt_double),ValueFPR(fr,fmt_double),fmt_double),fmt_double));
}
}
// NMADD.fmt
010011,5.FR,5.FT,5.FS,5.FD,110000:COP1X:32::NMADD.S
"nmadd.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_single,Negate(Add(Multiply(ValueFPR(fs,fmt_single),ValueFPR(ft,fmt_single),fmt_single),ValueFPR(fr,fmt_single),fmt_single),fmt_single));
}
}
// NMSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,111001:COP1X:32::NMSUB.D
"nmsub.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_double,Negate(Sub(Multiply(ValueFPR(fs,fmt_double),ValueFPR(ft,fmt_double),fmt_double),ValueFPR(fr,fmt_double),fmt_double),fmt_double));
}
}
// NMSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,111000:COP1X:32::NMSUB.S
"nmsub.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int fr = ((instruction >> 21) & 0x0000001F);
{
StoreFPR(destreg,fmt_single,Negate(Sub(Multiply(ValueFPR(fs,fmt_single),ValueFPR(ft,fmt_single),fmt_single),ValueFPR(fr,fmt_single),fmt_single),fmt_single));
}
}
010011,5.BASE,5.INDEX,5.HINT,00000001111:COP1X:32::PREFX
"prefx <HINT>, r<INDEX>(r<BASE>)"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int fs = ((instruction >> 11) & 0x0000001F);
signed_word op2 = GPR[((instruction >> 16) & 0x0000001F)];
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + (unsigned64)op2);
address_word paddr;
int uncached;
if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
Prefetch(uncached,paddr,vaddr,isDATA,fs);
}
}
010001,10,3.FMT,00000,5.FS,5.FD,010101:COP1:32::RECIP.fmt
"recip.%s<FMT> f<FD>, f<FS>"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,Recip(ValueFPR(fs,format),format));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001000:COP1:64::ROUND.L.fmt
"round.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_long,Convert(FP_RM_NEAREST,ValueFPR(fs,format),format,fmt_long));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001100:COP1:32::ROUND.W.fmt
"round.w.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_word,Convert(FP_RM_NEAREST,ValueFPR(fs,format),format,fmt_word));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,010110:COP1:32::RSQRT.fmt
*mipsIV:
"rsqrt.%s<FMT> f<FD>, f<FS>"
*vr5000:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,Recip(SquareRoot(ValueFPR(fs,format),format),format));
}
}
111101,5.BASE,5.FT,16.OFFSET:COP1:64::SDC1
"sdc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (1, FT));
}
010011,5.BASE,5.INDEX,5.FS,00000001001:COP1X:64::SDXC1
"ldxc1 f<FS>, r<INDEX>(r<BASE>)"
*mipsIV:
*vr5000:
{
do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX], COP_SD (1, FS));
}
010001,10,3.FMT,00000,5.FS,5.FD,000100:COP1:32::SQRT.fmt
"sqrt.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,(SquareRoot(ValueFPR(fs,format),format)));
}
}
010001,10,3.FMT,5.FT,5.FS,5.FD,000001:COP1:32::SUB.fmt
"sub.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int ft = ((instruction >> 16) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,format,Sub(ValueFPR(fs,format),ValueFPR(ft,format),format));
}
}
111001,5.BASE,5.FT,16.OFFSET:COP1:32::SWC1
"swc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
signed_word offset = EXTEND16 (OFFSET);
int destreg UNUSED = ((instruction >> 16) & 0x0000001F);
signed_word op1 UNUSED = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((uword64)op1 + offset);
address_word paddr;
int uncached;
if ((vaddr & 3) != 0)
{
SIM_CORE_SIGNAL (SD, CPU, cia, read_map, AccessLength_WORD+1, vaddr, write_transfer, sim_core_unaligned_signal);
}
else
{
if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
{
uword64 memval = 0;
uword64 memval1 = 0;
uword64 mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
address_word reverseendian = (ReverseEndian ?(mask ^ AccessLength_WORD): 0);
address_word bigendiancpu = (BigEndianCPU ?(mask ^ AccessLength_WORD): 0);
unsigned int byte;
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
byte = ((vaddr & mask) ^ bigendiancpu);
memval = (((uword64)COP_SW(((instruction >> 26) & 0x3),destreg)) << (8 * byte));
StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
}
}
}
}
010011,5.BASE,5.INDEX,5.FS,00000,001000:COP1X:32::SWXC1
"swxc1 f<FS>, r<INDEX>(r<BASE>)"
*mipsIV:
*vr5000:
{
unsigned32 instruction = instruction_0;
int fs = ((instruction >> 11) & 0x0000001F);
signed_word op2 = GPR[((instruction >> 16) & 0x0000001F)];
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = ((unsigned64)op1 + op2);
address_word paddr;
int uncached;
if ((vaddr & 3) != 0)
{
SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal);
}
else
{
if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
{
unsigned64 memval = 0;
unsigned64 memval1 = 0;
unsigned64 mask = 0x7;
unsigned int byte;
paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)));
byte = ((vaddr & mask) ^ (BigEndianCPU << 2));
memval = (((unsigned64)COP_SW(1,fs)) << (8 * byte));
{
StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
}
}
}
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001001:COP1:64::TRUNC.L.fmt
"trunc.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_long,Convert(FP_RM_TOZERO,ValueFPR(fs,format),format,fmt_long));
}
}
010001,10,3.FMT,00000,5.FS,5.FD,001101:COP1:32::TRUNC.W
"trunc.w.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
int destreg = ((instruction >> 6) & 0x0000001F);
int fs = ((instruction >> 11) & 0x0000001F);
int format = ((instruction >> 21) & 0x00000007);
{
if ((format != fmt_single) && (format != fmt_double))
SignalException(ReservedInstruction,instruction);
else
StoreFPR(destreg,fmt_word,Convert(FP_RM_TOZERO,ValueFPR(fs,format),format,fmt_word));
}
}
//
// MIPS Architecture:
//
// System Control Instruction Set (COP0)
//
010000,01000,00000,16.OFFSET:COP0:32::BC0F
"bc0f <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,01000,00000,16.OFFSET:COP0:32::BC0F
"bc0f <OFFSET>"
// stub needed for eCos as tx39 hardware bug workaround
*r3900:
{
/* do nothing */
}
010000,01000,00010,16.OFFSET:COP0:32::BC0FL
"bc0fl <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,01000,00001,16.OFFSET:COP0:32::BC0T
"bc0t <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
010000,01000,00011,16.OFFSET:COP0:32::BC0TL
"bc0tl <OFFSET>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
101111,5.BASE,5.OP,16.OFFSET:NORMAL:32::CACHE
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
*r3900:
{
unsigned32 instruction = instruction_0;
signed_word offset = SIGNEXTEND((signed_word)((instruction >> 0) & 0x0000FFFF),16);
int hint = ((instruction >> 16) & 0x0000001F);
signed_word op1 = GPR[((instruction >> 21) & 0x0000001F)];
{
address_word vaddr = (op1 + offset);
address_word paddr;
int uncached;
if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
CacheOp(hint,vaddr,paddr,instruction);
}
}
010000,10000,000000000000000,111001:COP0:32::DI
"di"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,00001,5.RT,5.RD,000,0000,0000:COP0:64::DMFC0
"dmfc0 r<RT>, r<RD>"
*mipsIII,mipsIV:
{
DecodeCoproc (instruction_0);
}
010000,00101,5.RT,5.RD,000,0000,0000:COP0:64::DMTC0
"dmtc0 r<RT>, r<RD>"
*mipsIII,mipsIV:
{
DecodeCoproc (instruction_0);
}
010000,10000,000000000000000,111000:COP0:32::EI
"ei"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,10000,000000000000000,011000:COP0:32::ERET
"eret"
*mipsIII:
*mipsIV:
*vr4100:
*vr5000:
{
if (SR & status_ERL)
{
/* Oops, not yet available */
sim_io_printf (SD, "Warning: ERET when SR[ERL] set not supported");
NIA = EPC;
SR &= ~status_ERL;
}
else
{
NIA = EPC;
SR &= ~status_EXL;
}
}
010000,00000,5.RT,5.RD,00000,6.REGX:COP0:32::MFC0
"mfc0 r<RT>, r<RD> # <REGX>"
*mipsI,mipsII,mipsIII,mipsIV:
*r3900:
*vr4100:
*vr5000:
{
TRACE_ALU_INPUT0 ();
DecodeCoproc (instruction_0);
TRACE_ALU_RESULT (GPR[RT]);
}
010000,00100,5.RT,5.RD,00000,6.REGX:COP0:32::MTC0
"mtc0 r<RT>, r<RD> # <REGX>"
*mipsI,mipsII,mipsIII,mipsIV:
*r3900:
*vr4100:
*vr5000:
{
DecodeCoproc (instruction_0);
}
010000,10000,000000000000000,010000:COP0:32::RFE
"rfe"
*mipsI,mipsII,mipsIII,mipsIV:
*r3900:
*vr4100:
*vr5000:
{
DecodeCoproc (instruction_0);
}
0100,ZZ!0!1!3,5.COP_FUN0!8,5.COP_FUN1,16.COP_FUN2:NORMAL:32::COPz
"cop<ZZ> <COP_FUN0><COP_FUN1><COP_FUN2>"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*r3900:
{
DecodeCoproc (instruction_0);
}
010000,10000,000000000000000,001000:COP0:32::TLBP
"tlbp"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,10000,000000000000000,000001:COP0:32::TLBR
"tlbr"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,10000,000000000000000,000010:COP0:32::TLBWI
"tlbwi"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
010000,10000,000000000000000,000110:COP0:32::TLBWR
"tlbwr"
*mipsI,mipsII,mipsIII,mipsIV:
*vr4100:
*vr5000:
:include:::m16.igen
:include:::tx.igen
:include:::vr.igen
Go to most recent revision | Compare with Previous | Blame | View Log