URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [gdb-5.3/] [bfd/] [elf32-i386.c] - Rev 1765
Compare with Previous | Blame | View Log
/* Intel 80386/80486-specific support for 32-bit ELF Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" static reloc_howto_type *elf_i386_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type)); static void elf_i386_info_to_howto PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *)); static void elf_i386_info_to_howto_rel PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *)); static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *)); static boolean elf_i386_grok_prstatus PARAMS ((bfd *abfd, Elf_Internal_Note *note)); static boolean elf_i386_grok_psinfo PARAMS ((bfd *abfd, Elf_Internal_Note *note)); static struct bfd_hash_entry *link_hash_newfunc PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_link_hash_table *elf_i386_link_hash_table_create PARAMS ((bfd *)); static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *)); static boolean elf_i386_create_dynamic_sections PARAMS((bfd *, struct bfd_link_info *)); static void elf_i386_copy_indirect_symbol PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *, struct elf_link_hash_entry *)); static int elf_i386_tls_transition PARAMS ((struct bfd_link_info *, int, int)); static boolean elf_i386_mkobject PARAMS((bfd *)); static boolean elf_i386_object_p PARAMS((bfd *)); static boolean elf_i386_check_relocs PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static asection *elf_i386_gc_mark_hook PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static boolean elf_i386_gc_sweep_hook PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *)); static boolean elf_i386_adjust_dynamic_symbol PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean allocate_dynrelocs PARAMS ((struct elf_link_hash_entry *, PTR)); static boolean readonly_dynrelocs PARAMS ((struct elf_link_hash_entry *, PTR)); static boolean elf_i386_fake_sections PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *)); static boolean elf_i386_size_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); static bfd_vma dtpoff_base PARAMS ((struct bfd_link_info *)); static bfd_vma tpoff PARAMS ((struct bfd_link_info *, bfd_vma)); static boolean elf_i386_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static boolean elf_i386_finish_dynamic_symbol PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static enum elf_reloc_type_class elf_i386_reloc_type_class PARAMS ((const Elf_Internal_Rela *)); static boolean elf_i386_finish_dynamic_sections PARAMS ((bfd *, struct bfd_link_info *)); #define USE_REL 1 /* 386 uses REL relocations instead of RELA */ #include "elf/i386.h" static reloc_howto_type elf_howto_table[]= { HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_NONE", true, 0x00000000, 0x00000000, false), HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_PC32", true, 0xffffffff, 0xffffffff, true), HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_GOT32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_PLT32", true, 0xffffffff, 0xffffffff, true), HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_COPY", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_GLOB_DAT", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_JUMP_SLOT", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_RELATIVE", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_GOTOFF", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_GOTPC", true, 0xffffffff, 0xffffffff, true), /* We have a gap in the reloc numbers here. R_386_standard counts the number up to this point, and R_386_ext_offset is the value to subtract from a reloc type of R_386_16 thru R_386_PC8 to form an index into this table. */ #define R_386_standard ((unsigned int) R_386_GOTPC + 1) #define R_386_ext_offset ((unsigned int) R_386_TLS_LE - R_386_standard) /* The remaining relocs are a GNU extension. */ HOWTO(R_386_TLS_LE, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_LE", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_GD, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_GD", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_LDM, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_LDM", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_16", true, 0xffff, 0xffff, false), HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_PC16", true, 0xffff, 0xffff, true), HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_8", true, 0xff, 0xff, false), HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_386_PC8", true, 0xff, 0xff, true), #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset) #define R_386_tls_offset ((unsigned int) R_386_TLS_LDO_32 - R_386_ext) /* These are common with Solaris TLS implementation. */ HOWTO(R_386_TLS_LDO_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_LDO_32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_IE_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_IE_32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_LE_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_LE_32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32", true, 0xffffffff, 0xffffffff, false), HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_386_TLS_TPOFF32", true, 0xffffffff, 0xffffffff, false), /* Another gap. */ #define R_386_tls ((unsigned int) R_386_TLS_TPOFF32 + 1 - R_386_tls_offset) #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_tls) /* GNU extension to record C++ vtable hierarchy. */ HOWTO (R_386_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_386_GNU_VTINHERIT", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* GNU extension to record C++ vtable member usage. */ HOWTO (R_386_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_386_GNU_VTENTRY", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false) /* pcrel_offset */ #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset) }; #ifdef DEBUG_GEN_RELOC #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str) #else #define TRACE(str) #endif static reloc_howto_type * elf_i386_reloc_type_lookup (abfd, code) bfd *abfd ATTRIBUTE_UNUSED; bfd_reloc_code_real_type code; { switch (code) { case BFD_RELOC_NONE: TRACE ("BFD_RELOC_NONE"); return &elf_howto_table[(unsigned int) R_386_NONE ]; case BFD_RELOC_32: TRACE ("BFD_RELOC_32"); return &elf_howto_table[(unsigned int) R_386_32 ]; case BFD_RELOC_CTOR: TRACE ("BFD_RELOC_CTOR"); return &elf_howto_table[(unsigned int) R_386_32 ]; case BFD_RELOC_32_PCREL: TRACE ("BFD_RELOC_PC32"); return &elf_howto_table[(unsigned int) R_386_PC32 ]; case BFD_RELOC_386_GOT32: TRACE ("BFD_RELOC_386_GOT32"); return &elf_howto_table[(unsigned int) R_386_GOT32 ]; case BFD_RELOC_386_PLT32: TRACE ("BFD_RELOC_386_PLT32"); return &elf_howto_table[(unsigned int) R_386_PLT32 ]; case BFD_RELOC_386_COPY: TRACE ("BFD_RELOC_386_COPY"); return &elf_howto_table[(unsigned int) R_386_COPY ]; case BFD_RELOC_386_GLOB_DAT: TRACE ("BFD_RELOC_386_GLOB_DAT"); return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ]; case BFD_RELOC_386_JUMP_SLOT: TRACE ("BFD_RELOC_386_JUMP_SLOT"); return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ]; case BFD_RELOC_386_RELATIVE: TRACE ("BFD_RELOC_386_RELATIVE"); return &elf_howto_table[(unsigned int) R_386_RELATIVE ]; case BFD_RELOC_386_GOTOFF: TRACE ("BFD_RELOC_386_GOTOFF"); return &elf_howto_table[(unsigned int) R_386_GOTOFF ]; case BFD_RELOC_386_GOTPC: TRACE ("BFD_RELOC_386_GOTPC"); return &elf_howto_table[(unsigned int) R_386_GOTPC ]; /* The remaining relocs are a GNU extension. */ case BFD_RELOC_386_TLS_LE: TRACE ("BFD_RELOC_386_TLS_LE"); return &elf_howto_table[(unsigned int) R_386_TLS_LE - R_386_ext_offset]; case BFD_RELOC_386_TLS_GD: TRACE ("BFD_RELOC_386_TLS_GD"); return &elf_howto_table[(unsigned int) R_386_TLS_GD - R_386_ext_offset]; case BFD_RELOC_386_TLS_LDM: TRACE ("BFD_RELOC_386_TLS_LDM"); return &elf_howto_table[(unsigned int) R_386_TLS_LDM - R_386_ext_offset]; case BFD_RELOC_16: TRACE ("BFD_RELOC_16"); return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset]; case BFD_RELOC_16_PCREL: TRACE ("BFD_RELOC_16_PCREL"); return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset]; case BFD_RELOC_8: TRACE ("BFD_RELOC_8"); return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset]; case BFD_RELOC_8_PCREL: TRACE ("BFD_RELOC_8_PCREL"); return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset]; /* Common with Sun TLS implementation. */ case BFD_RELOC_386_TLS_LDO_32: TRACE ("BFD_RELOC_386_TLS_LDO_32"); return &elf_howto_table[(unsigned int) R_386_TLS_LDO_32 - R_386_tls_offset]; case BFD_RELOC_386_TLS_IE_32: TRACE ("BFD_RELOC_386_TLS_IE_32"); return &elf_howto_table[(unsigned int) R_386_TLS_IE_32 - R_386_tls_offset]; case BFD_RELOC_386_TLS_LE_32: TRACE ("BFD_RELOC_386_TLS_LE_32"); return &elf_howto_table[(unsigned int) R_386_TLS_LE_32 - R_386_tls_offset]; case BFD_RELOC_386_TLS_DTPMOD32: TRACE ("BFD_RELOC_386_TLS_DTPMOD32"); return &elf_howto_table[(unsigned int) R_386_TLS_DTPMOD32 - R_386_tls_offset]; case BFD_RELOC_386_TLS_DTPOFF32: TRACE ("BFD_RELOC_386_TLS_DTPOFF32"); return &elf_howto_table[(unsigned int) R_386_TLS_DTPOFF32 - R_386_tls_offset]; case BFD_RELOC_386_TLS_TPOFF32: TRACE ("BFD_RELOC_386_TLS_TPOFF32"); return &elf_howto_table[(unsigned int) R_386_TLS_TPOFF32 - R_386_tls_offset]; case BFD_RELOC_VTABLE_INHERIT: TRACE ("BFD_RELOC_VTABLE_INHERIT"); return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT - R_386_vt_offset]; case BFD_RELOC_VTABLE_ENTRY: TRACE ("BFD_RELOC_VTABLE_ENTRY"); return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY - R_386_vt_offset]; default: break; } TRACE ("Unknown"); return 0; } static void elf_i386_info_to_howto (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr ATTRIBUTE_UNUSED; Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED; { abort (); } static void elf_i386_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr; Elf32_Internal_Rel *dst; { unsigned int r_type = ELF32_R_TYPE (dst->r_info); unsigned int indx; if ((indx = r_type) >= R_386_standard && ((indx = r_type - R_386_ext_offset) - R_386_standard >= R_386_ext - R_386_standard) && ((indx = r_type - R_386_tls_offset) - R_386_ext >= R_386_tls - R_386_ext) && ((indx = r_type - R_386_vt_offset) - R_386_tls >= R_386_vt - R_386_tls)) { (*_bfd_error_handler) (_("%s: invalid relocation type %d"), bfd_archive_filename (abfd), (int) r_type); indx = (unsigned int) R_386_NONE; } cache_ptr->howto = &elf_howto_table[indx]; } /* Return whether a symbol name implies a local label. The UnixWare 2.1 cc generates temporary symbols that start with .X, so we recognize them here. FIXME: do other SVR4 compilers also use .X?. If so, we should move the .X recognition into _bfd_elf_is_local_label_name. */ static boolean elf_i386_is_local_label_name (abfd, name) bfd *abfd; const char *name; { if (name[0] == '.' && name[1] == 'X') return true; return _bfd_elf_is_local_label_name (abfd, name); } /* Support for core dump NOTE sections. */ static boolean elf_i386_grok_prstatus (abfd, note) bfd *abfd; Elf_Internal_Note *note; { int offset; size_t raw_size; switch (note->descsz) { default: return false; case 144: /* Linux/i386 */ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; raw_size = 68; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", raw_size, note->descpos + offset); } static boolean elf_i386_grok_psinfo (abfd, note) bfd *abfd; Elf_Internal_Note *note; { switch (note->descsz) { default: return false; case 124: /* Linux/i386 elf_prpsinfo */ elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return true; } /* Functions for the i386 ELF linker. In order to gain some understanding of code in this file without knowing all the intricate details of the linker, note the following: Functions named elf_i386_* are called by external routines, other functions are only called locally. elf_i386_* functions appear in this file more or less in the order in which they are called from external routines. eg. elf_i386_check_relocs is called early in the link process, elf_i386_finish_dynamic_sections is one of the last functions. */ /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" /* The size in bytes of an entry in the procedure linkage table. */ #define PLT_ENTRY_SIZE 16 /* The first entry in an absolute procedure linkage table looks like this. See the SVR4 ABI i386 supplement to see how this works. */ static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] = { 0xff, 0x35, /* pushl contents of address */ 0, 0, 0, 0, /* replaced with address of .got + 4. */ 0xff, 0x25, /* jmp indirect */ 0, 0, 0, 0, /* replaced with address of .got + 8. */ 0, 0, 0, 0 /* pad out to 16 bytes. */ }; /* Subsequent entries in an absolute procedure linkage table look like this. */ static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] = { 0xff, 0x25, /* jmp indirect */ 0, 0, 0, 0, /* replaced with address of this symbol in .got. */ 0x68, /* pushl immediate */ 0, 0, 0, 0, /* replaced with offset into relocation table. */ 0xe9, /* jmp relative */ 0, 0, 0, 0 /* replaced with offset to start of .plt. */ }; /* The first entry in a PIC procedure linkage table look like this. */ static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] = { 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */ 0, 0, 0, 0 /* pad out to 16 bytes. */ }; /* Subsequent entries in a PIC procedure linkage table look like this. */ static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] = { 0xff, 0xa3, /* jmp *offset(%ebx) */ 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ 0x68, /* pushl immediate */ 0, 0, 0, 0, /* replaced with offset into relocation table. */ 0xe9, /* jmp relative */ 0, 0, 0, 0 /* replaced with offset to start of .plt. */ }; /* The i386 linker needs to keep track of the number of relocs that it decides to copy as dynamic relocs in check_relocs for each symbol. This is so that it can later discard them if they are found to be unnecessary. We store the information in a field extending the regular ELF linker hash table. */ struct elf_i386_dyn_relocs { struct elf_i386_dyn_relocs *next; /* The input section of the reloc. */ asection *sec; /* Total number of relocs copied for the input section. */ bfd_size_type count; /* Number of pc-relative relocs copied for the input section. */ bfd_size_type pc_count; }; /* i386 ELF linker hash entry. */ struct elf_i386_link_hash_entry { struct elf_link_hash_entry elf; /* Track dynamic relocs copied for this symbol. */ struct elf_i386_dyn_relocs *dyn_relocs; enum { GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE } tls_type; }; #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent)) struct elf_i386_obj_tdata { struct elf_obj_tdata root; /* tls_type for each local got entry. */ char *local_got_tls_type; }; #define elf_i386_tdata(abfd) \ ((struct elf_i386_obj_tdata *) (abfd)->tdata.any) #define elf_i386_local_got_tls_type(abfd) \ (elf_i386_tdata (abfd)->local_got_tls_type) static boolean elf_i386_mkobject (abfd) bfd *abfd; { bfd_size_type amt = sizeof (struct elf_i386_obj_tdata); abfd->tdata.any = bfd_zalloc (abfd, amt); if (abfd->tdata.any == NULL) return false; return true; } static boolean elf_i386_object_p (abfd) bfd *abfd; { /* Allocate our special target data. */ struct elf_i386_obj_tdata *new_tdata; bfd_size_type amt = sizeof (struct elf_i386_obj_tdata); new_tdata = bfd_zalloc (abfd, amt); if (new_tdata == NULL) return false; new_tdata->root = *abfd->tdata.elf_obj_data; abfd->tdata.any = new_tdata; return true; } /* i386 ELF linker hash table. */ struct elf_i386_link_hash_table { struct elf_link_hash_table elf; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *sgotplt; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; /* Small local sym to section mapping cache. */ struct sym_sec_cache sym_sec; }; /* Get the i386 ELF linker hash table from a link_info structure. */ #define elf_i386_hash_table(p) \ ((struct elf_i386_link_hash_table *) ((p)->hash)) /* Create an entry in an i386 ELF linker hash table. */ static struct bfd_hash_entry * link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf_i386_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf_i386_link_hash_entry *eh; eh = (struct elf_i386_link_hash_entry *) entry; eh->dyn_relocs = NULL; eh->tls_type = GOT_UNKNOWN; } return entry; } /* Create an i386 ELF linker hash table. */ static struct bfd_link_hash_table * elf_i386_link_hash_table_create (abfd) bfd *abfd; { struct elf_i386_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_i386_link_hash_table); ret = (struct elf_i386_link_hash_table *) bfd_malloc (amt); if (ret == NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc)) { free (ret); return NULL; } ret->sgot = NULL; ret->sgotplt = NULL; ret->srelgot = NULL; ret->splt = NULL; ret->srelplt = NULL; ret->sdynbss = NULL; ret->srelbss = NULL; ret->tls_ldm_got.refcount = 0; ret->sym_sec.abfd = NULL; return &ret->elf.root; } /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static boolean create_got_section (dynobj, info) bfd *dynobj; struct bfd_link_info *info; { struct elf_i386_link_hash_table *htab; if (! _bfd_elf_create_got_section (dynobj, info)) return false; htab = elf_i386_hash_table (info); htab->sgot = bfd_get_section_by_name (dynobj, ".got"); htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); if (!htab->sgot || !htab->sgotplt) abort (); htab->srelgot = bfd_make_section (dynobj, ".rel.got"); if (htab->srelgot == NULL || ! bfd_set_section_flags (dynobj, htab->srelgot, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2)) return false; return true; } /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and .rel.bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static boolean elf_i386_create_dynamic_sections (dynobj, info) bfd *dynobj; struct bfd_link_info *info; { struct elf_i386_link_hash_table *htab; htab = elf_i386_hash_table (info); if (!htab->sgot && !create_got_section (dynobj, info)) return false; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return false; htab->splt = bfd_get_section_by_name (dynobj, ".plt"); htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt"); htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); if (!info->shared) htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss"); if (!htab->splt || !htab->srelplt || !htab->sdynbss || (!info->shared && !htab->srelbss)) abort (); return true; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf_i386_copy_indirect_symbol (bed, dir, ind) struct elf_backend_data *bed; struct elf_link_hash_entry *dir, *ind; { struct elf_i386_link_hash_entry *edir, *eind; edir = (struct elf_i386_link_hash_entry *) dir; eind = (struct elf_i386_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_i386_dyn_relocs **pp; struct elf_i386_dyn_relocs *p; if (ind->root.type == bfd_link_hash_indirect) abort (); /* Add reloc counts against the weak sym to the strong sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct elf_i386_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount <= 0) { edir->tls_type = eind->tls_type; eind->tls_type = GOT_UNKNOWN; } _bfd_elf_link_hash_copy_indirect (bed, dir, ind); } static int elf_i386_tls_transition (info, r_type, is_local) struct bfd_link_info *info; int r_type; int is_local; { if (info->shared) return r_type; switch (r_type) { case R_386_TLS_GD: case R_386_TLS_IE_32: if (is_local) return R_386_TLS_LE_32; return R_386_TLS_IE_32; case R_386_TLS_LDM: return R_386_TLS_LE_32; } return r_type; } /* Look through the relocs for a section during the first phase, and calculate needed space in the global offset table, procedure linkage table, and dynamic reloc sections. */ static boolean elf_i386_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { struct elf_i386_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sreloc; if (info->relocateable) return true; htab = elf_i386_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sreloc = NULL; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned int r_type; unsigned long r_symndx; struct elf_link_hash_entry *h; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) { (*_bfd_error_handler) (_("%s: bad symbol index: %d"), bfd_archive_filename (abfd), r_symndx); return false; } if (r_symndx < symtab_hdr->sh_info) h = NULL; else h = sym_hashes[r_symndx - symtab_hdr->sh_info]; r_type = elf_i386_tls_transition (info, r_type, h == NULL); switch (r_type) { case R_386_TLS_IE_32: if (info->shared) info->flags |= DF_STATIC_TLS; /* FALLTHROUGH */ case R_386_GOT32: case R_386_TLS_GD: /* This symbol requires a global offset table entry. */ { int tls_type, old_tls_type; switch (r_type) { default: case R_386_GOT32: tls_type = GOT_NORMAL; break; case R_386_TLS_GD: tls_type = GOT_TLS_GD; break; case R_386_TLS_IE_32: tls_type = GOT_TLS_IE; break; } if (h != NULL) { h->got.refcount += 1; old_tls_type = elf_i386_hash_entry(h)->tls_type; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= (sizeof (bfd_signed_vma) + sizeof(char)); local_got_refcounts = ((bfd_signed_vma *) bfd_zalloc (abfd, size)); if (local_got_refcounts == NULL) return false; elf_local_got_refcounts (abfd) = local_got_refcounts; elf_i386_local_got_tls_type (abfd) = (char *) (local_got_refcounts + symtab_hdr->sh_info); } local_got_refcounts[r_symndx] += 1; old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx]; } /* If a TLS symbol is accessed using IE at least once, there is no point to use dynamic model for it. */ if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE)) { if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD) tls_type = GOT_TLS_IE; else { (*_bfd_error_handler) (_("%s: `%s' accessed both as normal and thread local symbol"), bfd_archive_filename (abfd), h->root.root.string); return false; } } if (old_tls_type != tls_type) { if (h != NULL) elf_i386_hash_entry (h)->tls_type = tls_type; else elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type; } } /* Fall through */ case R_386_GOTOFF: case R_386_GOTPC: create_got: if (htab->sgot == NULL) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; if (!create_got_section (htab->elf.dynobj, info)) return false; } break; case R_386_TLS_LDM: htab->tls_ldm_got.refcount += 1; goto create_got; case R_386_PLT32: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code which is never referenced by a dynamic object, in which case we don't need to generate a procedure linkage table entry after all. */ /* If this is a local symbol, we resolve it directly without creating a procedure linkage table entry. */ if (h == NULL) continue; h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; h->plt.refcount += 1; break; case R_386_32: case R_386_PC32: if (h != NULL && !info->shared) { /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF; /* We may need a .plt entry if the function this reloc refers to is in a shared lib. */ h->plt.refcount += 1; } /* If we are creating a shared library, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). In case of a weak definition, DEF_REGULAR may be cleared later by a strong definition in a shared library. We account for that possibility below by storing information in the relocs_copied field of the hash table entry. A similar situation occurs when creating shared libraries and symbol visibility changes render the symbol local. If on the other hand, we are creating an executable, we may need to keep relocations for symbols satisfied by a dynamic library if we manage to avoid copy relocs for the symbol. */ if ((info->shared && (sec->flags & SEC_ALLOC) != 0 && (r_type != R_386_PC32 || (h != NULL && (! info->symbolic || h->root.type == bfd_link_hash_defweak || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)))) || (!info->shared && (sec->flags & SEC_ALLOC) != 0 && h != NULL && (h->root.type == bfd_link_hash_defweak || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))) { struct elf_i386_dyn_relocs *p; struct elf_i386_dyn_relocs **head; /* We must copy these reloc types into the output file. Create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { const char *name; bfd *dynobj; unsigned int strndx = elf_elfheader (abfd)->e_shstrndx; unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name; name = bfd_elf_string_from_elf_section (abfd, strndx, shnam); if (name == NULL) return false; if (strncmp (name, ".rel", 4) != 0 || strcmp (bfd_get_section_name (abfd, sec), name + 4) != 0) { (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"), bfd_archive_filename (abfd), name); } if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; dynobj = htab->elf.dynobj; sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; sreloc = bfd_make_section (dynobj, name); flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0) flags |= SEC_ALLOC | SEC_LOAD; if (sreloc == NULL || ! bfd_set_section_flags (dynobj, sreloc, flags) || ! bfd_set_section_alignment (dynobj, sreloc, 2)) return false; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) { head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec, r_symndx); if (s == NULL) return false; head = ((struct elf_i386_dyn_relocs **) &elf_section_data (s)->local_dynrel); } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = ((struct elf_i386_dyn_relocs *) bfd_alloc (htab->elf.dynobj, amt)); if (p == NULL) return false; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count += 1; if (r_type == R_386_PC32) p->pc_count += 1; } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_386_GNU_VTINHERIT: if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return false; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_386_GNU_VTENTRY: if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return false; break; case R_386_TLS_LE_32: case R_386_TLS_LE: if (info->shared) { (*_bfd_error_handler) (_("%s: TLS local exec code cannot be linked into shared objects"), bfd_archive_filename (abfd)); return false; } break; default: break; } } return true; } /* Return the section that should be marked against GC for a given relocation. */ static asection * elf_i386_gc_mark_hook (sec, info, rel, h, sym) asection *sec; struct bfd_link_info *info ATTRIBUTE_UNUSED; Elf_Internal_Rela *rel; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { if (h != NULL) { switch (ELF32_R_TYPE (rel->r_info)) { case R_386_GNU_VTINHERIT: case R_386_GNU_VTENTRY: break; default: switch (h->root.type) { case bfd_link_hash_defined: case bfd_link_hash_defweak: return h->root.u.def.section; case bfd_link_hash_common: return h->root.u.c.p->section; default: break; } } } else return bfd_section_from_elf_index (sec->owner, sym->st_shndx); return NULL; } /* Update the got entry reference counts for the section being removed. */ static boolean elf_i386_gc_sweep_hook (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; unsigned long r_symndx; struct elf_link_hash_entry *h; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) switch (elf_i386_tls_transition (info, ELF32_R_TYPE (rel->r_info), ELF32_R_SYM (rel->r_info) >= symtab_hdr->sh_info)) { case R_386_TLS_LDM: if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0) elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1; break; case R_386_TLS_GD: case R_386_TLS_IE_32: case R_386_GOT32: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_386_32: case R_386_PC32: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { struct elf_i386_link_hash_entry *eh; struct elf_i386_dyn_relocs **pp; struct elf_i386_dyn_relocs *p; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (!info->shared && h->plt.refcount > 0) h->plt.refcount -= 1; eh = (struct elf_i386_link_hash_entry *) h; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { if (ELF32_R_TYPE (rel->r_info) == R_386_PC32) p->pc_count -= 1; p->count -= 1; if (p->count == 0) *pp = p->next; break; } } break; case R_386_PLT32: r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (h->plt.refcount > 0) h->plt.refcount -= 1; } break; default: break; } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean elf_i386_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { struct elf_i386_link_hash_table *htab; struct elf_i386_link_hash_entry * eh; struct elf_i386_dyn_relocs *p; asection *s; unsigned int power_of_two; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { if (h->plt.refcount <= 0 || (! info->shared && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0 && h->root.type != bfd_link_hash_undefweak && h->root.type != bfd_link_hash_undefined)) { /* This case can occur if we saw a PLT32 reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PC32 reloc instead. */ h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } return true; } else /* It's possible that we incorrectly decided a .plt reloc was needed for an R_386_PC32 reloc to a non-function sym in check_relocs. We can't decide accurately between function and non-function syms in check-relocs; Objects loaded later in the link may change h->type. So fix it now. */ h->plt.offset = (bfd_vma) -1; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (info->shared) return true; /* If there are no references to this symbol that do not use the GOT, we don't need to generate a copy reloc. */ if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0) return true; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF; return true; } eh = (struct elf_i386_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) break; } /* If we didn't find any dynamic relocs in read-only sections, then we'll be keeping the dynamic relocs and avoiding the copy reloc. */ if (p == NULL) { h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF; return true; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ htab = elf_i386_hash_table (info); /* We must generate a R_386_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { htab->srelbss->_raw_size += sizeof (Elf32_External_Rel); h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; } /* We need to figure out the alignment required for this symbol. I have no idea how ELF linkers handle this. */ power_of_two = bfd_log2 (h->size); if (power_of_two > 3) power_of_two = 3; /* Apply the required alignment. */ s = htab->sdynbss; s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two)); if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s)) { if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two)) return false; } /* Define the symbol as being at this point in the section. */ h->root.u.def.section = s; h->root.u.def.value = s->_raw_size; /* Increment the section size to make room for the symbol. */ s->_raw_size += h->size; return true; } /* This is the condition under which elf_i386_finish_dynamic_symbol will be called from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol routine, we'll need to do something about initializing any .plt and .got entries in elf_i386_relocate_section. */ #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \ ((DYN) \ && ((INFO)->shared \ || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \ && ((H)->dynindx != -1 \ || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)) /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static boolean allocate_dynrelocs (h, inf) struct elf_link_hash_entry *h; PTR inf; { struct bfd_link_info *info; struct elf_i386_link_hash_table *htab; struct elf_i386_link_hash_entry *eh; struct elf_i386_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return true; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = elf_i386_hash_table (info); if (htab->elf.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h)) { asection *s = htab->splt; /* If this is the first .plt entry, make room for the special first entry. */ if (s->_raw_size == 0) s->_raw_size += PLT_ENTRY_SIZE; h->plt.offset = s->_raw_size; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* Make room for this entry. */ s->_raw_size += PLT_ENTRY_SIZE; /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ htab->sgotplt->_raw_size += 4; /* We also need to make an entry in the .rel.plt section. */ htab->srelplt->_raw_size += sizeof (Elf32_External_Rel); } else { h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } } else { h->plt.offset = (bfd_vma) -1; h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } /* If R_386_TLS_IE_32 symbol is now local to the binary, make it a R_386_TLS_LE_32 requiring no TLS entry. */ if (h->got.refcount > 0 && !info->shared && h->dynindx == -1 && elf_i386_hash_entry(h)->tls_type == GOT_TLS_IE) h->got.offset = (bfd_vma) -1; else if (h->got.refcount > 0) { asection *s; boolean dyn; int tls_type = elf_i386_hash_entry(h)->tls_type; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } s = htab->sgot; h->got.offset = s->_raw_size; s->_raw_size += 4; /* R_386_TLS_GD needs 2 consecutive GOT slots. */ if (tls_type == GOT_TLS_GD) s->_raw_size += 4; dyn = htab->elf.dynamic_sections_created; /* R_386_TLS_IE_32 needs one dynamic relocation, R_386_TLS_GD needs one if local symbol and two if global. */ if ((tls_type == GOT_TLS_GD && h->dynindx == -1) || tls_type == GOT_TLS_IE) htab->srelgot->_raw_size += sizeof (Elf32_External_Rel); else if (tls_type == GOT_TLS_GD) htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel); else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)) htab->srelgot->_raw_size += sizeof (Elf32_External_Rel); } else h->got.offset = (bfd_vma) -1; eh = (struct elf_i386_link_hash_entry *) h; if (eh->dyn_relocs == NULL) return true; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared) { if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0 || info->symbolic)) { struct elf_i386_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) || (htab->elf.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) { if (! bfd_elf32_link_record_dynamic_symbol (info, h)) return false; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel); } return true; } /* Find any dynamic relocs that apply to read-only sections. */ static boolean readonly_dynrelocs (h, inf) struct elf_link_hash_entry *h; PTR inf; { struct elf_i386_link_hash_entry *eh; struct elf_i386_dyn_relocs *p; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct elf_i386_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return false; } } return true; } /* Set the sizes of the dynamic sections. */ static boolean elf_i386_size_dynamic_sections (output_bfd, info) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { struct elf_i386_link_hash_table *htab; bfd *dynobj; asection *s; boolean relocs; bfd *ibfd; htab = elf_i386_hash_table (info); dynobj = htab->elf.dynobj; if (dynobj == NULL) abort (); if (htab->elf.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (! info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); if (s == NULL) abort (); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *local_tls_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_i386_dyn_relocs *p; for (p = *((struct elf_i386_dyn_relocs **) &elf_section_data (s)->local_dynrel); p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; srel->_raw_size += p->count * sizeof (Elf32_External_Rel); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = elf_i386_local_got_tls_type (ibfd); s = htab->sgot; srel = htab->srelgot; for (; local_got < end_local_got; ++local_got, ++local_tls_type) { if (*local_got > 0) { *local_got = s->_raw_size; s->_raw_size += 4; if (*local_tls_type == GOT_TLS_GD) s->_raw_size += 4; if (info->shared || *local_tls_type == GOT_TLS_GD || *local_tls_type == GOT_TLS_IE) srel->_raw_size += sizeof (Elf32_External_Rel); } else *local_got = (bfd_vma) -1; } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM relocs. */ htab->tls_ldm_got.offset = htab->sgot->_raw_size; htab->sgot->_raw_size += 8; htab->srelgot->_raw_size += sizeof (Elf32_External_Rel); } else htab->tls_ldm_got.offset = -1; /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info); /* We now have determined the sizes of the various dynamic sections. Allocate memory for them. */ relocs = false; for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt || s == htab->sgot || s == htab->sgotplt) { /* Strip this section if we don't need it; see the comment below. */ } else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0) { if (s->_raw_size != 0 && s != htab->srelplt) relocs = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->_raw_size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rel.bss and .rel.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ _bfd_strip_section_from_output (info, s); continue; } /* Allocate memory for the section contents. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_386_NONE reloc instead of garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); if (s->contents == NULL) return false; } if (htab->elf.dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf_i386_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL)) if (! info->shared) { if (!add_dynamic_entry (DT_DEBUG, 0)) return false; } if (htab->splt->_raw_size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_REL) || !add_dynamic_entry (DT_JMPREL, 0)) return false; } if (relocs) { if (!add_dynamic_entry (DT_REL, 0) || !add_dynamic_entry (DT_RELSZ, 0) || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel))) return false; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return false; } } } #undef add_dynamic_entry return true; } /* Set the correct type for an x86 ELF section. We do this by the section name, which is a hack, but ought to work. */ static boolean elf_i386_fake_sections (abfd, hdr, sec) bfd *abfd ATTRIBUTE_UNUSED; Elf32_Internal_Shdr *hdr; asection *sec; { register const char *name; name = bfd_get_section_name (abfd, sec); /* This is an ugly, but unfortunately necessary hack that is needed when producing EFI binaries on x86. It tells elf.c:elf_fake_sections() not to consider ".reloc" as a section containing ELF relocation info. We need this hack in order to be able to generate ELF binaries that can be translated into EFI applications (which are essentially COFF objects). Those files contain a COFF ".reloc" section inside an ELFNN object, which would normally cause BFD to segfault because it would attempt to interpret this section as containing relocation entries for section "oc". With this hack enabled, ".reloc" will be treated as a normal data section, which will avoid the segfault. However, you won't be able to create an ELFNN binary with a section named "oc" that needs relocations, but that's the kind of ugly side-effects you get when detecting section types based on their names... In practice, this limitation is unlikely to bite. */ if (strcmp (name, ".reloc") == 0) hdr->sh_type = SHT_PROGBITS; return true; } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (info) struct bfd_link_info *info; { BFD_ASSERT (elf_hash_table (info)->tls_segment != NULL); return elf_hash_table (info)->tls_segment->start; } /* Return the relocation value for @tpoff relocation if STT_TLS virtual address is ADDRESS. */ static bfd_vma tpoff (info, address) struct bfd_link_info *info; bfd_vma address; { struct elf_link_tls_segment *tls_segment = elf_hash_table (info)->tls_segment; BFD_ASSERT (tls_segment != NULL); return (align_power (tls_segment->size, tls_segment->align) + tls_segment->start - address); } /* Relocate an i386 ELF section. */ static boolean elf_i386_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { struct elf_i386_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_vma *local_got_offsets; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; htab = elf_i386_hash_table (info); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { unsigned int r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; asection *sec; bfd_vma off; bfd_vma relocation; boolean unresolved_reloc; bfd_reloc_status_type r; unsigned int indx; int tls_type; r_type = ELF32_R_TYPE (rel->r_info); if (r_type == (int) R_386_GNU_VTINHERIT || r_type == (int) R_386_GNU_VTENTRY) continue; if ((indx = (unsigned) r_type) >= R_386_standard && ((indx = r_type - R_386_ext_offset) - R_386_standard >= R_386_ext - R_386_standard) && ((indx = r_type - R_386_tls_offset) - R_386_ext >= R_386_tls - R_386_ext)) { bfd_set_error (bfd_error_bad_value); return false; } howto = elf_howto_table + indx; r_symndx = ELF32_R_SYM (rel->r_info); if (info->relocateable) { bfd_vma val; bfd_byte *where; /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (r_symndx >= symtab_hdr->sh_info) continue; sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) continue; sec = local_sections[r_symndx]; val = sec->output_offset; if (val == 0) continue; where = contents + rel->r_offset; switch (howto->size) { /* FIXME: overflow checks. */ case 0: val += bfd_get_8 (input_bfd, where); bfd_put_8 (input_bfd, val, where); break; case 1: val += bfd_get_16 (input_bfd, where); bfd_put_16 (input_bfd, val, where); break; case 2: val += bfd_get_32 (input_bfd, where); bfd_put_32 (input_bfd, val, where); break; default: abort (); } continue; } /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; unresolved_reloc = false; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); if ((sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { asection *msec; bfd_vma addend; bfd_byte *where = contents + rel->r_offset; switch (howto->size) { case 0: addend = bfd_get_8 (input_bfd, where); if (howto->pc_relative) { addend = (addend ^ 0x80) - 0x80; addend += 1; } break; case 1: addend = bfd_get_16 (input_bfd, where); if (howto->pc_relative) { addend = (addend ^ 0x8000) - 0x8000; addend += 2; } break; case 2: addend = bfd_get_32 (input_bfd, where); if (howto->pc_relative) { addend = (addend ^ 0x80000000) - 0x80000000; addend += 4; } break; default: abort (); } msec = sec; addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend); addend -= relocation; addend += msec->output_section->vma + msec->output_offset; switch (howto->size) { case 0: /* FIXME: overflow checks. */ if (howto->pc_relative) addend -= 1; bfd_put_8 (input_bfd, addend, where); break; case 1: if (howto->pc_relative) addend -= 2; bfd_put_16 (input_bfd, addend, where); break; case 2: if (howto->pc_relative) addend -= 4; bfd_put_32 (input_bfd, addend, where); break; } } } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; relocation = 0; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { sec = h->root.u.def.section; if (sec->output_section == NULL) /* Set a flag that will be cleared later if we find a relocation value for this symbol. output_section is typically NULL for symbols satisfied by a shared library. */ unresolved_reloc = true; else relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) ; else if (info->shared && (!info->symbolic || info->allow_shlib_undefined) && !info->no_undefined && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) ; else { if (! ((*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset, (!info->shared || info->no_undefined || ELF_ST_VISIBILITY (h->other))))) return false; } } switch (r_type) { case R_386_GOT32: /* Relocation is to the entry for this symbol in the global offset table. */ if (htab->sgot == NULL) abort (); if (h != NULL) { boolean dyn; off = h->got.offset; dyn = htab->elf.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h) || (info->shared && (info->symbolic || h->dynindx == -1 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)) && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rel.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, htab->sgot->contents + off); h->got.offset |= 1; } } else unresolved_reloc = false; } else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { bfd_put_32 (output_bfd, relocation, htab->sgot->contents + off); if (info->shared) { asection *srelgot; Elf_Internal_Rel outrel; Elf32_External_Rel *loc; srelgot = htab->srelgot; if (srelgot == NULL) abort (); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); loc = (Elf32_External_Rel *) srelgot->contents; loc += srelgot->reloc_count++; bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); } local_got_offsets[r_symndx] |= 1; } } if (off >= (bfd_vma) -2) abort (); relocation = htab->sgot->output_offset + off; break; case R_386_GOTOFF: /* Relocation is relative to the start of the global offset table. */ /* Note that sgot->output_offset is not involved in this calculation. We always want the start of .got. If we defined _GLOBAL_OFFSET_TABLE in a different way, as is permitted by the ABI, we might have to change this calculation. */ relocation -= htab->sgot->output_section->vma; break; case R_386_GOTPC: /* Use global offset table as symbol value. */ relocation = htab->sgot->output_section->vma; unresolved_reloc = false; break; case R_386_PLT32: /* Relocation is to the entry for this symbol in the procedure linkage table. */ /* Resolve a PLT32 reloc against a local symbol directly, without using the procedure linkage table. */ if (h == NULL) break; if (h->plt.offset == (bfd_vma) -1 || htab->splt == NULL) { /* We didn't make a PLT entry for this symbol. This happens when statically linking PIC code, or when using -Bsymbolic. */ break; } relocation = (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset); unresolved_reloc = false; break; case R_386_32: case R_386_PC32: /* r_symndx will be zero only for relocs against symbols from removed linkonce sections, or sections discarded by a linker script. */ if (r_symndx == 0 || (input_section->flags & SEC_ALLOC) == 0) break; if ((info->shared && (r_type != R_386_PC32 || (h != NULL && h->dynindx != -1 && (! info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)))) || (!info->shared && h != NULL && h->dynindx != -1 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) || h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined))) { Elf_Internal_Rel outrel; boolean skip, relocate; asection *sreloc; Elf32_External_Rel *loc; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ skip = false; relocate = false; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = true; else if (outrel.r_offset == (bfd_vma) -2) skip = true, relocate = true; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (r_type == R_386_PC32 || !info->shared || !info->symbolic || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)) outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); else { /* This symbol is local, or marked to become local. */ relocate = true; outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); } sreloc = elf_section_data (input_section)->sreloc; if (sreloc == NULL) abort (); loc = (Elf32_External_Rel *) sreloc->contents; loc += sreloc->reloc_count++; bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (! relocate) continue; } break; case R_386_TLS_GD: case R_386_TLS_IE_32: r_type = elf_i386_tls_transition (info, r_type, h == NULL); tls_type = GOT_UNKNOWN; if (h == NULL && local_got_offsets) tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx]; else if (h != NULL) { tls_type = elf_i386_hash_entry(h)->tls_type; if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE) r_type = R_386_TLS_LE_32; } if (r_type == R_386_TLS_GD && tls_type == GOT_TLS_IE) r_type = R_386_TLS_IE_32; if (r_type == R_386_TLS_LE_32) { BFD_ASSERT (! unresolved_reloc); if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD) { unsigned int val, type; bfd_vma roff; /* GD->LE transition. */ BFD_ASSERT (rel->r_offset >= 2); type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); BFD_ASSERT (type == 0x8d || type == 0x04); BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4) == 0xe8); BFD_ASSERT (rel + 1 < relend); BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32); roff = rel->r_offset + 5; val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); if (type == 0x04) { /* leal foo(,%reg,1), %eax; call ___tls_get_addr Change it into: movl %gs:0, %eax; subl $foo@tpoff, %eax (6 byte form of subl). */ BFD_ASSERT (rel->r_offset >= 3); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3) == 0x8d); BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3)); memcpy (contents + rel->r_offset - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); } else { BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4); if (rel->r_offset + 10 <= input_section->_raw_size && bfd_get_8 (input_bfd, contents + rel->r_offset + 9) == 0x90) { /* leal foo(%reg), %eax; call ___tls_get_addr; nop Change it into: movl %gs:0, %eax; subl $foo@tpoff, %eax (6 byte form of subl). */ memcpy (contents + rel->r_offset - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); roff = rel->r_offset + 6; } else { /* leal foo(%reg), %eax; call ___tls_get_addr Change it into: movl %gs:0, %eax; subl $foo@tpoff, %eax (5 byte form of subl). */ memcpy (contents + rel->r_offset - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11); } } bfd_put_32 (output_bfd, tpoff (info, relocation), contents + roff); /* Skip R_386_PLT32. */ rel++; continue; } else { unsigned int val, type; /* IE->LE transition: Originally it can be either: subl foo(%reg1), %reg2 or movl foo(%reg1), %reg2 We change it into: subl $foo, %reg2 or movl $foo, %reg2 (6 byte form) */ BFD_ASSERT (rel->r_offset >= 2); type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size); if (type == 0x8b) { /* movl */ BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4); bfd_put_8 (output_bfd, 0xc7, contents + rel->r_offset - 2); bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), contents + rel->r_offset - 1); } else if (type == 0x2b) { /* subl */ BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4); bfd_put_8 (output_bfd, 0x81, contents + rel->r_offset - 2); bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7), contents + rel->r_offset - 1); } else BFD_FAIL (); bfd_put_32 (output_bfd, tpoff (info, relocation), contents + rel->r_offset); continue; } } if (htab->sgot == NULL) abort (); if (h != NULL) off = h->got.offset; else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; } if ((off & 1) != 0) off &= ~1; else { Elf_Internal_Rel outrel; Elf32_External_Rel *loc; int dr_type, indx; if (htab->srelgot == NULL) abort (); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); indx = h && h->dynindx != -1 ? h->dynindx : 0; if (r_type == R_386_TLS_GD) dr_type = R_386_TLS_DTPMOD32; else dr_type = R_386_TLS_TPOFF32; if (dr_type == R_386_TLS_TPOFF32 && indx == 0) bfd_put_32 (output_bfd, relocation - dtpoff_base (info), htab->sgot->contents + off); else bfd_put_32 (output_bfd, 0, htab->sgot->contents + off); outrel.r_info = ELF32_R_INFO (indx, dr_type); loc = (Elf32_External_Rel *) htab->srelgot->contents; loc += htab->srelgot->reloc_count++; bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); if (r_type == R_386_TLS_GD) { if (indx == 0) { BFD_ASSERT (! unresolved_reloc); bfd_put_32 (output_bfd, relocation - dtpoff_base (info), htab->sgot->contents + off + 4); } else { bfd_put_32 (output_bfd, 0, htab->sgot->contents + off + 4); outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_DTPOFF32); outrel.r_offset += 4; htab->srelgot->reloc_count++; loc++; bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); } } if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if (off >= (bfd_vma) -2) abort (); if (r_type == ELF32_R_TYPE (rel->r_info)) { relocation = htab->sgot->output_offset + off; unresolved_reloc = false; } else { unsigned int val, type; bfd_vma roff; /* GD->IE transition. */ BFD_ASSERT (rel->r_offset >= 2); type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); BFD_ASSERT (type == 0x8d || type == 0x04); BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4) == 0xe8); BFD_ASSERT (rel + 1 < relend); BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32); roff = rel->r_offset - 3; val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); if (type == 0x04) { /* leal foo(,%reg,1), %eax; call ___tls_get_addr Change it into: movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */ BFD_ASSERT (rel->r_offset >= 3); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3) == 0x8d); BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3)); val >>= 3; } else { /* leal foo(%reg), %eax; call ___tls_get_addr; nop Change it into: movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */ BFD_ASSERT (rel->r_offset + 10 <= input_section->_raw_size); BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 9) == 0x90); roff = rel->r_offset - 2; } memcpy (contents + roff, "\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12); contents[roff + 7] = 0x80 | (val & 7); bfd_put_32 (output_bfd, htab->sgot->output_offset + off, contents + roff + 8); /* Skip R_386_PLT32. */ rel++; continue; } break; case R_386_TLS_LDM: if (! info->shared) { unsigned int val; /* LD->LE transition: Ensure it is: leal foo(%reg), %eax; call ___tls_get_addr. We change it into: movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */ BFD_ASSERT (rel->r_offset >= 2); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2) == 0x8d); val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4); BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size); BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4) == 0xe8); BFD_ASSERT (rel + 1 < relend); BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32); memcpy (contents + rel->r_offset - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11); /* Skip R_386_PLT32. */ rel++; continue; } if (htab->sgot == NULL) abort (); off = htab->tls_ldm_got.offset; if (off & 1) off &= ~1; else { Elf_Internal_Rel outrel; Elf32_External_Rel *loc; if (htab->srelgot == NULL) abort (); outrel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + off); bfd_put_32 (output_bfd, 0, htab->sgot->contents + off); bfd_put_32 (output_bfd, 0, htab->sgot->contents + off + 4); outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32); loc = (Elf32_External_Rel *) htab->srelgot->contents; loc += htab->srelgot->reloc_count++; bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); htab->tls_ldm_got.offset |= 1; } relocation = htab->sgot->output_offset + off; unresolved_reloc = false; break; case R_386_TLS_LDO_32: if (info->shared) relocation -= dtpoff_base (info); else /* When converting LDO to LE, we must negate. */ relocation = -tpoff (info, relocation); break; case R_386_TLS_LE_32: relocation = tpoff (info, relocation); break; case R_386_TLS_LE: relocation = -tpoff (info, relocation); break; default: break; } /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)) (*_bfd_error_handler) (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"), bfd_archive_filename (input_bfd), bfd_get_section_name (input_bfd, input_section), (long) rel->r_offset, h->root.root.string); r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, (bfd_vma) 0); if (r != bfd_reloc_ok) { const char *name; if (h != NULL) name = h->root.root.string; else { name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (name == NULL) return false; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (r == bfd_reloc_overflow) { if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return false; } else { (*_bfd_error_handler) (_("%s(%s+0x%lx): reloc against `%s': error %d"), bfd_archive_filename (input_bfd), bfd_get_section_name (input_bfd, input_section), (long) rel->r_offset, name, (int) r); return false; } } } return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { struct elf_i386_link_hash_table *htab; htab = elf_i386_hash_table (info); if (h->plt.offset != (bfd_vma) -1) { bfd_vma plt_index; bfd_vma got_offset; Elf_Internal_Rel rel; Elf32_External_Rel *loc; /* This symbol has an entry in the procedure linkage table. Set it up. */ if (h->dynindx == -1 || htab->splt == NULL || htab->sgotplt == NULL || htab->srelplt == NULL) abort (); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; /* Get the offset into the .got table of the entry that corresponds to this function. Each .got entry is 4 bytes. The first three are reserved. */ got_offset = (plt_index + 3) * 4; /* Fill in the entry in the procedure linkage table. */ if (! info->shared) { memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset), htab->splt->contents + h->plt.offset + 2); } else { memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, got_offset, htab->splt->contents + h->plt.offset + 2); } bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel), htab->splt->contents + h->plt.offset + 7); bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE), htab->splt->contents + h->plt.offset + 12); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset + 6), htab->sgotplt->contents + got_offset); /* Fill in the entry in the .rel.plt section. */ rel.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT); loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index; bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. This is a clue for the dynamic linker, to make function pointer comparisons work between an application and shared library. */ sym->st_shndx = SHN_UNDEF; } } if (h->got.offset != (bfd_vma) -1 && elf_i386_hash_entry(h)->tls_type != GOT_TLS_GD && elf_i386_hash_entry(h)->tls_type != GOT_TLS_IE) { Elf_Internal_Rel rel; Elf32_External_Rel *loc; /* This symbol has an entry in the global offset table. Set it up. */ if (htab->sgot == NULL || htab->srelgot == NULL) abort (); rel.r_offset = (htab->sgot->output_section->vma + htab->sgot->output_offset + (h->got.offset & ~(bfd_vma) 1)); /* If this is a static link, or it is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && (info->symbolic || h->dynindx == -1 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)) && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) { BFD_ASSERT((h->got.offset & 1) != 0); rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); } else { BFD_ASSERT((h->got.offset & 1) == 0); bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT); } loc = (Elf32_External_Rel *) htab->srelgot->contents; loc += htab->srelgot->reloc_count++; bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); } if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) { Elf_Internal_Rel rel; Elf32_External_Rel *loc; /* This symbol needs a copy reloc. Set it up. */ if (h->dynindx == -1 || (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) || htab->srelbss == NULL) abort (); rel.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY); loc = (Elf32_External_Rel *) htab->srelbss->contents; loc += htab->srelbss->reloc_count++; bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return true; } /* Used to decide how to sort relocs in an optimal manner for the dynamic linker, before writing them out. */ static enum elf_reloc_type_class elf_i386_reloc_type_class (rela) const Elf_Internal_Rela *rela; { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_386_RELATIVE: return reloc_class_relative; case R_386_JUMP_SLOT: return reloc_class_plt; case R_386_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Finish up the dynamic sections. */ static boolean elf_i386_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { struct elf_i386_link_hash_table *htab; bfd *dynobj; asection *sdyn; htab = elf_i386_hash_table (info); dynobj = htab->elf.dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (htab->elf.dynamic_sections_created) { Elf32_External_Dyn *dyncon, *dynconend; if (sdyn == NULL || htab->sgot == NULL) abort (); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: continue; case DT_PLTGOT: dyn.d_un.d_ptr = htab->sgot->output_section->vma; break; case DT_JMPREL: dyn.d_un.d_ptr = htab->srelplt->output_section->vma; break; case DT_PLTRELSZ: s = htab->srelplt->output_section; if (s->_cooked_size != 0) dyn.d_un.d_val = s->_cooked_size; else dyn.d_un.d_val = s->_raw_size; break; case DT_RELSZ: /* My reading of the SVR4 ABI indicates that the procedure linkage table relocs (DT_JMPREL) should be included in the overall relocs (DT_REL). This is what Solaris does. However, UnixWare can not handle that case. Therefore, we override the DT_RELSZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rel.plt to follow all other relocation sections, we don't have to worry about changing the DT_REL entry. */ if (htab->srelplt != NULL) { s = htab->srelplt->output_section; if (s->_cooked_size != 0) dyn.d_un.d_val -= s->_cooked_size; else dyn.d_un.d_val -= s->_raw_size; } break; } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } /* Fill in the first entry in the procedure linkage table. */ if (htab->splt && htab->splt->_raw_size > 0) { if (info->shared) memcpy (htab->splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE); else { memcpy (htab->splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE); bfd_put_32 (output_bfd, (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + 4), htab->splt->contents + 2); bfd_put_32 (output_bfd, (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + 8), htab->splt->contents + 8); } /* UnixWare sets the entsize of .plt to 4, although that doesn't really seem like the right value. */ elf_section_data (htab->splt->output_section) ->this_hdr.sh_entsize = 4; } } if (htab->sgotplt) { /* Fill in the first three entries in the global offset table. */ if (htab->sgotplt->_raw_size > 0) { bfd_put_32 (output_bfd, (sdyn == NULL ? (bfd_vma) 0 : sdyn->output_section->vma + sdyn->output_offset), htab->sgotplt->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8); } elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4; } return true; } #define TARGET_LITTLE_SYM bfd_elf32_i386_vec #define TARGET_LITTLE_NAME "elf32-i386" #define ELF_ARCH bfd_arch_i386 #define ELF_MACHINE_CODE EM_386 #define ELF_MAXPAGESIZE 0x1000 #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 12 #define elf_backend_plt_header_size PLT_ENTRY_SIZE #define elf_info_to_howto elf_i386_info_to_howto #define elf_info_to_howto_rel elf_i386_info_to_howto_rel #define bfd_elf32_mkobject elf_i386_mkobject #define elf_backend_object_p elf_i386_object_p #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol #define elf_backend_check_relocs elf_i386_check_relocs #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections #define elf_backend_fake_sections elf_i386_fake_sections #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook #define elf_backend_grok_prstatus elf_i386_grok_prstatus #define elf_backend_grok_psinfo elf_i386_grok_psinfo #define elf_backend_reloc_type_class elf_i386_reloc_type_class #define elf_backend_relocate_section elf_i386_relocate_section #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections #ifndef ELF32_I386_C_INCLUDED #include "elf32-target.h" #endif