URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [gdb-5.3/] [opcodes/] [tic4x-dis.c] - Rev 1780
Go to most recent revision | Compare with Previous | Blame | View Log
/* Print instructions for the Texas TMS320C[34]X, for GDB and GNU Binutils. Copyright 2002 Free Software Foundation, Inc. Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <math.h> #include "libiberty.h" #include "dis-asm.h" #include "opcode/tic4x.h" #define C4X_DEBUG 0 #define C4X_HASH_SIZE 11 /* 11 and above should give unique entries. */ typedef enum { IMMED_SINT, IMMED_SUINT, IMMED_SFLOAT, IMMED_INT, IMMED_UINT, IMMED_FLOAT } immed_t; typedef enum { INDIRECT_SHORT, INDIRECT_LONG, INDIRECT_C4X } indirect_t; static int c4x_version = 0; static int c4x_dp = 0; static int c4x_pc_offset (unsigned int op) { /* Determine the PC offset for a C[34]x instruction. This could be simplified using some boolean algebra but at the expense of readability. */ switch (op >> 24) { case 0x60: /* br */ case 0x62: /* call (C4x) */ case 0x64: /* rptb (C4x) */ return 1; case 0x61: /* brd */ case 0x63: /* laj */ case 0x65: /* rptbd (C4x) */ return 3; case 0x66: /* swi */ case 0x67: return 0; default: break; } switch ((op & 0xffe00000) >> 20) { case 0x6a0: /* bB */ case 0x720: /* callB */ case 0x740: /* trapB */ return 1; case 0x6a2: /* bBd */ case 0x6a6: /* bBat */ case 0x6aa: /* bBaf */ case 0x722: /* lajB */ case 0x748: /* latB */ case 0x798: /* rptbd */ return 3; default: break; } switch ((op & 0xfe200000) >> 20) { case 0x6e0: /* dbB */ return 1; case 0x6e2: /* dbBd */ return 3; default: break; } return 0; } static int c4x_print_char (struct disassemble_info * info, char ch) { if (info != NULL) (*info->fprintf_func) (info->stream, "%c", ch); return 1; } static int c4x_print_str (struct disassemble_info *info, char *str) { if (info != NULL) (*info->fprintf_func) (info->stream, "%s", str); return 1; } static int c4x_print_register (struct disassemble_info *info, unsigned long regno) { static c4x_register_t **registertable = NULL; unsigned int i; if (registertable == NULL) { registertable = (c4x_register_t **) xmalloc (sizeof (c4x_register_t *) * REG_TABLE_SIZE); for (i = 0; i < c3x_num_registers; i++) registertable[c3x_registers[i].regno] = (void *)&c3x_registers[i]; if (IS_CPU_C4X (c4x_version)) { /* Add C4x additional registers, overwriting any C3x registers if necessary. */ for (i = 0; i < c4x_num_registers; i++) registertable[c4x_registers[i].regno] = (void *)&c4x_registers[i]; } } if ((int) regno > (IS_CPU_C4X (c4x_version) ? C4X_REG_MAX : C3X_REG_MAX)) return 0; if (info != NULL) (*info->fprintf_func) (info->stream, "%s", registertable[regno]->name); return 1; } static int c4x_print_addr (struct disassemble_info *info, unsigned long addr) { if (info != NULL) (*info->print_address_func)(addr, info); return 1; } static int c4x_print_relative (struct disassemble_info *info, unsigned long pc, long offset, unsigned long opcode) { return c4x_print_addr (info, pc + offset + c4x_pc_offset (opcode)); } static int c4x_print_direct (struct disassemble_info *info, unsigned long arg) { if (info != NULL) { (*info->fprintf_func) (info->stream, "@"); c4x_print_addr (info, arg + (c4x_dp << 16)); } return 1; } /* FIXME: make the floating point stuff not rely on host floating point arithmetic. */ void c4x_print_ftoa (unsigned int val, FILE *stream, int (*pfunc)()) { int e; int s; int f; double num = 0.0; e = EXTRS (val, 31, 24); /* exponent */ if (e != -128) { s = EXTRU (val, 23, 23); /* sign bit */ f = EXTRU (val, 22, 0); /* mantissa */ if (s) f += -2 * (1 << 23); else f += (1 << 23); num = f / (double)(1 << 23); num = ldexp (num, e); } (*pfunc)(stream, "%.9g", num); } static int c4x_print_immed (struct disassemble_info *info, immed_t type, unsigned long arg) { int s; int f; int e; double num = 0.0; if (info == NULL) return 1; switch (type) { case IMMED_SINT: case IMMED_INT: (*info->fprintf_func) (info->stream, "%d", (long)arg); break; case IMMED_SUINT: case IMMED_UINT: (*info->fprintf_func) (info->stream, "%u", arg); break; case IMMED_SFLOAT: e = EXTRS (arg, 15, 12); if (e != -8) { s = EXTRU (arg, 11, 11); f = EXTRU (arg, 10, 0); if (s) f += -2 * (1 << 11); else f += (1 << 11); num = f / (double)(1 << 11); num = ldexp (num, e); } (*info->fprintf_func) (info->stream, "%f", num); break; case IMMED_FLOAT: e = EXTRS (arg, 31, 24); if (e != -128) { s = EXTRU (arg, 23, 23); f = EXTRU (arg, 22, 0); if (s) f += -2 * (1 << 23); else f += (1 << 23); num = f / (double)(1 << 23); num = ldexp (num, e); } (*info->fprintf_func) (info->stream, "%f", num); break; } return 1; } static int c4x_print_cond (struct disassemble_info *info, unsigned int cond) { static c4x_cond_t **condtable = NULL; unsigned int i; if (condtable == NULL) { condtable = (c4x_cond_t **)xmalloc (sizeof (c4x_cond_t *) * 32); for (i = 0; i < num_conds; i++) condtable[c4x_conds[i].cond] = (void *)&c4x_conds[i]; } if (cond > 31 || condtable[cond] == NULL) return 0; if (info != NULL) (*info->fprintf_func) (info->stream, "%s", condtable[cond]->name); return 1; } static int c4x_print_indirect (struct disassemble_info *info, indirect_t type, unsigned long arg) { unsigned int aregno; unsigned int modn; unsigned int disp; char *a; aregno = 0; modn = 0; disp = 1; switch(type) { case INDIRECT_C4X: /* *+ARn(disp) */ disp = EXTRU (arg, 7, 3); aregno = EXTRU (arg, 2, 0) + REG_AR0; modn = 0; break; case INDIRECT_SHORT: disp = 1; aregno = EXTRU (arg, 2, 0) + REG_AR0; modn = EXTRU (arg, 7, 3); break; case INDIRECT_LONG: disp = EXTRU (arg, 7, 0); aregno = EXTRU (arg, 10, 8) + REG_AR0; modn = EXTRU (arg, 15, 11); if (modn > 7 && disp != 0) return 0; break; default: abort (); } if (modn > C3X_MODN_MAX) return 0; a = c4x_indirects[modn].name; while (*a) { switch (*a) { case 'a': c4x_print_register (info, aregno); break; case 'd': c4x_print_immed (info, IMMED_UINT, disp); break; case 'y': c4x_print_str (info, "ir0"); break; case 'z': c4x_print_str (info, "ir1"); break; default: c4x_print_char (info, *a); break; } a++; } return 1; } static int c4x_print_op (struct disassemble_info *info, unsigned long instruction, c4x_inst_t *p, unsigned long pc) { int val; char *s; char *parallel = NULL; /* Print instruction name. */ s = p->name; while (*s && parallel == NULL) { switch (*s) { case 'B': if (! c4x_print_cond (info, EXTRU (instruction, 20, 16))) return 0; break; case 'C': if (! c4x_print_cond (info, EXTRU (instruction, 27, 23))) return 0; break; case '_': parallel = s + 1; /* Skip past `_' in name */ break; default: c4x_print_char (info, *s); break; } s++; } /* Print arguments. */ s = p->args; if (*s) c4x_print_char (info, ' '); while (*s) { switch (*s) { case '*': /* indirect 0--15 */ if (! c4x_print_indirect (info, INDIRECT_LONG, EXTRU (instruction, 15, 0))) return 0; break; case '#': /* only used for ldp, ldpk */ c4x_print_immed (info, IMMED_UINT, EXTRU (instruction, 15, 0)); break; case '@': /* direct 0--15 */ c4x_print_direct (info, EXTRU (instruction, 15, 0)); break; case 'A': /* address register 24--22 */ if (! c4x_print_register (info, EXTRU (instruction, 24, 22) + REG_AR0)) return 0; break; case 'B': /* 24-bit unsigned int immediate br(d)/call/rptb address 0--23. */ if (IS_CPU_C4X (c4x_version)) c4x_print_relative (info, pc, EXTRS (instruction, 23, 0), p->opcode); else c4x_print_addr (info, EXTRU (instruction, 23, 0)); break; case 'C': /* indirect (short C4x) 0--7 */ if (! IS_CPU_C4X (c4x_version)) return 0; if (! c4x_print_indirect (info, INDIRECT_C4X, EXTRU (instruction, 7, 0))) return 0; break; case 'D': /* Cockup if get here... */ break; case 'E': /* register 0--7 */ if (! c4x_print_register (info, EXTRU (instruction, 7, 0))) return 0; break; case 'F': /* 16-bit float immediate 0--15 */ c4x_print_immed (info, IMMED_SFLOAT, EXTRU (instruction, 15, 0)); break; case 'I': /* indirect (short) 0--7 */ if (! c4x_print_indirect (info, INDIRECT_SHORT, EXTRU (instruction, 7, 0))) return 0; break; case 'J': /* indirect (short) 8--15 */ if (! c4x_print_indirect (info, INDIRECT_SHORT, EXTRU (instruction, 15, 8))) return 0; break; case 'G': /* register 8--15 */ if (! c4x_print_register (info, EXTRU (instruction, 15, 8))) return 0; break; case 'H': /* register 16--18 */ if (! c4x_print_register (info, EXTRU (instruction, 18, 16))) return 0; break; case 'K': /* register 19--21 */ if (! c4x_print_register (info, EXTRU (instruction, 21, 19))) return 0; break; case 'L': /* register 22--24 */ if (! c4x_print_register (info, EXTRU (instruction, 24, 22))) return 0; break; case 'M': /* register 22--22 */ c4x_print_register (info, EXTRU (instruction, 22, 22) + REG_R2); break; case 'N': /* register 23--23 */ c4x_print_register (info, EXTRU (instruction, 22, 22) + REG_R0); break; case 'O': /* indirect (short C4x) 8--15 */ if (! IS_CPU_C4X (c4x_version)) return 0; if (! c4x_print_indirect (info, INDIRECT_C4X, EXTRU (instruction, 15, 8))) return 0; break; case 'P': /* displacement 0--15 (used by Bcond and BcondD) */ c4x_print_relative (info, pc, EXTRS (instruction, 15, 0), p->opcode); break; case 'Q': /* register 0--15 */ if (! c4x_print_register (info, EXTRU (instruction, 15, 0))) return 0; break; case 'R': /* register 16--20 */ if (! c4x_print_register (info, EXTRU (instruction, 20, 16))) return 0; break; case 'S': /* 16-bit signed immediate 0--15 */ c4x_print_immed (info, IMMED_SINT, EXTRS (instruction, 15, 0)); break; case 'T': /* 5-bit signed immediate 16--20 (C4x stik) */ if (! IS_CPU_C4X (c4x_version)) return 0; if (! c4x_print_immed (info, IMMED_SUINT, EXTRU (instruction, 20, 16))) return 0; break; case 'U': /* 16-bit unsigned int immediate 0--15 */ c4x_print_immed (info, IMMED_SUINT, EXTRU (instruction, 15, 0)); break; case 'V': /* 5/9-bit unsigned vector 0--4/8 */ c4x_print_immed (info, IMMED_SUINT, IS_CPU_C4X (c4x_version) ? EXTRU (instruction, 8, 0) : EXTRU (instruction, 4, 0) & ~0x20); break; case 'W': /* 8-bit signed immediate 0--7 */ if (! IS_CPU_C4X (c4x_version)) return 0; c4x_print_immed (info, IMMED_SINT, EXTRS (instruction, 7, 0)); break; case 'X': /* expansion register 4--0 */ val = EXTRU (instruction, 4, 0) + REG_IVTP; if (val < REG_IVTP || val > REG_TVTP) return 0; if (! c4x_print_register (info, val)) return 0; break; case 'Y': /* address register 16--20 */ val = EXTRU (instruction, 20, 16); if (val < REG_AR0 || val > REG_SP) return 0; if (! c4x_print_register (info, val)) return 0; break; case 'Z': /* expansion register 16--20 */ val = EXTRU (instruction, 20, 16) + REG_IVTP; if (val < REG_IVTP || val > REG_TVTP) return 0; if (! c4x_print_register (info, val)) return 0; break; case '|': /* Parallel instruction */ c4x_print_str (info, " || "); c4x_print_str (info, parallel); c4x_print_char (info, ' '); break; case ';': c4x_print_char (info, ','); break; default: c4x_print_char (info, *s); break; } s++; } return 1; } static void c4x_hash_opcode (c4x_inst_t **optable, const c4x_inst_t *inst) { int j; int opcode = inst->opcode >> (32 - C4X_HASH_SIZE); int opmask = inst->opmask >> (32 - C4X_HASH_SIZE); /* Use a C4X_HASH_SIZE bit index as a hash index. We should have unique entries so there's no point having a linked list for each entry? */ for (j = opcode; j < opmask; j++) if ((j & opmask) == opcode) { #if C4X_DEBUG /* We should only have collisions for synonyms like ldp for ldi. */ if (optable[j] != NULL) printf("Collision at index %d, %s and %s\n", j, optable[j]->name, inst->name); #endif optable[j] = (void *)inst; } } /* Disassemble the instruction in 'instruction'. 'pc' should be the address of this instruction, it will be used to print the target address if this is a relative jump or call the disassembled instruction is written to 'info'. The function returns the length of this instruction in words. */ static int c4x_disassemble (unsigned long pc, unsigned long instruction, struct disassemble_info *info) { static c4x_inst_t **optable = NULL; c4x_inst_t *p; int i; c4x_version = info->mach; if (optable == NULL) { optable = (c4x_inst_t **) xcalloc (sizeof (c4x_inst_t *), (1 << C4X_HASH_SIZE)); /* Install opcodes in reverse order so that preferred forms overwrite synonyms. */ for (i = c3x_num_insts - 1; i >= 0; i--) c4x_hash_opcode (optable, &c3x_insts[i]); if (IS_CPU_C4X (c4x_version)) { for (i = c4x_num_insts - 1; i >= 0; i--) c4x_hash_opcode (optable, &c4x_insts[i]); } } /* See if we can pick up any loading of the DP register... */ if ((instruction >> 16) == 0x5070 || (instruction >> 16) == 0x1f70) c4x_dp = EXTRU (instruction, 15, 0); p = optable[instruction >> (32 - C4X_HASH_SIZE)]; if (p != NULL && ((instruction & p->opmask) == p->opcode) && c4x_print_op (NULL, instruction, p, pc)) c4x_print_op (info, instruction, p, pc); else (*info->fprintf_func) (info->stream, "%08x", instruction); /* Return size of insn in words. */ return 1; } /* The entry point from objdump and gdb. */ int print_insn_tic4x (memaddr, info) bfd_vma memaddr; struct disassemble_info *info; { int status; unsigned long pc; unsigned long op; bfd_byte buffer[4]; status = (*info->read_memory_func) (memaddr, buffer, 4, info); if (status != 0) { (*info->memory_error_func) (status, memaddr, info); return -1; } pc = memaddr; op = bfd_getl32 (buffer); info->bytes_per_line = 4; info->bytes_per_chunk = 4; info->octets_per_byte = 4; info->display_endian = BFD_ENDIAN_LITTLE; return c4x_disassemble (pc, op, info) * 4; }
Go to most recent revision | Compare with Previous | Blame | View Log