URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [gdb-5.3/] [sim/] [ppc/] [hw_htab.c] - Rev 1765
Compare with Previous | Blame | View Log
/* This file is part of the program psim. Copyright (C) 1994-1996, Andrew Cagney <cagney@highland.com.au> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _HW_HTAB_C_ #define _HW_HTAB_C_ #include "device_table.h" #include "bfd.h" /* DEVICE htab - pseudo-device describing a PowerPC hash table DESCRIPTION During the initialization of the device tree, the pseudo-device <<htab>>, in conjunction with any child <<pte>> pseudo-devices, will create a PowerPC hash table in memory. The hash table values are written using dma transfers. The size and address of the hash table are determined by properties of the htab node. By convention, the htab device is made a child of the <</openprom/init>> node. By convention, the real address of the htab is used as the htab nodes unit address. PROPERTIES real-address = <address> (required) The physical address of the hash table. The PowerPC architecture places limitations on what is a valid hash table real-address. nr-bytes = <size> (required) The size of the hash table (in bytes) that is to be created at <<real-address>>. The PowerPC architecture places limitations on what is a valid hash table size. claim = <anything> (optional) If this property is present, the memory used to construct the hash table will be claimed from the memory device. The memory device being specified by the <</chosen/memory>> ihandle property. EXAMPLES Enable tracing. | $ psim -t htab-device \ Create a htab specifying the base address and minimum size. | -o '/openprom/init/htab@0x10000/real-address 0x10000' \ | -o '/openprom/init/htab@0x10000/claim 0' \ | -o '/openprom/init/htab@0x10000/nr-bytes 65536' \ BUGS See the <<pte>> device. */ /* DEVICE pte - pseudo-device describing a htab entry DESCRIPTION The <<pte>> pseudo-device, which must be a child of a <<htabl>> node, describes a virtual to physical mapping that is to be entered into the parents hash table. Two alternative specifications of the mapping are allowed. Either a section of physical memory can be mapped to a virtual address, or the header of an executible image can be used to define the mapping. By convention, the real address of the map is specified as the pte devices unit address. PROPERTIES real-address = <address> (required) The starting physical address that is to be mapped by the hash table. wimg = <int> (required) pp = <int> (required) The value of hash table protection bits that are to be used when creating the virtual to physical address map. claim = <anything> (optional) If this property is present, the real memory that is being mapped by the hash table will be claimed from the memory node (specified by the ihandle <</chosen/memory>>). virtual-address = <integer> [ <integer> ] (option A) nr-bytes = <size> (option A) Option A - Virtual virtual address (and size) at which the physical address is to be mapped. If multiple values are specified for the virtual address then they are concatenated to gether to form a longer virtual address. file-name = <string> (option B) Option B - An executable image that is to be loaded (starting at the physical address specified above) and then mapped in using informatioin taken from the executables header. information found in the files header. EXAMPLES Enable tracing (note that both the <<htab>> and <<pte>> device use the same trace option). | -t htab-device \ Map a block of physical memory into a specified virtual address: | -o '/openprom/init/htab/pte@0x0/real-address 0' \ | -o '/openprom/init/htab/pte@0x0/nr-bytes 4096' \ | -o '/openprom/init/htab/pte@0x0/virtual-address 0x1000000' \ | -o '/openprom/init/htab/pte@0x0/claim 0' \ | -o '/openprom/init/htab/pte@0x0/wimg 0x7' \ | -o '/openprom/init/htab/pte@0x0/pp 0x2' \ Map a file into memory. | -o '/openprom/init/htab/pte@0x10000/real-address 0x10000' \ | -o '/openprom/init/htab/pte@0x10000/file-name "netbsd.elf' \ | -o '/openprom/init/htab/pte@0x10000/wimg 0x7' \ | -o '/openprom/init/htab/pte@0x10000/pp 0x2' \ BUGS For an ELF executable, the header defines both the virtual and real address at which each file section should be loaded. At present, the real addresses that are specified in the header are ignored, the file instead being loaded in to physical memory in a linear fashion. When claiming memory, this device assumes that the #address-cells and #size-cells is one. For future implementations, this may not be the case. */ static void htab_decode_hash_table(device *me, unsigned32 *htaborg, unsigned32 *htabmask) { unsigned_word htab_ra; unsigned htab_nr_bytes; unsigned n; device *parent = device_parent(me); /* determine the location/size of the hash table */ if (parent == NULL || strcmp(device_name(parent), "htab") != 0) device_error(parent, "must be a htab device"); htab_ra = device_find_integer_property(parent, "real-address"); htab_nr_bytes = device_find_integer_property(parent, "nr-bytes"); for (n = htab_nr_bytes; n > 1; n = n / 2) { if (n % 2 != 0) device_error(parent, "htab size 0x%x not a power of two", htab_nr_bytes); } *htaborg = htab_ra; *htabmask = MASKED32(htab_nr_bytes - 1, 7, 31-6); if ((htab_ra & INSERTED32(*htabmask, 7, 15)) != 0) { device_error(parent, "htaborg 0x%lx not aligned to htabmask 0x%lx", (unsigned long)*htaborg, (unsigned long)*htabmask); } DTRACE(htab, ("htab - htaborg=0x%lx htabmask=0x%lx\n", (unsigned long)*htaborg, (unsigned long)*htabmask)); } static void htab_map_page(device *me, unsigned_word ra, unsigned64 va, unsigned wimg, unsigned pp, unsigned32 htaborg, unsigned32 htabmask) { /* keep everything left shifted so that the numbering is easier */ unsigned64 vpn = va << 12; unsigned32 vsid = INSERTED32(EXTRACTED64(vpn, 0, 23), 0, 23); unsigned32 vpage = INSERTED32(EXTRACTED64(vpn, 24, 39), 0, 15); unsigned32 hash = INSERTED32(EXTRACTED32(vsid, 5, 23) ^ EXTRACTED32(vpage, 0, 15), 7, 31-6); int h; for (h = 0; h < 2; h++) { unsigned32 pteg = (htaborg | (hash & htabmask)); int pti; for (pti = 0; pti < 8; pti++) { unsigned32 pte = pteg + 8 * pti; unsigned32 current_target_pte0; unsigned32 current_pte0; if (device_dma_read_buffer(device_parent(me), ¤t_target_pte0, 0, /*space*/ pte, sizeof(current_target_pte0)) != 4) device_error(me, "failed to read a pte at 0x%lx", (unsigned long)pte); current_pte0 = T2H_4(current_target_pte0); if (MASKED32(current_pte0, 0, 0)) { /* full pte, check it isn't already mapping the same virtual address */ unsigned32 curr_vsid = INSERTED32(EXTRACTED32(current_pte0, 1, 24), 0, 23); unsigned32 curr_api = INSERTED32(EXTRACTED32(current_pte0, 26, 31), 0, 5); unsigned32 curr_h = EXTRACTED32(current_pte0, 25, 25); if (curr_h == h && curr_vsid == vsid && curr_api == MASKED32(vpage, 0, 5)) device_error(me, "duplicate map - va=0x%08lx ra=0x%lx vsid=0x%lx h=%d vpage=0x%lx hash=0x%lx pteg=0x%lx+%2d pte0=0x%lx", (unsigned long)va, (unsigned long)ra, (unsigned long)vsid, h, (unsigned long)vpage, (unsigned long)hash, (unsigned long)pteg, pti * 8, (unsigned long)current_pte0); } else { /* empty pte fill it */ unsigned32 pte0 = (MASK32(0, 0) | INSERTED32(EXTRACTED32(vsid, 0, 23), 1, 24) | INSERTED32(h, 25, 25) | INSERTED32(EXTRACTED32(vpage, 0, 5), 26, 31)); unsigned32 target_pte0 = H2T_4(pte0); unsigned32 pte1 = (INSERTED32(EXTRACTED32(ra, 0, 19), 0, 19) | INSERTED32(wimg, 25, 28) | INSERTED32(pp, 30, 31)); unsigned32 target_pte1 = H2T_4(pte1); if (device_dma_write_buffer(device_parent(me), &target_pte0, 0, /*space*/ pte, sizeof(target_pte0), 1/*ro?*/) != 4 || device_dma_write_buffer(device_parent(me), &target_pte1, 0, /*space*/ pte + 4, sizeof(target_pte1), 1/*ro?*/) != 4) device_error(me, "failed to write a pte a 0x%lx", (unsigned long)pte); DTRACE(htab, ("map - va=0x%08lx ra=0x%lx vsid=0x%lx h=%d vpage=0x%lx hash=0x%lx pteg=0x%lx+%2d pte0=0x%lx pte1=0x%lx\n", (unsigned long)va, (unsigned long)ra, (unsigned long)vsid, h, (unsigned long)vpage, (unsigned long)hash, (unsigned long)pteg, pti * 8, (unsigned long)pte0, (unsigned long)pte1)); return; } } /* re-hash */ hash = MASKED32(~hash, 0, 18); } } static unsigned_word claim_memory(device *me, device_instance *memory, unsigned_word ra, unsigned_word size) { unsigned32 args[3]; unsigned32 results[1]; int status; args[0] = 0; /* alignment */ args[1] = size; args[2] = ra; status = device_instance_call_method(memory, "claim", 3, args, 1, results); if (status != 0) device_error(me, "failed to claim memory"); return results[0]; } static void htab_map_region(device *me, device_instance *memory, unsigned_word pte_ra, unsigned64 pte_va, unsigned nr_bytes, unsigned wimg, unsigned pp, unsigned32 htaborg, unsigned32 htabmask) { unsigned_word ra; unsigned64 va; /* claim the memory */ if (memory != NULL) claim_memory(me, memory, pte_ra, nr_bytes); /* go through all pages and create a pte for each */ for (ra = pte_ra, va = pte_va; ra < pte_ra + nr_bytes; ra += 0x1000, va += 0x1000) { htab_map_page(me, ra, va, wimg, pp, htaborg, htabmask); } } typedef struct _htab_binary_sizes { unsigned_word text_ra; unsigned_word text_base; unsigned_word text_bound; unsigned_word data_ra; unsigned_word data_base; unsigned data_bound; device *me; } htab_binary_sizes; static void htab_sum_binary(bfd *abfd, sec_ptr sec, PTR data) { htab_binary_sizes *sizes = (htab_binary_sizes*)data; unsigned_word size = bfd_get_section_size_before_reloc (sec); unsigned_word vma = bfd_get_section_vma (abfd, sec); #define bfd_get_section_lma(abfd, sec) ((sec)->lma + 0) unsigned_word ra = bfd_get_section_lma (abfd, sec); /* skip the section if no memory to allocate */ if (! (bfd_get_section_flags(abfd, sec) & SEC_ALLOC)) return; if ((bfd_get_section_flags (abfd, sec) & SEC_CODE) || (bfd_get_section_flags (abfd, sec) & SEC_READONLY)) { if (sizes->text_bound < vma + size) sizes->text_bound = ALIGN_PAGE(vma + size); if (sizes->text_base > vma) sizes->text_base = FLOOR_PAGE(vma); if (sizes->text_ra > ra) sizes->text_ra = FLOOR_PAGE(ra); } else if ((bfd_get_section_flags (abfd, sec) & SEC_DATA) || (bfd_get_section_flags (abfd, sec) & SEC_ALLOC)) { if (sizes->data_bound < vma + size) sizes->data_bound = ALIGN_PAGE(vma + size); if (sizes->data_base > vma) sizes->data_base = FLOOR_PAGE(vma); if (sizes->data_ra > ra) sizes->data_ra = FLOOR_PAGE(ra); } } static void htab_dma_binary(bfd *abfd, sec_ptr sec, PTR data) { htab_binary_sizes *sizes = (htab_binary_sizes*)data; void *section_init; unsigned_word section_vma; unsigned_word section_size; unsigned_word section_ra; device *me = sizes->me; /* skip the section if no memory to allocate */ if (! (bfd_get_section_flags(abfd, sec) & SEC_ALLOC)) return; /* check/ignore any sections of size zero */ section_size = bfd_get_section_size_before_reloc(sec); if (section_size == 0) return; /* if nothing to load, ignore this one */ if (! (bfd_get_section_flags(abfd, sec) & SEC_LOAD)) return; /* find where it is to go */ section_vma = bfd_get_section_vma(abfd, sec); section_ra = 0; if ((bfd_get_section_flags (abfd, sec) & SEC_CODE) || (bfd_get_section_flags (abfd, sec) & SEC_READONLY)) section_ra = (section_vma - sizes->text_base + sizes->text_ra); else if ((bfd_get_section_flags (abfd, sec) & SEC_DATA)) section_ra = (section_vma - sizes->data_base + sizes->data_ra); else return; /* just ignore it */ DTRACE(htab, ("load - name=%-7s vma=0x%.8lx size=%6ld ra=0x%.8lx flags=%3lx(%s%s%s%s%s )\n", bfd_get_section_name(abfd, sec), (long)section_vma, (long)section_size, (long)section_ra, (long)bfd_get_section_flags(abfd, sec), bfd_get_section_flags(abfd, sec) & SEC_LOAD ? " LOAD" : "", bfd_get_section_flags(abfd, sec) & SEC_CODE ? " CODE" : "", bfd_get_section_flags(abfd, sec) & SEC_DATA ? " DATA" : "", bfd_get_section_flags(abfd, sec) & SEC_ALLOC ? " ALLOC" : "", bfd_get_section_flags(abfd, sec) & SEC_READONLY ? " READONLY" : "" )); /* dma in the sections data */ section_init = zalloc(section_size); if (!bfd_get_section_contents(abfd, sec, section_init, 0, section_size)) { bfd_perror("devices/pte"); device_error(me, "no data loaded"); } if (device_dma_write_buffer(device_parent(me), section_init, 0 /*space*/, section_ra, section_size, 1 /*violate_read_only*/) != section_size) device_error(me, "broken dma transfer"); zfree(section_init); /* only free if load */ } /* create a memory map from a binaries virtual addresses to a copy of the binary laid out linearly in memory */ static void htab_map_binary(device *me, device_instance *memory, unsigned_word ra, unsigned wimg, unsigned pp, const char *file_name, unsigned32 htaborg, unsigned32 htabmask) { htab_binary_sizes sizes; bfd *image; sizes.text_ra = -1; sizes.data_ra = -1; sizes.text_base = -1; sizes.data_base = -1; sizes.text_bound = 0; sizes.data_bound = 0; sizes.me = me; /* open the file */ image = bfd_openr(file_name, NULL); if (image == NULL) { bfd_perror("devices/pte"); device_error(me, "the file %s not loaded", file_name); } /* check it is valid */ if (!bfd_check_format(image, bfd_object)) { bfd_close(image); device_error(me, "the file %s has an invalid binary format", file_name); } /* determine the size of each of the files regions */ bfd_map_over_sections (image, htab_sum_binary, (PTR) &sizes); /* if needed, determine the real addresses of the sections */ if (ra != -1) { sizes.text_ra = ra; sizes.data_ra = ALIGN_PAGE(sizes.text_ra + (sizes.text_bound - sizes.text_base)); } DTRACE(htab, ("text map - base=0x%lx bound=0x%lx-1 ra=0x%lx\n", (unsigned long)sizes.text_base, (unsigned long)sizes.text_bound, (unsigned long)sizes.text_ra)); DTRACE(htab, ("data map - base=0x%lx bound=0x%lx-1 ra=0x%lx\n", (unsigned long)sizes.data_base, (unsigned long)sizes.data_bound, (unsigned long)sizes.data_ra)); /* check for and fix a botched image (text and data segments overlap) */ if ((sizes.text_base <= sizes.data_base && sizes.text_bound >= sizes.data_bound) || (sizes.data_base <= sizes.text_base && sizes.data_bound >= sizes.data_bound) || (sizes.text_bound > sizes.data_base && sizes.text_bound <= sizes.data_bound) || (sizes.text_base >= sizes.data_base && sizes.text_base < sizes.data_bound)) { DTRACE(htab, ("text and data segment overlaped - using just data segment\n")); /* check va->ra linear */ if ((sizes.text_base - sizes.text_ra) != (sizes.data_base - sizes.data_ra)) device_error(me, "overlapping but missaligned text and data segments"); /* enlarge the data segment */ if (sizes.text_base < sizes.data_base) sizes.data_base = sizes.text_base; if (sizes.text_bound > sizes.data_bound) sizes.data_bound = sizes.text_bound; if (sizes.text_ra < sizes.data_ra) sizes.data_ra = sizes.text_ra; /* zap the text segment */ sizes.text_base = 0; sizes.text_bound = 0; sizes.text_ra = 0; DTRACE(htab, ("common map - base=0x%lx bound=0x%lx-1 ra=0x%lx\n", (unsigned long)sizes.data_base, (unsigned long)sizes.data_bound, (unsigned long)sizes.data_ra)); } /* set up virtual memory maps for each of the regions */ if (sizes.text_bound - sizes.text_base > 0) { htab_map_region(me, memory, sizes.text_ra, sizes.text_base, sizes.text_bound - sizes.text_base, wimg, pp, htaborg, htabmask); } htab_map_region(me, memory, sizes.data_ra, sizes.data_base, sizes.data_bound - sizes.data_base, wimg, pp, htaborg, htabmask); /* dma the sections into physical memory */ bfd_map_over_sections (image, htab_dma_binary, (PTR) &sizes); } static void htab_init_data_callback(device *me) { device_instance *memory = NULL; if (WITH_TARGET_WORD_BITSIZE != 32) device_error(me, "only 32bit targets currently suported"); /* find memory device */ if (device_find_property(me, "claim") != NULL) memory = tree_find_ihandle_property(me, "/chosen/memory"); /* for the htab, just allocate space for it */ if (strcmp(device_name(me), "htab") == 0) { unsigned_word address = device_find_integer_property(me, "real-address"); unsigned_word length = device_find_integer_property(me, "nr-bytes"); unsigned_word base = claim_memory(me, memory, address, length); if (base == -1 || base != address) device_error(me, "cannot allocate hash table"); } /* for the pte, do all the real work */ if (strcmp(device_name(me), "pte") == 0) { unsigned32 htaborg; unsigned32 htabmask; htab_decode_hash_table(me, &htaborg, &htabmask); if (device_find_property(me, "file-name") != NULL) { /* map in a binary */ unsigned pte_wimg = device_find_integer_property(me, "wimg"); unsigned pte_pp = device_find_integer_property(me, "pp"); const char *file_name = device_find_string_property(me, "file-name"); if (device_find_property(me, "real-address") != NULL) { unsigned32 pte_ra = device_find_integer_property(me, "real-address"); DTRACE(htab, ("pte - ra=0x%lx, wimg=%ld, pp=%ld, file-name=%s\n", (unsigned long)pte_ra, (unsigned long)pte_wimg, (long)pte_pp, file_name)); htab_map_binary(me, memory, pte_ra, pte_wimg, pte_pp, file_name, htaborg, htabmask); } else { DTRACE(htab, ("pte - wimg=%ld, pp=%ld, file-name=%s\n", (unsigned long)pte_wimg, (long)pte_pp, file_name)); htab_map_binary(me, memory, -1, pte_wimg, pte_pp, file_name, htaborg, htabmask); } } else { /* handle a normal mapping definition */ unsigned64 pte_va = 0; unsigned32 pte_ra = device_find_integer_property(me, "real-address"); unsigned pte_nr_bytes = device_find_integer_property(me, "nr-bytes"); unsigned pte_wimg = device_find_integer_property(me, "wimg"); unsigned pte_pp = device_find_integer_property(me, "pp"); signed_cell partial_va; int i; for (i = 0; device_find_integer_array_property(me, "virtual-address", i, &partial_va); i++) { pte_va = (pte_va << WITH_TARGET_WORD_BITSIZE) | (unsigned_cell)partial_va; } DTRACE(htab, ("pte - ra=0x%lx, wimg=%ld, pp=%ld, va=0x%lx, nr_bytes=%ld\n", (unsigned long)pte_ra, (long)pte_wimg, (long)pte_pp, (unsigned long)pte_va, (long)pte_nr_bytes)); htab_map_region(me, memory, pte_ra, pte_va, pte_nr_bytes, pte_wimg, pte_pp, htaborg, htabmask); } } } static device_callbacks const htab_callbacks = { { NULL, htab_init_data_callback, }, { NULL, }, /* address */ { NULL, }, /* IO */ { passthrough_device_dma_read_buffer, passthrough_device_dma_write_buffer, }, { NULL, }, /* interrupt */ { generic_device_unit_decode, generic_device_unit_encode, }, }; const device_descriptor hw_htab_device_descriptor[] = { { "htab", NULL, &htab_callbacks }, { "pte", NULL, &htab_callbacks }, /* yep - uses htab's table */ { NULL }, }; #endif /* _HW_HTAB_C_ */