URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [insight/] [gdb/] [doc/] [gdb.info-12] - Rev 1774
Go to most recent revision | Compare with Previous | Blame | View Log
This is ./gdb.info, produced by makeinfo version 4.0 from gdb.texinfo.
INFO-DIR-SECTION Programming & development tools.
START-INFO-DIR-ENTRY
* Gdb: (gdb). The GNU debugger.
END-INFO-DIR-ENTRY
This file documents the GNU debugger GDB.
This is the Ninth Edition, April 2001, of `Debugging with GDB: the
GNU Source-Level Debugger' for GDB Version 20010707.
Copyright (C)
1988,1989,1990,1991,1992,1993,1994,1995,1996,1998,1999,2000,2001
Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "A Sample GDB Session" and "Free Software",
with the Front-Cover texts being "A GNU Manual," and with the
Back-Cover Texts as in (a) below.
(a) The FSF's Back-Cover Text is: "You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by the Free
Software Foundation raise funds for GNU development."
File: gdb.info, Node: GDB/MI Stack Manipulation, Next: GDB/MI Symbol Query, Prev: GDB/MI Miscellaneous Commands, Up: GDB/MI
GDB/MI Stack Manipulation Commands
==================================
The `-stack-info-frame' Command
-------------------------------
Synopsis
........
-stack-info-frame
Get info on the current frame.
GDB Command
...........
The corresponding GDB command is `info frame' or `frame' (without
arguments).
Example
.......
N.A.
The `-stack-info-depth' Command
-------------------------------
Synopsis
........
-stack-info-depth [ MAX-DEPTH ]
Return the depth of the stack. If the integer argument MAX-DEPTH is
specified, do not count beyond MAX-DEPTH frames.
GDB Command
...........
There's no equivalent GDB command.
Example
.......
For a stack with frame levels 0 through 11:
(gdb)
-stack-info-depth
^done,depth="12"
(gdb)
-stack-info-depth 4
^done,depth="4"
(gdb)
-stack-info-depth 12
^done,depth="12"
(gdb)
-stack-info-depth 11
^done,depth="11"
(gdb)
-stack-info-depth 13
^done,depth="12"
(gdb)
The `-stack-list-arguments' Command
-----------------------------------
Synopsis
........
-stack-list-arguments SHOW-VALUES
[ LOW-FRAME HIGH-FRAME ]
Display a list of the arguments for the frames between LOW-FRAME and
HIGH-FRAME (inclusive). If LOW-FRAME and HIGH-FRAME are not provided,
list the arguments for the whole call stack.
The SHOW-VALUES argument must have a value of 0 or 1. A value of 0
means that only the names of the arguments are listed, a value of 1
means that both names and values of the arguments are printed.
GDB Command
...........
GDB does not have an equivalent command. `gdbtk' has a
`gdb_get_args' command which partially overlaps with the functionality
of `-stack-list-arguments'.
Example
.......
(gdb)
-stack-list-frames
^done,
stack=[
frame={level="0 ",addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"},
frame={level="1 ",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="17"},
frame={level="2 ",addr="0x0001078c",func="callee2",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="22"},
frame={level="3 ",addr="0x000107b4",func="callee1",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="27"},
frame={level="4 ",addr="0x000107e0",func="main",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="32"}]
(gdb)
-stack-list-arguments 0
^done,
stack-args=[
frame={level="0",args=[]},
frame={level="1",args=[name="strarg"]},
frame={level="2",args=[name="intarg",name="strarg"]},
frame={level="3",args=[name="intarg",name="strarg",name="fltarg"]},
frame={level="4",args=[]}]
(gdb)
-stack-list-arguments 1
^done,
stack-args=[
frame={level="0",args=[]},
frame={level="1",
args=[{name="strarg",value="0x11940 \"A string argument.\""}]},
frame={level="2",args=[
{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""}]},
{frame={level="3",args=[
{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""},
{name="fltarg",value="3.5"}]},
frame={level="4",args=[]}]
(gdb)
-stack-list-arguments 0 2 2
^done,stack-args=[frame={level="2",args=[name="intarg",name="strarg"]}]
(gdb)
-stack-list-arguments 1 2 2
^done,stack-args=[frame={level="2",
args=[{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""}]}]
(gdb)
The `-stack-list-frames' Command
--------------------------------
Synopsis
........
-stack-list-frames [ LOW-FRAME HIGH-FRAME ]
List the frames currently on the stack. For each frame it displays
the following info:
`LEVEL'
The frame number, 0 being the topmost frame, i.e. the innermost
function.
`ADDR'
The `$pc' value for that frame.
`FUNC'
Function name.
`FILE'
File name of the source file where the function lives.
`LINE'
Line number corresponding to the `$pc'.
If invoked without arguments, this command prints a backtrace for the
whole stack. If given two integer arguments, it shows the frames whose
levels are between the two arguments (inclusive). If the two arguments
are equal, it shows the single frame at the corresponding level.
GDB Command
...........
The corresponding GDB commands are `backtrace' and `where'.
Example
.......
Full stack backtrace:
(gdb)
-stack-list-frames
^done,stack=
[frame={level="0 ",addr="0x0001076c",func="foo",
file="recursive2.c",line="11"},
frame={level="1 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="2 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="3 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="4 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="5 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="6 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="7 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="8 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="9 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="10",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="11",addr="0x00010738",func="main",
file="recursive2.c",line="4"}]
(gdb)
Show frames between LOW_FRAME and HIGH_FRAME:
(gdb)
-stack-list-frames 3 5
^done,stack=
[frame={level="3 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="4 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="5 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]
(gdb)
Show a single frame:
(gdb)
-stack-list-frames 3 3
^done,stack=
[frame={level="3 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]
(gdb)
The `-stack-list-locals' Command
--------------------------------
Synopsis
........
-stack-list-locals PRINT-VALUES
Display the local variable names for the current frame. With an
argument of 0 prints only the names of the variables, with argument of 1
prints also their values.
GDB Command
...........
`info locals' in GDB, `gdb_get_locals' in `gdbtk'.
Example
.......
(gdb)
-stack-list-locals 0
^done,locals=[name="A",name="B",name="C"]
(gdb)
-stack-list-locals 1
^done,locals=[{name="A",value="1"},{name="B",value="2"},
{name="C",value="3"}]
(gdb)
The `-stack-select-frame' Command
---------------------------------
Synopsis
........
-stack-select-frame FRAMENUM
Change the current frame. Select a different frame FRAMENUM on the
stack.
GDB Command
...........
The corresponding GDB commands are `frame', `up', `down',
`select-frame', `up-silent', and `down-silent'.
Example
.......
(gdb)
-stack-select-frame 2
^done
(gdb)
File: gdb.info, Node: GDB/MI Symbol Query, Next: GDB/MI Target Manipulation, Prev: GDB/MI Stack Manipulation, Up: GDB/MI
GDB/MI Symbol Query Commands
============================
The `-symbol-info-address' Command
----------------------------------
Synopsis
........
-symbol-info-address SYMBOL
Describe where SYMBOL is stored.
GDB Command
...........
The corresponding GDB command is `info address'.
Example
.......
N.A.
The `-symbol-info-file' Command
-------------------------------
Synopsis
........
-symbol-info-file
Show the file for the symbol.
GDB Command
...........
There's no equivalent GDB command. `gdbtk' has `gdb_find_file'.
Example
.......
N.A.
The `-symbol-info-function' Command
-----------------------------------
Synopsis
........
-symbol-info-function
Show which function the symbol lives in.
GDB Command
...........
`gdb_get_function' in `gdbtk'.
Example
.......
N.A.
The `-symbol-info-line' Command
-------------------------------
Synopsis
........
-symbol-info-line
Show the core addresses of the code for a source line.
GDB Command
...........
The corresponding GDB comamnd is `info line'. `gdbtk' has the
`gdb_get_line' and `gdb_get_file' commands.
Example
.......
N.A.
The `-symbol-info-symbol' Command
---------------------------------
Synopsis
........
-symbol-info-symbol ADDR
Describe what symbol is at location ADDR.
GDB Command
...........
The corresponding GDB command is `info symbol'.
Example
.......
N.A.
The `-symbol-list-functions' Command
------------------------------------
Synopsis
........
-symbol-list-functions
List the functions in the executable.
GDB Command
...........
`info functions' in GDB, `gdb_listfunc' and `gdb_search' in `gdbtk'.
Example
.......
N.A.
The `-symbol-list-types' Command
--------------------------------
Synopsis
........
-symbol-list-types
List all the type names.
GDB Command
...........
The corresponding commands are `info types' in GDB, `gdb_search' in
`gdbtk'.
Example
.......
N.A.
The `-symbol-list-variables' Command
------------------------------------
Synopsis
........
-symbol-list-variables
List all the global and static variable names.
GDB Command
...........
`info variables' in GDB, `gdb_search' in `gdbtk'.
Example
.......
N.A.
The `-symbol-locate' Command
----------------------------
Synopsis
........
-symbol-locate
GDB Command
...........
`gdb_loc' in `gdbtk'.
Example
.......
N.A.
The `-symbol-type' Command
--------------------------
Synopsis
........
-symbol-type VARIABLE
Show type of VARIABLE.
GDB Command
...........
The corresponding GDB command is `ptype', `gdbtk' has
`gdb_obj_variable'.
Example
.......
N.A.
File: gdb.info, Node: GDB/MI Target Manipulation, Next: GDB/MI Thread Commands, Prev: GDB/MI Symbol Query, Up: GDB/MI
GDB/MI Target Manipulation Commands
===================================
The `-target-attach' Command
----------------------------
Synopsis
........
-target-attach PID | FILE
Attach to a process PID or a file FILE outside of GDB.
GDB command
...........
The corresponding GDB command is `attach'.
Example
.......
N.A.
The `-target-compare-sections' Command
--------------------------------------
Synopsis
........
-target-compare-sections [ SECTION ]
Compare data of section SECTION on target to the exec file. Without
the argument, all sections are compared.
GDB Command
...........
The GDB equivalent is `compare-sections'.
Example
.......
N.A.
The `-target-detach' Command
----------------------------
Synopsis
........
-target-detach
Disconnect from the remote target. There's no output.
GDB command
...........
The corresponding GDB command is `detach'.
Example
.......
(gdb)
-target-detach
^done
(gdb)
The `-target-download' Command
------------------------------
Synopsis
........
-target-download
Loads the executable onto the remote target. It prints out an
update message every half second, which includes the fields:
`section'
The name of the section.
`section-sent'
The size of what has been sent so far for that section.
`section-size'
The size of the section.
`total-sent'
The total size of what was sent so far (the current and the
previous sections).
`total-size'
The size of the overall executable to download.
Each message is sent as status record (*note GDB/MI Output Syntax:
GDB/MI Output Syntax.).
In addition, it prints the name and size of the sections, as they are
downloaded. These messages include the following fields:
`section'
The name of the section.
`section-size'
The size of the section.
`total-size'
The size of the overall executable to download.
At the end, a summary is printed.
GDB Command
...........
The corresponding GDB command is `load'.
Example
.......
Note: each status message appears on a single line. Here the
messages have been broken down so that they can fit onto a page.
(gdb)
-target-download
+download,{section=".text",section-size="6668",total-size="9880"}
+download,{section=".text",section-sent="512",section-size="6668",
total-sent="512",total-size="9880"}
+download,{section=".text",section-sent="1024",section-size="6668",
total-sent="1024",total-size="9880"}
+download,{section=".text",section-sent="1536",section-size="6668",
total-sent="1536",total-size="9880"}
+download,{section=".text",section-sent="2048",section-size="6668",
total-sent="2048",total-size="9880"}
+download,{section=".text",section-sent="2560",section-size="6668",
total-sent="2560",total-size="9880"}
+download,{section=".text",section-sent="3072",section-size="6668",
total-sent="3072",total-size="9880"}
+download,{section=".text",section-sent="3584",section-size="6668",
total-sent="3584",total-size="9880"}
+download,{section=".text",section-sent="4096",section-size="6668",
total-sent="4096",total-size="9880"}
+download,{section=".text",section-sent="4608",section-size="6668",
total-sent="4608",total-size="9880"}
+download,{section=".text",section-sent="5120",section-size="6668",
total-sent="5120",total-size="9880"}
+download,{section=".text",section-sent="5632",section-size="6668",
total-sent="5632",total-size="9880"}
+download,{section=".text",section-sent="6144",section-size="6668",
total-sent="6144",total-size="9880"}
+download,{section=".text",section-sent="6656",section-size="6668",
total-sent="6656",total-size="9880"}
+download,{section=".init",section-size="28",total-size="9880"}
+download,{section=".fini",section-size="28",total-size="9880"}
+download,{section=".data",section-size="3156",total-size="9880"}
+download,{section=".data",section-sent="512",section-size="3156",
total-sent="7236",total-size="9880"}
+download,{section=".data",section-sent="1024",section-size="3156",
total-sent="7748",total-size="9880"}
+download,{section=".data",section-sent="1536",section-size="3156",
total-sent="8260",total-size="9880"}
+download,{section=".data",section-sent="2048",section-size="3156",
total-sent="8772",total-size="9880"}
+download,{section=".data",section-sent="2560",section-size="3156",
total-sent="9284",total-size="9880"}
+download,{section=".data",section-sent="3072",section-size="3156",
total-sent="9796",total-size="9880"}
^done,address="0x10004",load-size="9880",transfer-rate="6586",
write-rate="429"
(gdb)
The `-target-exec-status' Command
---------------------------------
Synopsis
........
-target-exec-status
Provide information on the state of the target (whether it is
running or not, for instance).
GDB Command
...........
There's no equivalent GDB command.
Example
.......
N.A.
The `-target-list-available-targets' Command
--------------------------------------------
Synopsis
........
-target-list-available-targets
List the possible targets to connect to.
GDB Command
...........
The corresponding GDB command is `help target'.
Example
.......
N.A.
The `-target-list-current-targets' Command
------------------------------------------
Synopsis
........
-target-list-current-targets
Describe the current target.
GDB Command
...........
The corresponding information is printed by `info file' (among other
things).
Example
.......
N.A.
The `-target-list-parameters' Command
-------------------------------------
Synopsis
........
-target-list-parameters
GDB Command
...........
No equivalent.
Example
.......
N.A.
The `-target-select' Command
----------------------------
Synopsis
........
-target-select TYPE PARAMETERS ...
Connect GDB to the remote target. This command takes two args:
`TYPE'
The type of target, for instance `async', `remote', etc.
`PARAMETERS'
Device names, host names and the like. *Note Commands for
managing targets: Target Commands, for more details.
The output is a connection notification, followed by the address at
which the target program is, in the following form:
^connected,addr="ADDRESS",func="FUNCTION NAME",
args=[ARG LIST]
GDB Command
...........
The corresponding GDB command is `target'.
Example
.......
(gdb)
-target-select async /dev/ttya
^connected,addr="0xfe00a300",func="??",args=[]
(gdb)
File: gdb.info, Node: GDB/MI Thread Commands, Next: GDB/MI Tracepoint Commands, Prev: GDB/MI Target Manipulation, Up: GDB/MI
GDB/MI Thread Commands
======================
The `-thread-info' Command
--------------------------
Synopsis
........
-thread-info
GDB command
...........
No equivalent.
Example
.......
N.A.
The `-thread-list-all-threads' Command
--------------------------------------
Synopsis
........
-thread-list-all-threads
GDB Command
...........
The equivalent GDB command is `info threads'.
Example
.......
N.A.
The `-thread-list-ids' Command
------------------------------
Synopsis
........
-thread-list-ids
Produces a list of the currently known GDB thread ids. At the end
of the list it also prints the total number of such threads.
GDB Command
...........
Part of `info threads' supplies the same information.
Example
.......
No threads present, besides the main process:
(gdb)
-thread-list-ids
^done,thread-ids={},number-of-threads="0"
(gdb)
Several threads:
(gdb)
-thread-list-ids
^done,thread-ids={thread-id="3",thread-id="2",thread-id="1"},
number-of-threads="3"
(gdb)
The `-thread-select' Command
----------------------------
Synopsis
........
-thread-select THREADNUM
Make THREADNUM the current thread. It prints the number of the new
current thread, and the topmost frame for that thread.
GDB Command
...........
The corresponding GDB command is `thread'.
Example
.......
(gdb)
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",thread-id="2",line="187",
file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
(gdb)
-thread-list-ids
^done,
thread-ids={thread-id="3",thread-id="2",thread-id="1"},
number-of-threads="3"
(gdb)
-thread-select 3
^done,new-thread-id="3",
frame={level="0 ",func="vprintf",
args=[{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""},
{name="arg",value="0x2"}],file="vprintf.c",line="31"}
(gdb)
File: gdb.info, Node: GDB/MI Tracepoint Commands, Next: GDB/MI Variable Objects, Prev: GDB/MI Thread Commands, Up: GDB/MI
GDB/MI Tracepoint Commands
==========================
The tracepoint commands are not yet implemented.
File: gdb.info, Node: GDB/MI Variable Objects, Prev: GDB/MI Tracepoint Commands, Up: GDB/MI
GDB/MI Variable Objects
=======================
Motivation for Variable Objects in GDB/MI
-----------------------------------------
For the implementation of a variable debugger window (locals, watched
expressions, etc.), we are proposing the adaptation of the existing code
used by `Insight'.
The two main reasons for that are:
1. It has been proven in practice (it is already on its second
generation).
2. It will shorten development time (needless to say how important it
is now).
The original interface was designed to be used by Tcl code, so it was
slightly changed so it could be used through GDB/MI. This section
describes the GDB/MI operations that will be available and gives some
hints about their use.
_Note_: In addition to the set of operations described here, we
expect the GUI implementation of a variable window to require, at
least, the following operations:
* `-gdb-show' `output-radix'
* `-stack-list-arguments'
* `-stack-list-locals'
* `-stack-select-frame'
Introduction to Variable Objects in GDB/MI
------------------------------------------
The basic idea behind variable objects is the creation of a named
object to represent a variable, an expression, a memory location or
even a CPU register. For each object created, a set of operations is
available for examining or changing its properties.
Furthermore, complex data types, such as C structures, are
represented in a tree format. For instance, the `struct' type variable
is the root and the children will represent the struct members. If a
child is itself of a complex type, it will also have children of its
own. Appropriate language differences are handled for C, C++ and Java.
When returning the actual values of the objects, this facility allows
for the individual selection of the display format used in the result
creation. It can be chosen among: binary, decimal, hexadecimal, octal
and natural. Natural refers to a default format automatically chosen
based on the variable type (like decimal for an `int', hex for
pointers, etc.).
The following is the complete set of GDB/MI operations defined to
access this functionality:
*Operation* *Description*
`-var-create' create a variable object
`-var-delete' delete the variable object and its children
`-var-set-format' set the display format of this variable
`-var-show-format' show the display format of this variable
`-var-info-num-children' tells how many children this object has
`-var-list-children' return a list of the object's children
`-var-info-type' show the type of this variable object
`-var-info-expression' print what this variable object represents
`-var-show-attributes' is this variable editable? does it exist
here?
`-var-evaluate-expression' get the value of this variable
`-var-assign' set the value of this variable
`-var-update' update the variable and its children
In the next subsection we describe each operation in detail and
suggest how it can be used.
Description And Use of Operations on Variable Objects
-----------------------------------------------------
The `-var-create' Command
-------------------------
Synopsis
........
-var-create {NAME | "-"}
{FRAME-ADDR | "*"} EXPRESSION
This operation creates a variable object, which allows the
monitoring of a variable, the result of an expression, a memory cell or
a CPU register.
The NAME parameter is the string by which the object can be
referenced. It must be unique. If `-' is specified, the varobj system
will generate a string "varNNNNNN" automatically. It will be unique
provided that one does not specify NAME on that format. The command
fails if a duplicate name is found.
The frame under which the expression should be evaluated can be
specified by FRAME-ADDR. A `*' indicates that the current frame should
be used.
EXPRESSION is any expression valid on the current language set (must
not begin with a `*'), or one of the following:
* `*ADDR', where ADDR is the address of a memory cell
* `*ADDR-ADDR' -- a memory address range (TBD)
* `$REGNAME' -- a CPU register name
Result
......
This operation returns the name, number of children and the type of
the object created. Type is returned as a string as the ones generated
by the GDB CLI:
name="NAME",numchild="N",type="TYPE"
The `-var-delete' Command
-------------------------
Synopsis
........
-var-delete NAME
Deletes a previously created variable object and all of its children.
Returns an error if the object NAME is not found.
The `-var-set-format' Command
-----------------------------
Synopsis
........
-var-set-format NAME FORMAT-SPEC
Sets the output format for the value of the object NAME to be
FORMAT-SPEC.
The syntax for the FORMAT-SPEC is as follows:
FORMAT-SPEC ==>
{binary | decimal | hexadecimal | octal | natural}
The `-var-show-format' Command
------------------------------
Synopsis
........
-var-show-format NAME
Returns the format used to display the value of the object NAME.
FORMAT ==>
FORMAT-SPEC
The `-var-info-num-children' Command
------------------------------------
Synopsis
........
-var-info-num-children NAME
Returns the number of children of a variable object NAME:
numchild=N
The `-var-list-children' Command
--------------------------------
Synopsis
........
-var-list-children NAME
Returns a list of the children of the specified variable object:
numchild=N,children={{name=NAME,
numchild=N,type=TYPE},(repeats N times)}
The `-var-info-type' Command
----------------------------
Synopsis
........
-var-info-type NAME
Returns the type of the specified variable NAME. The type is
returned as a string in the same format as it is output by the GDB CLI:
type=TYPENAME
The `-var-info-expression' Command
----------------------------------
Synopsis
........
-var-info-expression NAME
Returns what is represented by the variable object NAME:
lang=LANG-SPEC,exp=EXPRESSION
where LANG-SPEC is `{"C" | "C++" | "Java"}'.
The `-var-show-attributes' Command
----------------------------------
Synopsis
........
-var-show-attributes NAME
List attributes of the specified variable object NAME:
status=ATTR [ ( ,ATTR )* ]
where ATTR is `{ { editable | noneditable } | TBD }'.
The `-var-evaluate-expression' Command
--------------------------------------
Synopsis
........
-var-evaluate-expression NAME
Evaluates the expression that is represented by the specified
variable object and returns its value as a string in the current format
specified for the object:
value=VALUE
The `-var-assign' Command
-------------------------
Synopsis
........
-var-assign NAME EXPRESSION
Assigns the value of EXPRESSION to the variable object specified by
NAME. The object must be `editable'.
The `-var-update' Command
-------------------------
Synopsis
........
-var-update {NAME | "*"}
Update the value of the variable object NAME by evaluating its
expression after fetching all the new values from memory or registers.
A `*' causes all existing variable objects to be updated.
File: gdb.info, Node: GDB Bugs, Next: Formatting Documentation, Prev: GDB/MI, Up: Top
Reporting Bugs in GDB
*********************
Your bug reports play an essential role in making GDB reliable.
Reporting a bug may help you by bringing a solution to your problem,
or it may not. But in any case the principal function of a bug report
is to help the entire community by making the next version of GDB work
better. Bug reports are your contribution to the maintenance of GDB.
In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.
* Menu:
* Bug Criteria:: Have you found a bug?
* Bug Reporting:: How to report bugs
File: gdb.info, Node: Bug Criteria, Next: Bug Reporting, Up: GDB Bugs
Have you found a bug?
=====================
If you are not sure whether you have found a bug, here are some
guidelines:
* If the debugger gets a fatal signal, for any input whatever, that
is a GDB bug. Reliable debuggers never crash.
* If GDB produces an error message for valid input, that is a bug.
(Note that if you're cross debugging, the problem may also be
somewhere in the connection to the target.)
* If GDB does not produce an error message for invalid input, that
is a bug. However, you should note that your idea of "invalid
input" might be our idea of "an extension" or "support for
traditional practice".
* If you are an experienced user of debugging tools, your suggestions
for improvement of GDB are welcome in any case.
File: gdb.info, Node: Bug Reporting, Prev: Bug Criteria, Up: GDB Bugs
How to report bugs
==================
A number of companies and individuals offer support for GNU products.
If you obtained GDB from a support organization, we recommend you
contact that organization first.
You can find contact information for many support companies and
individuals in the file `etc/SERVICE' in the GNU Emacs distribution.
In any event, we also recommend that you send bug reports for GDB to
this addresses:
bug-gdb@gnu.org
*Do not send bug reports to `info-gdb', or to `help-gdb', or to any
newsgroups.* Most users of GDB do not want to receive bug reports.
Those that do have arranged to receive `bug-gdb'.
The mailing list `bug-gdb' has a newsgroup `gnu.gdb.bug' which
serves as a repeater. The mailing list and the newsgroup carry exactly
the same messages. Often people think of posting bug reports to the
newsgroup instead of mailing them. This appears to work, but it has one
problem which can be crucial: a newsgroup posting often lacks a mail
path back to the sender. Thus, if we need to ask for more information,
we may be unable to reach you. For this reason, it is better to send
bug reports to the mailing list.
As a last resort, send bug reports on paper to:
GNU Debugger Bugs
Free Software Foundation Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA
The fundamental principle of reporting bugs usefully is this:
*report all the facts*. If you are not sure whether to state a fact or
leave it out, state it!
Often people omit facts because they think they know what causes the
problem and assume that some details do not matter. Thus, you might
assume that the name of the variable you use in an example does not
matter. Well, probably it does not, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were
different, the contents of that location would fool the debugger into
doing the right thing despite the bug. Play it safe and give a
specific, complete example. That is the easiest thing for you to do,
and the most helpful.
Keep in mind that the purpose of a bug report is to enable us to fix
the bug. It may be that the bug has been reported previously, but
neither you nor we can know that unless your bug report is complete and
self-contained.
Sometimes people give a few sketchy facts and ask, "Does this ring a
bell?" Those bug reports are useless, and we urge everyone to _refuse
to respond to them_ except to chide the sender to report bugs properly.
To enable us to fix the bug, you should include all these things:
* The version of GDB. GDB announces it if you start with no
arguments; you can also print it at any time using `show version'.
Without this, we will not know whether there is any point in
looking for the bug in the current version of GDB.
* The type of machine you are using, and the operating system name
and version number.
* What compiler (and its version) was used to compile GDB--e.g.
"gcc-2.8.1".
* What compiler (and its version) was used to compile the program
you are debugging--e.g. "gcc-2.8.1", or "HP92453-01 A.10.32.03 HP
C Compiler". For GCC, you can say `gcc --version' to get this
information; for other compilers, see the documentation for those
compilers.
* The command arguments you gave the compiler to compile your
example and observe the bug. For example, did you use `-O'? To
guarantee you will not omit something important, list them all. A
copy of the Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess
wrong and then we might not encounter the bug.
* A complete input script, and all necessary source files, that will
reproduce the bug.
* A description of what behavior you observe that you believe is
incorrect. For example, "It gets a fatal signal."
Of course, if the bug is that GDB gets a fatal signal, then we
will certainly notice it. But if the bug is incorrect output, we
might not notice unless it is glaringly wrong. You might as well
not give us a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should
still say so explicitly. Suppose something strange is going on,
such as, your copy of GDB is out of synch, or you have encountered
a bug in the C library on your system. (This has happened!) Your
copy might crash and ours would not. If you told us to expect a
crash, then when ours fails to crash, we would know that the bug
was not happening for us. If you had not told us to expect a
crash, then we would not be able to draw any conclusion from our
observations.
* If you wish to suggest changes to the GDB source, send us context
diffs. If you even discuss something in the GDB source, refer to
it by context, not by line number.
The line numbers in our development sources will not match those
in your sources. Your line numbers would convey no useful
information to us.
Here are some things that are not necessary:
* A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way
we will find the bug is by running a single example under the
debugger with breakpoints, not by pure deduction from a series of
examples. We recommend that you save your time for something else.
Of course, if you can find a simpler example to report _instead_
of the original one, that is a convenience for us. Errors in the
output will be easier to spot, running under the debugger will take
less time, and so on.
However, simplification is not vital; if you do not want to do
this, report the bug anyway and send us the entire test case you
used.
* A patch for the bug.
A patch for the bug does help us if it is a good one. But do not
omit the necessary information, such as the test case, on the
assumption that a patch is all we need. We might see problems
with your patch and decide to fix the problem another way, or we
might not understand it at all.
Sometimes with a program as complicated as GDB it is very hard to
construct an example that will make the program follow a certain
path through the code. If you do not send us the example, we will
not be able to construct one, so we will not be able to verify
that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why
your patch should be an improvement, we will not install it. A
test case will help us to understand.
* A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about
such things without first using the debugger to find the facts.
File: gdb.info, Node: Command Line Editing, Next: Using History Interactively, Prev: Formatting Documentation, Up: Top
Command Line Editing
********************
This chapter describes the basic features of the GNU command line
editing interface.
* Menu:
* Introduction and Notation:: Notation used in this text.
* Readline Interaction:: The minimum set of commands for editing a line.
* Readline Init File:: Customizing Readline from a user's view.
* Bindable Readline Commands:: A description of most of the Readline commands
available for binding
* Readline vi Mode:: A short description of how to make Readline
behave like the vi editor.
File: gdb.info, Node: Introduction and Notation, Next: Readline Interaction, Up: Command Line Editing
Introduction to Line Editing
============================
The following paragraphs describe the notation used to represent
keystrokes.
The text <C-k> is read as `Control-K' and describes the character
produced when the <k> key is pressed while the Control key is depressed.
The text <M-k> is read as `Meta-K' and describes the character
produced when the Meta key (if you have one) is depressed, and the <k>
key is pressed. The Meta key is labeled <ALT> on many keyboards. On
keyboards with two keys labeled <ALT> (usually to either side of the
space bar), the <ALT> on the left side is generally set to work as a
Meta key. The <ALT> key on the right may also be configured to work as
a Meta key or may be configured as some other modifier, such as a
Compose key for typing accented characters.
If you do not have a Meta or <ALT> key, or another key working as a
Meta key, the identical keystroke can be generated by typing <ESC>
first, and then typing <k>. Either process is known as "metafying" the
<k> key.
The text <M-C-k> is read as `Meta-Control-k' and describes the
character produced by "metafying" <C-k>.
In addition, several keys have their own names. Specifically,
<DEL>, <ESC>, <LFD>, <SPC>, <RET>, and <TAB> all stand for themselves
when seen in this text, or in an init file (*note Readline Init File::).
If your keyboard lacks a <LFD> key, typing <C-j> will produce the
desired character. The <RET> key may be labeled <Return> or <Enter> on
some keyboards.
File: gdb.info, Node: Readline Interaction, Next: Readline Init File, Prev: Introduction and Notation, Up: Command Line Editing
Readline Interaction
====================
Often during an interactive session you type in a long line of text,
only to notice that the first word on the line is misspelled. The
Readline library gives you a set of commands for manipulating the text
as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands,
you move the cursor to the place that needs correction, and delete or
insert the text of the corrections. Then, when you are satisfied with
the line, you simply press <RETURN>. You do not have to be at the end
of the line to press <RETURN>; the entire line is accepted regardless
of the location of the cursor within the line.
* Menu:
* Readline Bare Essentials:: The least you need to know about Readline.
* Readline Movement Commands:: Moving about the input line.
* Readline Killing Commands:: How to delete text, and how to get it back!
* Readline Arguments:: Giving numeric arguments to commands.
* Searching:: Searching through previous lines.
File: gdb.info, Node: Readline Bare Essentials, Next: Readline Movement Commands, Up: Readline Interaction
Readline Bare Essentials
------------------------
In order to enter characters into the line, simply type them. The
typed character appears where the cursor was, and then the cursor moves
one space to the right. If you mistype a character, you can use your
erase character to back up and delete the mistyped character.
Sometimes you may mistype a character, and not notice the error
until you have typed several other characters. In that case, you can
type <C-b> to move the cursor to the left, and then correct your
mistake. Afterwards, you can move the cursor to the right with <C-f>.
When you add text in the middle of a line, you will notice that
characters to the right of the cursor are `pushed over' to make room
for the text that you have inserted. Likewise, when you delete text
behind the cursor, characters to the right of the cursor are `pulled
back' to fill in the blank space created by the removal of the text. A
list of the bare essentials for editing the text of an input line
follows.
<C-b>
Move back one character.
<C-f>
Move forward one character.
<DEL> or <Backspace>
Delete the character to the left of the cursor.
<C-d>
Delete the character underneath the cursor.
Printing characters
Insert the character into the line at the cursor.
<C-_> or <C-x C-u>
Undo the last editing command. You can undo all the way back to an
empty line.
(Depending on your configuration, the <Backspace> key be set to delete
the character to the left of the cursor and the <DEL> key set to delete
the character underneath the cursor, like <C-d>, rather than the
character to the left of the cursor.)
File: gdb.info, Node: Readline Movement Commands, Next: Readline Killing Commands, Prev: Readline Bare Essentials, Up: Readline Interaction
Readline Movement Commands
--------------------------
The above table describes the most basic keystrokes that you need in
order to do editing of the input line. For your convenience, many
other commands have been added in addition to <C-b>, <C-f>, <C-d>, and
<DEL>. Here are some commands for moving more rapidly about the line.
<C-a>
Move to the start of the line.
<C-e>
Move to the end of the line.
<M-f>
Move forward a word, where a word is composed of letters and
digits.
<M-b>
Move backward a word.
<C-l>
Clear the screen, reprinting the current line at the top.
Notice how <C-f> moves forward a character, while <M-f> moves
forward a word. It is a loose convention that control keystrokes
operate on characters while meta keystrokes operate on words.
File: gdb.info, Node: Readline Killing Commands, Next: Readline Arguments, Prev: Readline Movement Commands, Up: Readline Interaction
Readline Killing Commands
-------------------------
"Killing" text means to delete the text from the line, but to save
it away for later use, usually by "yanking" (re-inserting) it back into
the line. (`Cut' and `paste' are more recent jargon for `kill' and
`yank'.)
If the description for a command says that it `kills' text, then you
can be sure that you can get the text back in a different (or the same)
place later.
When you use a kill command, the text is saved in a "kill-ring".
Any number of consecutive kills save all of the killed text together, so
that when you yank it back, you get it all. The kill ring is not line
specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.
Here is the list of commands for killing text.
<C-k>
Kill the text from the current cursor position to the end of the
line.
<M-d>
Kill from the cursor to the end of the current word, or, if between
words, to the end of the next word. Word boundaries are the same
as those used by <M-f>.
<M-DEL>
Kill from the cursor the start of the previous word, or, if between
words, to the start of the previous word. Word boundaries are the
same as those used by <M-b>.
<C-w>
Kill from the cursor to the previous whitespace. This is
different than <M-DEL> because the word boundaries differ.
Here is how to "yank" the text back into the line. Yanking means to
copy the most-recently-killed text from the kill buffer.
<C-y>
Yank the most recently killed text back into the buffer at the
cursor.
<M-y>
Rotate the kill-ring, and yank the new top. You can only do this
if the prior command is <C-y> or <M-y>.
File: gdb.info, Node: Readline Arguments, Next: Searching, Prev: Readline Killing Commands, Up: Readline Interaction
Readline Arguments
------------------
You can pass numeric arguments to Readline commands. Sometimes the
argument acts as a repeat count, other times it is the sign of the
argument that is significant. If you pass a negative argument to a
command which normally acts in a forward direction, that command will
act in a backward direction. For example, to kill text back to the
start of the line, you might type `M-- C-k'.
The general way to pass numeric arguments to a command is to type
meta digits before the command. If the first `digit' typed is a minus
sign (`-'), then the sign of the argument will be negative. Once you
have typed one meta digit to get the argument started, you can type the
remainder of the digits, and then the command. For example, to give
the <C-d> command an argument of 10, you could type `M-1 0 C-d'.
File: gdb.info, Node: Searching, Prev: Readline Arguments, Up: Readline Interaction
Searching for Commands in the History
-------------------------------------
Readline provides commands for searching through the command history
for lines containing a specified string. There are two search modes:
INCREMENTAL and NON-INCREMENTAL.
Incremental searches begin before the user has finished typing the
search string. As each character of the search string is typed,
Readline displays the next entry from the history matching the string
typed so far. An incremental search requires only as many characters
as needed to find the desired history entry. To search backward in the
history for a particular string, type <C-r>. Typing <C-s> searches
forward through the history. The characters present in the value of
the `isearch-terminators' variable are used to terminate an incremental
search. If that variable has not been assigned a value, the <ESC> and
<C-J> characters will terminate an incremental search. <C-g> will
abort an incremental search and restore the original line. When the
search is terminated, the history entry containing the search string
becomes the current line.
To find other matching entries in the history list, type <C-r> or
<C-s> as appropriate. This will search backward or forward in the
history for the next entry matching the search string typed so far.
Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a <RET> will terminate
the search and accept the line, thereby executing the command from the
history list.
Non-incremental searches read the entire search string before
starting to search for matching history lines. The search string may be
typed by the user or be part of the contents of the current line.
File: gdb.info, Node: Readline Init File, Next: Bindable Readline Commands, Prev: Readline Interaction, Up: Command Line Editing
Readline Init File
==================
Although the Readline library comes with a set of Emacs-like
keybindings installed by default, it is possible to use a different set
of keybindings. Any user can customize programs that use Readline by
putting commands in an "inputrc" file, conventionally in his home
directory. The name of this file is taken from the value of the
environment variable `INPUTRC'. If that variable is unset, the default
is `~/.inputrc'.
When a program which uses the Readline library starts up, the init
file is read, and the key bindings are set.
In addition, the `C-x C-r' command re-reads this init file, thus
incorporating any changes that you might have made to it.
* Menu:
* Readline Init File Syntax:: Syntax for the commands in the inputrc file.
* Conditional Init Constructs:: Conditional key bindings in the inputrc file.
* Sample Init File:: An example inputrc file.
Go to most recent revision | Compare with Previous | Blame | View Log