URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [insight/] [gdb/] [gdbtk/] [generic/] [gdbtk-cmds.c] - Rev 578
Go to most recent revision | Compare with Previous | Blame | View Log
/* Tcl/Tk command definitions for Insight. Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2001 Free Software Foundation, Inc. Written by Stu Grossman <grossman@cygnus.com> of Cygnus Support. Substantially augmented by Martin Hunt, Keith Seitz & Jim Ingham of Cygnus Support. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "symtab.h" #include "inferior.h" #include "command.h" #include "source.h" #include "bfd.h" #include "symfile.h" #include "objfiles.h" #include "target.h" #include "gdbcore.h" #include "demangle.h" #include "regcache.h" #include "linespec.h" #include "tui/tui-file.h" #include <sys/stat.h> #include <tcl.h> #include <tk.h> #include <itcl.h> #include <tix.h> #include "guitcl.h" #include "gdbtk.h" #include "gdbtk-wrapper.h" #include "gdbtk-cmds.h" #include <signal.h> #include <fcntl.h> #include "top.h" #include <sys/ioctl.h> #include "gdb_string.h" #include "dis-asm.h" #include <stdio.h> #include "gdbcmd.h" #include "annotate.h" #include <sys/time.h> /* Various globals we reference. */ extern char *source_path; /* These two objects hold boolean true and false, and are shared by all the list objects that gdb_listfuncs returns. */ static Tcl_Obj *mangled, *not_mangled; /* These two control how the GUI behaves when gdb is either tracing or loading. They are used in this file & gdbtk_hooks.c */ int No_Update = 0; int load_in_progress = 0; /* This Structure is used in gdb_disassemble. We need a different sort of line table from the normal one cuz we can't depend upon implicit line-end pc's for lines to do the reordering in this function. */ struct my_line_entry { int line; CORE_ADDR start_pc; CORE_ADDR end_pc; }; /* Use this to pass the Tcl Text widget command and the open file descriptor to the disassembly load command. */ struct disassembly_client_data { FILE *fp; int file_opened_p; int widget_line_no; Tcl_Interp *interp; char *widget; Tcl_Obj *result_obj[3]; char *asm_argv[14]; char *source_argv[7]; char *map_arr; Tcl_DString src_to_line_prefix; Tcl_DString pc_to_line_prefix; Tcl_DString line_to_pc_prefix; Tcl_CmdInfo cmd; }; /* This variable determines where memory used for disassembly is read from. * See note in gdbtk.h for details. */ int disassemble_from_exec = -1; extern int gdb_variable_init (Tcl_Interp * interp); /* * Declarations for routines exported from this file */ int Gdbtk_Init (Tcl_Interp * interp); /* * Declarations for routines used only in this file. */ static int compare_lines (const PTR, const PTR); static int comp_files (const void *, const void *); static int gdb_clear_file (ClientData, Tcl_Interp * interp, int, Tcl_Obj * CONST[]); static int gdb_cmd (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_confirm_quit (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_disassemble (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_entry_point (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_eval (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_find_file_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_force_quit (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_get_file_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_get_function_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_get_line_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_get_mem (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_set_mem (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_immediate_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_listfiles (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_listfuncs (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_loadfile (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_load_disassembly (ClientData clientData, Tcl_Interp * interp, int objc, Tcl_Obj * CONST objv[]); static int gdb_get_inferior_args (ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj * CONST objv[]); static int gdb_set_inferior_args (ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj * CONST objv[]); static int gdb_load_info (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_loc (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_path_conv (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_prompt_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_restore_fputs (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_search (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST objv[]); static int gdb_stop (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdb_target_has_execution_command (ClientData, Tcl_Interp *, int, Tcl_Obj * CONST[]); static int gdbtk_dis_asm_read_memory (bfd_vma, bfd_byte *, unsigned int, disassemble_info *); static void gdbtk_load_source (ClientData clientData, struct symtab *symtab, int start_line, int end_line); static CORE_ADDR gdbtk_load_asm (ClientData clientData, CORE_ADDR pc, struct disassemble_info *di); static void gdbtk_print_source (ClientData clientData, struct symtab *symtab, int start_line, int end_line); static CORE_ADDR gdbtk_print_asm (ClientData clientData, CORE_ADDR pc, struct disassemble_info *di); static int gdb_disassemble_driver (CORE_ADDR low, CORE_ADDR high, int mixed_source_and_assembly, ClientData clientData, void (*print_source_fn) (ClientData, struct symtab *, int, int), CORE_ADDR (*print_asm_fn) (ClientData, CORE_ADDR, struct disassemble_info *)); char *get_prompt (void); static int perror_with_name_wrapper (PTR args); static int wrapped_call (PTR opaque_args); static int hex2bin (const char *hex, char *bin, int count); static int fromhex (int a); /* Gdbtk_Init * This loads all the Tcl commands into the Tcl interpreter. * * Arguments: * interp - The interpreter into which to load the commands. * * Result: * A standard Tcl result. */ int Gdbtk_Init (interp) Tcl_Interp *interp; { Tcl_CreateObjCommand (interp, "gdb_cmd", gdbtk_call_wrapper, gdb_cmd, NULL); Tcl_CreateObjCommand (interp, "gdb_immediate", gdbtk_call_wrapper, gdb_immediate_command, NULL); Tcl_CreateObjCommand (interp, "gdb_loc", gdbtk_call_wrapper, gdb_loc, NULL); Tcl_CreateObjCommand (interp, "gdb_path_conv", gdbtk_call_wrapper, gdb_path_conv, NULL); Tcl_CreateObjCommand (interp, "gdb_listfiles", gdbtk_call_wrapper, gdb_listfiles, NULL); Tcl_CreateObjCommand (interp, "gdb_listfuncs", gdbtk_call_wrapper, gdb_listfuncs, NULL); Tcl_CreateObjCommand (interp, "gdb_entry_point", gdbtk_call_wrapper, gdb_entry_point, NULL); Tcl_CreateObjCommand (interp, "gdb_get_mem", gdbtk_call_wrapper, gdb_get_mem, NULL); Tcl_CreateObjCommand (interp, "gdb_set_mem", gdbtk_call_wrapper, gdb_set_mem, NULL); Tcl_CreateObjCommand (interp, "gdb_stop", gdbtk_call_wrapper, gdb_stop, NULL); Tcl_CreateObjCommand (interp, "gdb_restore_fputs", gdbtk_call_wrapper, gdb_restore_fputs, NULL); Tcl_CreateObjCommand (interp, "gdb_disassemble", gdbtk_call_wrapper, gdb_disassemble, NULL); Tcl_CreateObjCommand (interp, "gdb_eval", gdbtk_call_wrapper, gdb_eval, NULL); Tcl_CreateObjCommand (interp, "gdb_clear_file", gdbtk_call_wrapper, gdb_clear_file, NULL); Tcl_CreateObjCommand (interp, "gdb_confirm_quit", gdbtk_call_wrapper, gdb_confirm_quit, NULL); Tcl_CreateObjCommand (interp, "gdb_force_quit", gdbtk_call_wrapper, gdb_force_quit, NULL); Tcl_CreateObjCommand (interp, "gdb_target_has_execution", gdbtk_call_wrapper, gdb_target_has_execution_command, NULL); Tcl_CreateObjCommand (interp, "gdb_load_info", gdbtk_call_wrapper, gdb_load_info, NULL); Tcl_CreateObjCommand (interp, "gdb_get_function", gdbtk_call_wrapper, gdb_get_function_command, NULL); Tcl_CreateObjCommand (interp, "gdb_get_line", gdbtk_call_wrapper, gdb_get_line_command, NULL); Tcl_CreateObjCommand (interp, "gdb_get_file", gdbtk_call_wrapper, gdb_get_file_command, NULL); Tcl_CreateObjCommand (interp, "gdb_prompt", gdbtk_call_wrapper, gdb_prompt_command, NULL); Tcl_CreateObjCommand (interp, "gdb_find_file", gdbtk_call_wrapper, gdb_find_file_command, NULL); Tcl_CreateObjCommand (interp, "gdb_loadfile", gdbtk_call_wrapper, gdb_loadfile, NULL); Tcl_CreateObjCommand (interp, "gdb_load_disassembly", gdbtk_call_wrapper, gdb_load_disassembly, NULL); Tcl_CreateObjCommand (gdbtk_interp, "gdb_search", gdbtk_call_wrapper, gdb_search, NULL); Tcl_CreateObjCommand (interp, "gdb_get_inferior_args", gdbtk_call_wrapper, gdb_get_inferior_args, NULL); Tcl_CreateObjCommand (interp, "gdb_set_inferior_args", gdbtk_call_wrapper, gdb_set_inferior_args, NULL); /* gdb_context is used for debugging multiple threads or tasks */ Tcl_LinkVar (interp, "gdb_context_id", (char *) &gdb_context, TCL_LINK_INT | TCL_LINK_READ_ONLY); /* Make gdb's notion of the pwd visible. This is read-only because (1) it doesn't make sense to change it directly and (2) it is allocated using xmalloc and not Tcl_Alloc. You might think we could just use the Tcl `pwd' command. However, Tcl (erroneously, imho) maintains a cache of the current directory name, and doesn't provide a way for gdb to invalidate the cache. */ Tcl_LinkVar (interp, "gdb_current_directory", (char *) ¤t_directory, TCL_LINK_STRING | TCL_LINK_READ_ONLY); /* Current gdb source file search path. This is read-only for reasons similar to those for gdb_current_directory. */ Tcl_LinkVar (interp, "gdb_source_path", (char *) &source_path, TCL_LINK_STRING | TCL_LINK_READ_ONLY); /* Init variable interface... */ if (gdb_variable_init (interp) != TCL_OK) return TCL_ERROR; /* Init breakpoint module */ if (Gdbtk_Breakpoint_Init (interp) != TCL_OK) return TCL_ERROR; /* Init stack module */ if (Gdbtk_Stack_Init (interp) != TCL_OK) return TCL_ERROR; /* Init register module */ if (Gdbtk_Register_Init (interp) != TCL_OK) return TCL_ERROR; /* Determine where to disassemble from */ Tcl_LinkVar (gdbtk_interp, "disassemble-from-exec", (char *) &disassemble_from_exec, TCL_LINK_INT); Tcl_PkgProvide (interp, "Gdbtk", GDBTK_VERSION); return TCL_OK; } /* This routine acts as a top-level for all GDB code called by Tcl/Tk. It handles cleanups, and uses catch_errors to trap calls to return_to_top_level (usually via error). This is necessary in order to prevent a longjmp out of the bowels of Tk, possibly leaving things in a bad state. Since this routine can be called recursively, it needs to save and restore the contents of the result_ptr as necessary. */ int gdbtk_call_wrapper (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct wrapped_call_args wrapped_args; gdbtk_result new_result, *old_result_ptr; int wrapped_returned_error = 0; old_result_ptr = result_ptr; result_ptr = &new_result; result_ptr->obj_ptr = Tcl_NewObj (); result_ptr->flags = GDBTK_TO_RESULT; wrapped_args.func = (Tcl_ObjCmdProc *) clientData; wrapped_args.interp = interp; wrapped_args.objc = objc; wrapped_args.objv = objv; wrapped_args.val = TCL_OK; if (!catch_errors (wrapped_call, &wrapped_args, "", RETURN_MASK_ALL)) { wrapped_args.val = TCL_ERROR; /* Flag an error for TCL */ /* Make sure the timer interrupts are turned off. */ gdbtk_stop_timer (); gdb_flush (gdb_stderr); /* Flush error output */ gdb_flush (gdb_stdout); /* Sometimes error output comes here as well */ /* If we errored out here, and the results were going to the console, then gdbtk_fputs will have gathered the result into the result_ptr. We also need to echo them out to the console here */ gdb_flush (gdb_stderr); /* Flush error output */ gdb_flush (gdb_stdout); /* Sometimes error output comes here as well */ /* In case of an error, we may need to force the GUI into idle mode because gdbtk_call_command may have bombed out while in the command routine. */ running_now = 0; Tcl_Eval (interp, "gdbtk_tcl_idle"); } else { /* If the wrapped call returned an error directly, then we don't want to reset the result. */ wrapped_returned_error = wrapped_args.val == TCL_ERROR; } /* do not suppress any errors -- a remote target could have errored */ load_in_progress = 0; /* * Now copy the result over to the true Tcl result. If * GDBTK_TO_RESULT flag bit is set, this just copies a null object * over to the Tcl result, which is fine because we should reset the * result in this case anyway. If the wrapped command returned an * error, then we assume that the result is already set correctly. */ if ((result_ptr->flags & GDBTK_IN_TCL_RESULT) || wrapped_returned_error) { Tcl_DecrRefCount (result_ptr->obj_ptr); } else { Tcl_SetObjResult (interp, result_ptr->obj_ptr); } result_ptr = old_result_ptr; #ifdef _WIN32 close_bfds (); #endif return wrapped_args.val; } /* * This is the wrapper that is passed to catch_errors. */ static int wrapped_call (opaque_args) PTR opaque_args; { struct wrapped_call_args *args = (struct wrapped_call_args *) opaque_args; args->val = (*args->func) (args->func, args->interp, args->objc, args->objv); return 1; } /* This is a convenience function to sprintf something(s) into a * new element in a Tcl list object. */ void sprintf_append_element_to_obj (Tcl_Obj * objp, char *format,...) { va_list args; char *buf; va_start (args, format); xvasprintf (&buf, format, args); Tcl_ListObjAppendElement (NULL, objp, Tcl_NewStringObj (buf, -1)); free(buf); } /* * This section contains the commands that control execution. */ /* This implements the tcl command gdb_clear_file. * Prepare to accept a new executable file. This is called when we * want to clear away everything we know about the old file, without * asking the user. The Tcl code will have already asked the user if * necessary. After this is called, we should be able to run the * `file' command without getting any questions. * * Arguments: * None * Tcl Result: * None */ static int gdb_clear_file (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { if (objc != 1) { Tcl_WrongNumArgs (interp, 1, objv, NULL); return TCL_ERROR; } if (! ptid_equal (inferior_ptid, null_ptid) && target_has_execution) { if (attach_flag) target_detach (NULL, 0); else target_kill (); } if (target_has_execution) pop_target (); delete_command (NULL, 0); exec_file_clear (0); symbol_file_clear (0); return TCL_OK; } /* This implements the tcl command gdb_confirm_quit * Ask the user to confirm an exit request. * * Arguments: * None * Tcl Result: * A boolean, 1 if the user answered yes, 0 if no. */ static int gdb_confirm_quit (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { int ret; if (objc != 1) { Tcl_WrongNumArgs (interp, 1, objv, NULL); return TCL_ERROR; } ret = quit_confirm (); Tcl_SetBooleanObj (result_ptr->obj_ptr, ret); return TCL_OK; } /* This implements the tcl command gdb_force_quit * Quit without asking for confirmation. * * Arguments: * None * Tcl Result: * None */ static int gdb_force_quit (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { if (objc != 1) { Tcl_WrongNumArgs (interp, 1, objv, NULL); return TCL_ERROR; } quit_force ((char *) NULL, 1); return TCL_OK; } /* Pressing the stop button on the source window should attempt to * stop the target. If, after some short time, this fails, a dialog * should appear allowing the user to detach. * * The global GDBTK_FORCE_DETACH is set when we wish to detach * from a target. This value is returned by ui_loop_hook (x_event), * indicating to callers that they should detach. * * Read the comments before x_event to find out how we (try) to keep * gdbtk alive while some other event loop has stolen control from us. */ /* * This command implements the tcl command gdb_stop, which * is used to either stop the target or detach. * Note that it is assumed that a simulator or native target * can ALWAYS be stopped. Doing a "detach" on them has no effect. * * Arguments: * None or "detach" * Tcl Result: * None */ static int gdb_stop (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { int force = 0; char *s; if (objc > 1) { s = Tcl_GetStringFromObj (objv[1], NULL); if (STREQ (s, "detach")) force = 1; } if (force) { /* Set the "forcibly detach from target" flag. x_event will return this value to callers when they should forcibly detach. */ gdbtk_force_detach = 1; } else { if (target_stop != target_ignore) target_stop (); else quit_flag = 1; /* hope something sees this */ } return TCL_OK; } /* * This section contains Tcl commands that are wrappers for invoking * the GDB command interpreter. */ /* This implements the tcl command `gdb_eval'. * It uses the gdb evaluator to return the value of * an expression in the current language * * Tcl Arguments: * expression - the expression to evaluate. * Tcl Result: * The result of the evaluation. */ static int gdb_eval (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct expression *expr; struct cleanup *old_chain = NULL; value_ptr val; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "expression"); return TCL_ERROR; } expr = parse_expression (Tcl_GetStringFromObj (objv[1], NULL)); old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); /* * Print the result of the expression evaluation. This will go to * eventually go to gdbtk_fputs, and from there be collected into * the Tcl result. */ val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_EMBEDDED_OFFSET (val), VALUE_ADDRESS (val), gdb_stdout, 0, 0, 0, 0); do_cleanups (old_chain); return TCL_OK; } /* This implements the tcl command "gdb_cmd". * It sends its argument to the GDB command scanner for execution. * This command will never cause the update, idle and busy hooks to be called * within the GUI. * * Tcl Arguments: * command - The GDB command to execute * from_tty - 1 indicates this comes to the console. * Pass this to the gdb command. * Tcl Result: * The output from the gdb command (except for the "load" & "while" * which dump their output to the console. */ static int gdb_cmd (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { int from_tty = 0; if (objc < 2 || objc > 3) { Tcl_WrongNumArgs (interp, 1, objv, "command ?from_tty?"); return TCL_ERROR; } if (objc == 3) { if (Tcl_GetBooleanFromObj (NULL, objv[2], &from_tty) != TCL_OK) { Tcl_SetStringObj (result_ptr->obj_ptr, "from_tty must be a boolean.", -1); return TCL_ERROR; } } if (running_now || load_in_progress) return TCL_OK; No_Update = 1; /* for the load instruction (and possibly others later) we set turn off the GDBTK_TO_RESULT flag bit so gdbtk_fputs() will not buffer all the data until the command is finished. */ if ((strncmp ("load ", Tcl_GetStringFromObj (objv[1], NULL), 5) == 0)) { result_ptr->flags &= ~GDBTK_TO_RESULT; load_in_progress = 1; } execute_command (Tcl_GetStringFromObj (objv[1], NULL), from_tty); if (load_in_progress) { load_in_progress = 0; result_ptr->flags |= GDBTK_TO_RESULT; } bpstat_do_actions (&stop_bpstat); return TCL_OK; } /* * This implements the tcl command "gdb_immediate" * * It does exactly the same thing as gdb_cmd, except NONE of its outut * is buffered. This will also ALWAYS cause the busy, update, and idle * hooks to be called, contrasted with gdb_cmd, which NEVER calls them. * It turns off the GDBTK_TO_RESULT flag, which diverts the result * to the console window. * * Tcl Arguments: * command - The GDB command to execute * from_tty - 1 to indicate this is from the console. * Tcl Result: * None. */ static int gdb_immediate_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { int from_tty = 0; if (objc < 2 || objc > 3) { Tcl_WrongNumArgs (interp, 1, objv, "command ?from_tty?"); return TCL_ERROR; } if (objc == 3) { if (Tcl_GetBooleanFromObj (NULL, objv[2], &from_tty) != TCL_OK) { Tcl_SetStringObj (result_ptr->obj_ptr, "from_tty must be a boolean.", -1); return TCL_ERROR; } } if (running_now || load_in_progress) return TCL_OK; No_Update = 0; result_ptr->flags &= ~GDBTK_TO_RESULT; execute_command (Tcl_GetStringFromObj (objv[1], NULL), from_tty); bpstat_do_actions (&stop_bpstat); result_ptr->flags |= GDBTK_TO_RESULT; return TCL_OK; } /* This implements the tcl command "gdb_prompt" * It returns the gdb interpreter's prompt. * * Tcl Arguments: * None. * Tcl Result: * The prompt. */ static int gdb_prompt_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { Tcl_SetStringObj (result_ptr->obj_ptr, get_prompt (), -1); return TCL_OK; } /* * This section contains general informational commands. */ /* This implements the tcl command "gdb_target_has_execution" * Tells whether the target is executing. * * Tcl Arguments: * None * Tcl Result: * A boolean indicating whether the target is executing. */ static int gdb_target_has_execution_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { int result = 0; if (target_has_execution && ! ptid_equal (inferior_ptid, null_ptid)) result = 1; Tcl_SetBooleanObj (result_ptr->obj_ptr, result); return TCL_OK; } /* This implements the tcl command "gdb_get_inferior_args" * Returns inferior command line arguments as a string * * Tcl Arguments: * None * Tcl Result: * A string containing the inferior command line arguments */ static int gdb_get_inferior_args (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { if (objc != 1) { Tcl_WrongNumArgs (interp, 1, objv, NULL); return TCL_ERROR; } Tcl_SetStringObj (result_ptr->obj_ptr, get_inferior_args (), -1); return TCL_OK; } /* This implements the tcl command "gdb_set_inferior_args" * Sets inferior command line arguments * * Tcl Arguments: * A string containing the inferior command line arguments * Tcl Result: * None */ static int gdb_set_inferior_args (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { char *args; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "argument"); return TCL_ERROR; } args = Tcl_GetStringFromObj (objv[1], NULL); /* The xstrdup/xfree stuff is so that we maintain a coherent picture for gdb. I would expect the accessors to do this, but they don't. */ args = xstrdup (args); args = set_inferior_args (args); xfree (args); return TCL_OK; } /* This implements the tcl command "gdb_load_info" * It returns information about the file about to be downloaded. * * Tcl Arguments: * filename: The file to open & get the info on. * Tcl Result: * A list consisting of the name and size of each section. */ static int gdb_load_info (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { bfd *loadfile_bfd; struct cleanup *old_cleanups; asection *s; Tcl_Obj *ob[2]; char *filename = Tcl_GetStringFromObj (objv[1], NULL); loadfile_bfd = bfd_openr (filename, gnutarget); if (loadfile_bfd == NULL) { Tcl_SetStringObj (result_ptr->obj_ptr, "Open failed", -1); return TCL_ERROR; } old_cleanups = make_cleanup_bfd_close (loadfile_bfd); if (!bfd_check_format (loadfile_bfd, bfd_object)) { Tcl_SetStringObj (result_ptr->obj_ptr, "Bad Object File", -1); return TCL_ERROR; } Tcl_SetListObj (result_ptr->obj_ptr, 0, NULL); for (s = loadfile_bfd->sections; s; s = s->next) { if (s->flags & SEC_LOAD) { bfd_size_type size = bfd_get_section_size_before_reloc (s); if (size > 0) { ob[0] = Tcl_NewStringObj ((char *) bfd_get_section_name (loadfile_bfd, s), -1); ob[1] = Tcl_NewLongObj ((long) size); Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewListObj (2, ob)); } } } do_cleanups (old_cleanups); return TCL_OK; } /* This implements the tcl command "gdb_get_line" * It returns the linenumber for a given linespec. It will take any spec * that can be passed to decode_line_1 * * Tcl Arguments: * linespec - the line specification * Tcl Result: * The line number for that spec. */ static int gdb_get_line_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct symtabs_and_lines sals; char *args, **canonical; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "linespec"); return TCL_ERROR; } args = Tcl_GetStringFromObj (objv[1], NULL); sals = decode_line_1 (&args, 1, NULL, 0, &canonical); if (sals.nelts == 1) { Tcl_SetIntObj (result_ptr->obj_ptr, sals.sals[0].line); return TCL_OK; } Tcl_SetStringObj (result_ptr->obj_ptr, "N/A", -1); return TCL_OK; } /* This implements the tcl command "gdb_get_file" * It returns the file containing a given line spec. * * Tcl Arguments: * linespec - The linespec to look up * Tcl Result: * The file containing it. */ static int gdb_get_file_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct symtabs_and_lines sals; char *args, **canonical; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "linespec"); return TCL_ERROR; } args = Tcl_GetStringFromObj (objv[1], NULL); sals = decode_line_1 (&args, 1, NULL, 0, &canonical); if (sals.nelts == 1) { Tcl_SetStringObj (result_ptr->obj_ptr, sals.sals[0].symtab->filename, -1); return TCL_OK; } Tcl_SetStringObj (result_ptr->obj_ptr, "N/A", -1); return TCL_OK; } /* This implements the tcl command "gdb_get_function" * It finds the function containing the given line spec. * * Tcl Arguments: * linespec - The line specification * Tcl Result: * The function that contains it, or "N/A" if it is not in a function. */ static int gdb_get_function_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { char *function; struct symtabs_and_lines sals; char *args, **canonical; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "linespec"); return TCL_ERROR; } args = Tcl_GetStringFromObj (objv[1], NULL); sals = decode_line_1 (&args, 1, NULL, 0, &canonical); if (sals.nelts == 1) { resolve_sal_pc (&sals.sals[0]); function = pc_function_name (sals.sals[0].pc); Tcl_SetStringObj (result_ptr->obj_ptr, function, -1); return TCL_OK; } Tcl_SetStringObj (result_ptr->obj_ptr, "N/A", -1); return TCL_OK; } /* This implements the tcl command "gdb_find_file" * It searches the symbol tables to get the full pathname to a file. * * Tcl Arguments: * filename: the file name to search for. * Tcl Result: * The full path to the file, an empty string if the file was not * available or an error message if the file is not found in the symtab. */ static int gdb_find_file_command (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct symtab *st; char *filename; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "filename"); return TCL_ERROR; } filename = Tcl_GetStringFromObj (objv[1], NULL); st = full_lookup_symtab (filename); /* We should always get a symtab. */ if (!st) { Tcl_SetStringObj ( result_ptr->obj_ptr, "File not found in symtab (2)", -1); return TCL_ERROR; } /* We may not be able to open the file (not available). */ if (!st->fullname) { Tcl_SetStringObj (result_ptr->obj_ptr, "", -1); return TCL_OK; } Tcl_SetStringObj (result_ptr->obj_ptr, st->fullname, -1); return TCL_OK; } /* This implements the tcl command "gdb_listfiles" * This lists all the files in the current executible. * * Note that this currently pulls in all sorts of filenames * that aren't really part of the executable. It would be * best if we could check each file to see if it actually * contains executable lines of code, but we can't do that * with psymtabs. * * Arguments: * ?pathname? - If provided, only files which match pathname * (up to strlen(pathname)) are included. THIS DOES NOT * CURRENTLY WORK BECAUSE PARTIAL_SYMTABS DON'T SUPPLY * THE FULL PATHNAME!!! * * Tcl Result: * A list of all matching files. */ static int gdb_listfiles (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct objfile *objfile; struct partial_symtab *psymtab; struct symtab *symtab; char *lastfile, *pathname = NULL, **files; int files_size; int i, numfiles = 0, len = 0; files_size = 1000; files = (char **) xmalloc (sizeof (char *) * files_size); if (objc > 2) { Tcl_WrongNumArgs (interp, 1, objv, "?pathname?"); return TCL_ERROR; } else if (objc == 2) pathname = Tcl_GetStringFromObj (objv[1], &len); ALL_PSYMTABS (objfile, psymtab) { if (numfiles == files_size) { files_size = files_size * 2; files = (char **) xrealloc (files, sizeof (char *) * files_size); } if (psymtab->filename) { if (!len || !strncmp (pathname, psymtab->filename, len) || !strcmp (psymtab->filename, basename (psymtab->filename))) { files[numfiles++] = basename (psymtab->filename); } } } ALL_SYMTABS (objfile, symtab) { if (numfiles == files_size) { files_size = files_size * 2; files = (char **) xrealloc (files, sizeof (char *) * files_size); } if (symtab->filename && symtab->linetable && symtab->linetable->nitems) { if (!len || !strncmp (pathname, symtab->filename, len) || !strcmp (symtab->filename, basename (symtab->filename))) { files[numfiles++] = basename (symtab->filename); } } } qsort (files, numfiles, sizeof (char *), comp_files); lastfile = ""; /* Discard the old result pointer, in case it has accumulated anything and set it to a new list object */ Tcl_SetListObj (result_ptr->obj_ptr, 0, NULL); for (i = 0; i < numfiles; i++) { if (strcmp (files[i], lastfile)) Tcl_ListObjAppendElement (interp, result_ptr->obj_ptr, Tcl_NewStringObj (files[i], -1)); lastfile = files[i]; } free (files); return TCL_OK; } static int comp_files (file1, file2) const void *file1, *file2; { return strcmp (*(char **) file1, *(char **) file2); } /* This implements the tcl command "gdb_search" * Tcl Arguments: * option - One of "functions", "variables" or "types" * regexp - The regular expression to look for. * Then, optionally: * -files fileList * -static 1/0 * -filename 1/0 * Tcl Result: * A list of all the matches found. Optionally, if -filename is set to 1, * then the output is a list of two element lists, with the symbol first, * and the file in which it is found second. */ static int gdb_search (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct symbol_search *ss = NULL; struct symbol_search *p; struct cleanup *old_chain = NULL; Tcl_Obj *CONST * switch_objv; int index, switch_objc, i, show_files = 0; namespace_enum space = 0; char *regexp; int static_only, nfiles; Tcl_Obj **file_list; char **files; static char *search_options[] = {"functions", "variables", "types", (char *) NULL}; static char *switches[] = {"-files", "-filename", "-static", (char *) NULL}; enum search_opts { SEARCH_FUNCTIONS, SEARCH_VARIABLES, SEARCH_TYPES }; enum switches_opts { SWITCH_FILES, SWITCH_FILENAME, SWITCH_STATIC_ONLY }; if (objc < 3) { Tcl_WrongNumArgs (interp, 1, objv, "option regexp ?arg ...?"); result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } if (Tcl_GetIndexFromObj (interp, objv[1], search_options, "option", 0, &index) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } /* Unfortunately, we cannot teach search_symbols to search on multiple regexps, so we have to do a two-tier search for any searches which choose to narrow the playing field. */ switch ((enum search_opts) index) { case SEARCH_FUNCTIONS: space = FUNCTIONS_NAMESPACE; break; case SEARCH_VARIABLES: space = VARIABLES_NAMESPACE; break; case SEARCH_TYPES: space = TYPES_NAMESPACE; break; } regexp = Tcl_GetStringFromObj (objv[2], NULL); /* Process any switches that refine the search */ switch_objc = objc - 3; switch_objv = objv + 3; static_only = 0; nfiles = 0; files = (char **) NULL; while (switch_objc > 0) { if (Tcl_GetIndexFromObj (interp, switch_objv[0], switches, "option", 0, &index) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } switch ((enum switches_opts) index) { case SWITCH_FILENAME: { if (switch_objc < 2) { Tcl_WrongNumArgs (interp, 3, objv, "?-files fileList -filename 1|0 -static 1|0?"); result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } if (Tcl_GetBooleanFromObj (interp, switch_objv[1], &show_files) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } switch_objc--; switch_objv++; } break; case SWITCH_FILES: { int result; if (switch_objc < 2) { Tcl_WrongNumArgs (interp, 3, objv, "?-files fileList -filename 1|0 -static 1|0?"); result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } result = Tcl_ListObjGetElements (interp, switch_objv[1], &nfiles, &file_list); if (result != TCL_OK) return result; files = (char **) xmalloc (nfiles * sizeof (char *)); for (i = 0; i < nfiles; i++) files[i] = Tcl_GetStringFromObj (file_list[i], NULL); switch_objc--; switch_objv++; } break; case SWITCH_STATIC_ONLY: if (switch_objc < 2) { Tcl_WrongNumArgs (interp, 3, objv, "?-files fileList -filename 1|0 -static 1|0?"); result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } if (Tcl_GetBooleanFromObj (interp, switch_objv[1], &static_only) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } switch_objc--; switch_objv++; } switch_objc--; switch_objv++; } search_symbols (regexp, space, nfiles, files, &ss); if (ss != NULL) old_chain = make_cleanup_free_search_symbols (ss); Tcl_SetListObj (result_ptr->obj_ptr, 0, NULL); for (p = ss; p != NULL; p = p->next) { Tcl_Obj *elem; if (static_only && p->block != STATIC_BLOCK) continue; /* Strip off some C++ special symbols, like RTTI and global constructors/destructors. */ if ((p->symbol != NULL && !STREQN (SYMBOL_NAME (p->symbol), "__tf", 4) && !STREQN (SYMBOL_NAME (p->symbol), "_GLOBAL_", 8)) || p->msymbol != NULL) { elem = Tcl_NewListObj (0, NULL); if (p->msymbol == NULL) Tcl_ListObjAppendElement (interp, elem, Tcl_NewStringObj (SYMBOL_SOURCE_NAME (p->symbol), -1)); else Tcl_ListObjAppendElement (interp, elem, Tcl_NewStringObj (SYMBOL_SOURCE_NAME (p->msymbol), -1)); if (show_files) { if ((p->symtab != NULL) && (p->symtab->filename != NULL)) { Tcl_ListObjAppendElement (interp, elem, Tcl_NewStringObj (p->symtab->filename, -1)); } else { Tcl_ListObjAppendElement (interp, elem, Tcl_NewStringObj ("", 0)); } } Tcl_ListObjAppendElement (interp, result_ptr->obj_ptr, elem); } } if (ss != NULL) do_cleanups (old_chain); return TCL_OK; } /* This implements the tcl command gdb_listfuncs * It lists all the functions defined in a given file * * Arguments: * file - the file to look in * Tcl Result: * A list of two element lists, the first element is * the symbol name, and the second is a boolean indicating * whether the symbol is demangled (1 for yes). */ static int gdb_listfuncs (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { struct symtab *symtab; struct blockvector *bv; struct block *b; struct symbol *sym; int i, j; Tcl_Obj *funcVals[2]; if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, "file"); return TCL_ERROR; } symtab = full_lookup_symtab (Tcl_GetStringFromObj (objv[1], NULL)); if (!symtab) { Tcl_SetStringObj (result_ptr->obj_ptr, "No such file", -1); return TCL_ERROR; } if (mangled == NULL) { mangled = Tcl_NewBooleanObj (1); not_mangled = Tcl_NewBooleanObj (0); Tcl_IncrRefCount (mangled); Tcl_IncrRefCount (not_mangled); } Tcl_SetListObj (result_ptr->obj_ptr, 0, NULL); bv = BLOCKVECTOR (symtab); for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) { b = BLOCKVECTOR_BLOCK (bv, i); /* Skip the sort if this block is always sorted. */ if (!BLOCK_SHOULD_SORT (b)) sort_block_syms (b); for (j = 0; j < BLOCK_NSYMS (b); j++) { sym = BLOCK_SYM (b, j); if (SYMBOL_CLASS (sym) == LOC_BLOCK) { char *name = SYMBOL_DEMANGLED_NAME (sym); if (name) { /* strip out "global constructors" and * "global destructors" * because we aren't interested in them. */ if (strncmp (name, "global ", 7)) { /* If the function is overloaded, * print out the functions * declaration, not just its name. */ funcVals[0] = Tcl_NewStringObj (name, -1); funcVals[1] = mangled; } else continue; } else { funcVals[0] = Tcl_NewStringObj (SYMBOL_NAME (sym), -1); funcVals[1] = not_mangled; } Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewListObj (2, funcVals)); } } } return TCL_OK; } /* This implements the TCL command `gdb_restore_fputs' It sets the fputs_unfiltered hook back to gdbtk_fputs. Its sole reason for being is that sometimes we move the fputs hook out of the way to specially trap output, and if we get an error which we weren't expecting, it won't get put back, so we run this at idle time as insurance. */ static int gdb_restore_fputs (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { gdbtk_disable_fputs = 0; return TCL_OK; } /* * This section has commands that handle source disassembly. */ /* This implements the tcl command gdb_disassemble. It is no longer * used in GDBTk, we use gdb_load_disassembly, but I kept it around in * case other folks want it. * * Arguments: * source_with_assm - must be "source" or "nosource" * low_address - the address from which to start disassembly * ?hi_address? - the address to which to disassemble, defaults * to the end of the function containing low_address. * Tcl Result: * The disassembled code is passed to fputs_unfiltered, so it * either goes to the console if result_ptr->obj_ptr is NULL or to * the Tcl result. */ static int gdb_disassemble (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { CORE_ADDR low, high; char *arg_ptr; int mixed_source_and_assembly; if (objc != 3 && objc != 4) { Tcl_WrongNumArgs (interp, 1, objv, "source lowaddr ?highaddr?"); return TCL_ERROR; } arg_ptr = Tcl_GetStringFromObj (objv[1], NULL); if (*arg_ptr == 's' && strcmp (arg_ptr, "source") == 0) mixed_source_and_assembly = 1; else if (*arg_ptr == 'n' && strcmp (arg_ptr, "nosource") == 0) mixed_source_and_assembly = 0; else error ("First arg must be 'source' or 'nosource'"); low = parse_and_eval_address (Tcl_GetStringFromObj (objv[2], NULL)); if (objc == 3) { if (find_pc_partial_function (low, NULL, &low, &high) == 0) error ("No function contains specified address"); } else high = parse_and_eval_address (Tcl_GetStringFromObj (objv[3], NULL)); return gdb_disassemble_driver (low, high, mixed_source_and_assembly, NULL, gdbtk_print_source, gdbtk_print_asm); } /* This implements the tcl command gdb_load_disassembly * * Arguments: * widget - the name of a text widget into which to load the data * source_with_assm - must be "source" or "nosource" * low_address - the address from which to start disassembly * ?hi_address? - the address to which to disassemble, defaults * to the end of the function containing low_address. * Tcl Result: * The text widget is loaded with the data, and a list is returned. * The first element of the list is a two element list containing the * real low & high elements, the rest is a mapping between line number * in the text widget, and either the source line number of that line, * if it is a source line, or the assembly address. You can distinguish * between the two, because the address will start with 0x... */ static int gdb_load_disassembly (ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) { CORE_ADDR low, high; struct disassembly_client_data client_data; int mixed_source_and_assembly, ret_val, i; char *arg_ptr; char *map_name; if (objc != 6 && objc != 7) { Tcl_WrongNumArgs (interp, 1, objv, "[source|nosource] map_arr index_prefix low_address ?hi_address"); return TCL_ERROR; } client_data.widget = Tcl_GetStringFromObj (objv[1], NULL); if ( Tk_NameToWindow (interp, client_data.widget, Tk_MainWindow (interp)) == NULL) { Tcl_SetStringObj (result_ptr->obj_ptr, "Invalid widget name.", -1); return TCL_ERROR; } if (!Tcl_GetCommandInfo (interp, client_data.widget, &client_data.cmd)) { Tcl_SetStringObj (result_ptr->obj_ptr, "Can't get widget command info", -1); return TCL_ERROR; } arg_ptr = Tcl_GetStringFromObj (objv[2], NULL); if (*arg_ptr == 's' && strcmp (arg_ptr, "source") == 0) mixed_source_and_assembly = 1; else if (*arg_ptr == 'n' && strcmp (arg_ptr, "nosource") == 0) mixed_source_and_assembly = 0; else { Tcl_SetStringObj (result_ptr->obj_ptr, "Second arg must be 'source' or 'nosource'", -1); return TCL_ERROR; } /* As we populate the text widget, we will also create an array in the caller's scope. The name is given by objv[3]. Each source line gets an entry or the form: array($prefix,srcline=$src_line_no) = $widget_line_no Each assembly line gets two entries of the form: array($prefix,pc=$pc) = $widget_line_no array($prefix,line=$widget_line_no) = $src_line_no Where prefix is objv[4]. */ map_name = Tcl_GetStringFromObj (objv[3], NULL); if (*map_name != '\0') { char *prefix; int prefix_len; client_data.map_arr = "map_array"; if (Tcl_UpVar (interp, "1", map_name, client_data.map_arr, 0) != TCL_OK) { Tcl_SetStringObj (result_ptr->obj_ptr, "Can't link map array.", -1); return TCL_ERROR; } prefix = Tcl_GetStringFromObj (objv[4], &prefix_len); Tcl_DStringInit(&client_data.src_to_line_prefix); Tcl_DStringAppend (&client_data.src_to_line_prefix, prefix, prefix_len); Tcl_DStringAppend (&client_data.src_to_line_prefix, ",srcline=", sizeof (",srcline=") - 1); Tcl_DStringInit(&client_data.pc_to_line_prefix); Tcl_DStringAppend (&client_data.pc_to_line_prefix, prefix, prefix_len); Tcl_DStringAppend (&client_data.pc_to_line_prefix, ",pc=", sizeof (",pc=") - 1); Tcl_DStringInit(&client_data.line_to_pc_prefix); Tcl_DStringAppend (&client_data.line_to_pc_prefix, prefix, prefix_len); Tcl_DStringAppend (&client_data.line_to_pc_prefix, ",line=", sizeof (",line=") - 1); } else { client_data.map_arr = ""; } /* Now parse the addresses */ low = parse_and_eval_address (Tcl_GetStringFromObj (objv[5], NULL)); if (objc == 6) { if (find_pc_partial_function (low, NULL, &low, &high) == 0) error ("No function contains specified address"); } else high = parse_and_eval_address (Tcl_GetStringFromObj (objv[6], NULL)); /* Setup the client_data structure, and call the driver function. */ client_data.file_opened_p = 0; client_data.widget_line_no = 0; client_data.interp = interp; for (i = 0; i < 3; i++) { client_data.result_obj[i] = Tcl_NewObj(); Tcl_IncrRefCount (client_data.result_obj[i]); } /* Fill up the constant parts of the argv structures */ client_data.asm_argv[0] = client_data.widget; client_data.asm_argv[1] = "insert"; client_data.asm_argv[2] = "end"; client_data.asm_argv[3] = "-\t"; client_data.asm_argv[4] = "break_rgn_tag"; /* client_data.asm_argv[5] = address; */ client_data.asm_argv[6] = "break_rgn_tag"; /* client_data.asm_argv[7] = offset; */ client_data.asm_argv[8] = "break_rgn_tag"; client_data.asm_argv[9] = ":\t\t"; client_data.asm_argv[10] = "source_tag"; /* client_data.asm_argv[11] = code; */ client_data.asm_argv[12] = "source_tag"; client_data.asm_argv[13] = "\n"; if (mixed_source_and_assembly) { client_data.source_argv[0] = client_data.widget; client_data.source_argv[1] = "insert"; client_data.source_argv[2] = "end"; /* client_data.source_argv[3] = line_number; */ client_data.source_argv[4] = ""; /* client_data.source_argv[5] = line; */ client_data.source_argv[6] = "source_tag2"; } ret_val = gdb_disassemble_driver (low, high, mixed_source_and_assembly, (ClientData) &client_data, gdbtk_load_source, gdbtk_load_asm); /* Now clean up the opened file, and the Tcl data structures */ if (client_data.file_opened_p == 1) { fclose(client_data.fp); } if (*client_data.map_arr != '\0') { Tcl_DStringFree(&client_data.src_to_line_prefix); Tcl_DStringFree(&client_data.pc_to_line_prefix); Tcl_DStringFree(&client_data.line_to_pc_prefix); } for (i = 0; i < 3; i++) { Tcl_DecrRefCount (client_data.result_obj[i]); } /* Finally, if we were successful, stick the low & high addresses into the Tcl result. */ if (ret_val == TCL_OK) { char *buffer; Tcl_Obj *limits_obj[2]; xasprintf (&buffer, "0x%s", paddr_nz (low)); limits_obj[0] = Tcl_NewStringObj (buffer, -1); free(buffer); xasprintf (&buffer, "0x%s", paddr_nz (high)); limits_obj[1] = Tcl_NewStringObj (buffer, -1); free(buffer); Tcl_DecrRefCount (result_ptr->obj_ptr); result_ptr->obj_ptr = Tcl_NewListObj (2, limits_obj); } return ret_val; } static void gdbtk_load_source (ClientData clientData, struct symtab *symtab, int start_line, int end_line) { struct disassembly_client_data *client_data = (struct disassembly_client_data *) clientData; char *buffer; int index_len; index_len = Tcl_DStringLength (&client_data->src_to_line_prefix); if (client_data->file_opened_p == 1) { char **text_argv; char line[10000], line_number[18]; int found_carriage_return = 1; /* First do some sanity checks on the requested lines */ if (start_line < 1 || end_line < start_line || end_line > symtab->nlines) { return; } line_number[0] = '\t'; line[0] = '\t'; text_argv = client_data->source_argv; text_argv[3] = line_number; text_argv[5] = line; if (fseek (client_data->fp, symtab->line_charpos[start_line - 1], SEEK_SET) < 0) { fclose(client_data->fp); client_data->file_opened_p = -1; return; } for (; start_line < end_line; start_line++) { if (!fgets (line + 1, 9980, client_data->fp)) { fclose(client_data->fp); client_data->file_opened_p = -1; return; } client_data->widget_line_no++; sprintf (line_number + 1, "%d", start_line); if (found_carriage_return) { char *p; p = strrchr(line, '\0') - 2; if (*p == '\r') { *p = '\n'; *(p + 1) = '\0'; } else { found_carriage_return = 0; } } /* Run the command, then add an entry to the map array in the caller's scope, if requested. */ client_data->cmd.proc (client_data->cmd.clientData, client_data->interp, 7, text_argv); if (*client_data->map_arr != '\0') { Tcl_DStringAppend (&client_data->src_to_line_prefix, line_number + 1, -1); /* FIXME: Convert to Tcl_SetVar2Ex when we move to 8.2. This will allow us avoid converting widget_line_no into a string. */ xasprintf (&buffer, "%d", client_data->widget_line_no); Tcl_SetVar2 (client_data->interp, client_data->map_arr, Tcl_DStringValue (&client_data->src_to_line_prefix), buffer, 0); free(buffer); Tcl_DStringSetLength (&client_data->src_to_line_prefix, index_len); } } } else if (!client_data->file_opened_p) { int fdes; /* The file is not yet open, try to open it, then print the first line. If we fail, set FILE_OPEN_P to -1. */ fdes = open_source_file (symtab); if (fdes < 0) { client_data->file_opened_p = -1; } else { /* FIXME: Convert to a Tcl File Channel and read from there. This will allow us to get the line endings and conversion to UTF8 right automatically when we move to 8.2. Need a Cygwin call to convert a file descriptor to the native Windows handler to do this. */ client_data->file_opened_p = 1; client_data->fp = fdopen (fdes, FOPEN_RB); clearerr (client_data->fp); if (symtab->line_charpos == 0) find_source_lines (symtab, fdes); /* We are called with an actual load request, so call ourselves to load the first line. */ gdbtk_load_source (clientData, symtab, start_line, end_line); } } else { /* If we couldn't open the file, or got some prior error, just exit. */ return; } } static CORE_ADDR gdbtk_load_asm (clientData, pc, di) ClientData clientData; CORE_ADDR pc; struct disassemble_info *di; { struct disassembly_client_data * client_data = (struct disassembly_client_data *) clientData; char **text_argv; int i, pc_to_line_len, line_to_pc_len; gdbtk_result new_result; struct cleanup *old_chain = NULL; pc_to_line_len = Tcl_DStringLength (&client_data->pc_to_line_prefix); line_to_pc_len = Tcl_DStringLength (&client_data->line_to_pc_prefix); text_argv = client_data->asm_argv; /* Preserve the current Tcl result object, print out what we need, and then suck it out of the result, and replace... */ old_chain = make_cleanup (gdbtk_restore_result_ptr, (void *) result_ptr); result_ptr = &new_result; result_ptr->obj_ptr = client_data->result_obj[0]; result_ptr->flags = GDBTK_TO_RESULT; /* Null out the three return objects we will use. */ for (i = 0; i < 3; i++) Tcl_SetObjLength (client_data->result_obj[i], 0); print_address_numeric (pc, 1, gdb_stdout); gdb_flush (gdb_stdout); result_ptr->obj_ptr = client_data->result_obj[1]; print_address_symbolic (pc, gdb_stdout, 1, "\t"); gdb_flush (gdb_stdout); result_ptr->obj_ptr = client_data->result_obj[2]; pc += (*tm_print_insn) (pc, di); gdb_flush (gdb_stdout); client_data->widget_line_no++; text_argv[5] = Tcl_GetStringFromObj (client_data->result_obj[0], NULL); text_argv[7] = Tcl_GetStringFromObj (client_data->result_obj[1], NULL); text_argv[11] = Tcl_GetStringFromObj (client_data->result_obj[2], NULL); client_data->cmd.proc (client_data->cmd.clientData, client_data->interp, 14, text_argv); if (*client_data->map_arr != '\0') { char *buffer; /* Run the command, then add an entry to the map array in the caller's scope. */ Tcl_DStringAppend (&client_data->pc_to_line_prefix, text_argv[5], -1); /* FIXME: Convert to Tcl_SetVar2Ex when we move to 8.2. This will allow us avoid converting widget_line_no into a string. */ xasprintf (&buffer, "%d", client_data->widget_line_no); Tcl_SetVar2 (client_data->interp, client_data->map_arr, Tcl_DStringValue (&client_data->pc_to_line_prefix), buffer, 0); Tcl_DStringAppend (&client_data->line_to_pc_prefix, buffer, -1); Tcl_SetVar2 (client_data->interp, client_data->map_arr, Tcl_DStringValue (&client_data->line_to_pc_prefix), text_argv[5], 0); /* Restore the prefixes to their initial state. */ Tcl_DStringSetLength (&client_data->pc_to_line_prefix, pc_to_line_len); Tcl_DStringSetLength (&client_data->line_to_pc_prefix, line_to_pc_len); free(buffer); } do_cleanups (old_chain); return pc; } static void gdbtk_print_source (clientData, symtab, start_line, end_line) ClientData clientData; struct symtab *symtab; int start_line; int end_line; { print_source_lines (symtab, start_line, end_line, 0); gdb_flush (gdb_stdout); } static CORE_ADDR gdbtk_print_asm (clientData, pc, di) ClientData clientData; CORE_ADDR pc; struct disassemble_info *di; { fputs_unfiltered (" ", gdb_stdout); print_address (pc, gdb_stdout); fputs_unfiltered (":\t ", gdb_stdout); pc += (*tm_print_insn) (pc, di); fputs_unfiltered ("\n", gdb_stdout); gdb_flush (gdb_stdout); return pc; } static int gdb_disassemble_driver (low, high, mixed_source_and_assembly, clientData, print_source_fn, print_asm_fn) CORE_ADDR low; CORE_ADDR high; int mixed_source_and_assembly; ClientData clientData; void (*print_source_fn) (ClientData, struct symtab *, int, int); CORE_ADDR (*print_asm_fn) (ClientData, CORE_ADDR, struct disassemble_info *); { CORE_ADDR pc; static disassemble_info di; static int di_initialized; if (! di_initialized) { INIT_DISASSEMBLE_INFO_NO_ARCH (di, gdb_stdout, (fprintf_ftype) fprintf_unfiltered); di.flavour = bfd_target_unknown_flavour; di.memory_error_func = dis_asm_memory_error; di.print_address_func = dis_asm_print_address; di_initialized = 1; } di.mach = TARGET_PRINT_INSN_INFO->mach; if (TARGET_BYTE_ORDER == BIG_ENDIAN) di.endian = BFD_ENDIAN_BIG; else di.endian = BFD_ENDIAN_LITTLE; /* Set the architecture for multi-arch configurations. */ if (TARGET_ARCHITECTURE != NULL) di.mach = TARGET_ARCHITECTURE->mach; /* If disassemble_from_exec == -1, then we use the following heuristic to determine whether or not to do disassembly from target memory or from the exec file: If we're debugging a local process, read target memory, instead of the exec file. This makes disassembly of functions in shared libs work correctly. Also, read target memory if we are debugging native threads. Else, we're debugging a remote process, and should disassemble from the exec file for speed. However, this is no good if the target modifies its code (for relocation, or whatever). As an aside, it is fairly bogus that there is not a better way to determine where to disassemble from. There should be a target vector entry for this or something. */ if (disassemble_from_exec == -1) { if (strcmp (target_shortname, "child") == 0 || strcmp (target_shortname, "procfs") == 0 || strcmp (target_shortname, "vxprocess") == 0 || strstr (target_shortname, "threads") != NULL) /* It's a child process, read inferior mem */ disassemble_from_exec = 0; else /* It's remote, read the exec file */ disassemble_from_exec = 1; } if (disassemble_from_exec) di.read_memory_func = gdbtk_dis_asm_read_memory; else di.read_memory_func = dis_asm_read_memory; /* If just doing straight assembly, all we need to do is disassemble everything between low and high. If doing mixed source/assembly, we've got a totally different path to follow. */ if (mixed_source_and_assembly) { /* Come here for mixed source/assembly */ /* The idea here is to present a source-O-centric view of a function to the user. This means that things are presented in source order, with (possibly) out of order assembly immediately following. */ struct symtab *symtab; struct linetable_entry *le; int nlines; int newlines; struct my_line_entry *mle; struct symtab_and_line sal; int i; int out_of_order; int next_line; /* Assume symtab is valid for whole PC range */ symtab = find_pc_symtab (low); if (!symtab || !symtab->linetable) goto assembly_only; /* First, convert the linetable to a bunch of my_line_entry's. */ le = symtab->linetable->item; nlines = symtab->linetable->nitems; if (nlines <= 0) goto assembly_only; mle = (struct my_line_entry *) alloca (nlines * sizeof (struct my_line_entry)); out_of_order = 0; /* Copy linetable entries for this function into our data structure, creating end_pc's and setting out_of_order as appropriate. */ /* First, skip all the preceding functions. */ for (i = 0; i < nlines - 1 && le[i].pc < low; i++) ; /* Now, copy all entries before the end of this function. */ newlines = 0; for (; i < nlines - 1 && le[i].pc < high; i++) { if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc) continue; /* Ignore duplicates */ /* GCC sometimes emits line directives with a linenumber of 0. It does this to handle live range splitting. This may be a bug, but we need to be able to handle it. For now, use the previous instructions line number. Since this is a bit of a hack anyway, we will just lose if the bogus sline is the first line of the range. For functions, I have never seen this to be the case. */ if (le[i].line != 0) { mle[newlines].line = le[i].line; } else { if (newlines > 0) mle[newlines].line = mle[newlines - 1].line; } if (le[i].line > le[i + 1].line) out_of_order = 1; mle[newlines].start_pc = le[i].pc; mle[newlines].end_pc = le[i + 1].pc; newlines++; } /* If we're on the last line, and it's part of the function, then we need to get the end pc in a special way. */ if (i == nlines - 1 && le[i].pc < high) { mle[newlines].line = le[i].line; mle[newlines].start_pc = le[i].pc; sal = find_pc_line (le[i].pc, 0); mle[newlines].end_pc = sal.end; newlines++; } /* Now, sort mle by line #s (and, then by addresses within lines). */ if (out_of_order) qsort (mle, newlines, sizeof (struct my_line_entry), compare_lines); /* Now, for each line entry, emit the specified lines (unless they have been emitted before), followed by the assembly code for that line. */ next_line = 0; /* Force out first line */ for (i = 0; i < newlines; i++) { /* Print out everything from next_line to the current line. */ if (mle[i].line >= next_line) { if (next_line != 0) print_source_fn (clientData, symtab, next_line, mle[i].line + 1); else print_source_fn (clientData, symtab, mle[i].line, mle[i].line + 1); next_line = mle[i].line + 1; } for (pc = mle[i].start_pc; pc < mle[i].end_pc; ) { QUIT; pc = print_asm_fn (clientData, pc, &di); } } } else { assembly_only: for (pc = low; pc < high; ) { QUIT; pc = print_asm_fn (clientData, pc, &di); } } return TCL_OK; } /* This is the memory_read_func for gdb_disassemble when we are disassembling from the exec file. */ static int gdbtk_dis_asm_read_memory (memaddr, myaddr, len, info) bfd_vma memaddr; bfd_byte *myaddr; unsigned int len; disassemble_info *info; { extern struct target_ops exec_ops; int res; errno = 0; res = xfer_memory (memaddr, myaddr, len, 0, 0, &exec_ops); if (res == len) return 0; else if (errno == 0) return EIO; else return errno; } /* This will be passed to qsort to sort the results of the disassembly */ static int compare_lines (mle1p, mle2p) const PTR mle1p; const PTR mle2p; { struct my_line_entry *mle1, *mle2; int val; mle1 = (struct my_line_entry *) mle1p; mle2 = (struct my_line_entry *) mle2p; val = mle1->line - mle2->line; if (val != 0) return val; return mle1->start_pc - mle2->start_pc; } /* This implements the TCL command `gdb_loc', * Arguments: * ?symbol? The symbol or address to locate - defaults to pc * Tcl Return: * a list consisting of the following: * basename, function name, filename, line number, address, current pc */ static int gdb_loc (ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) { char *filename; struct symtab_and_line sal; char *fname; CORE_ADDR pc; if (objc == 1) { if (selected_frame && (selected_frame->pc != read_pc ())) { /* Note - this next line is not correct on all architectures. For a graphical debugger we really want to highlight the assembly line that called the next function on the stack. Many architectures have the next instruction saved as the pc on the stack, so what happens is the next instruction is highlighted. FIXME */ pc = selected_frame->pc; sal = find_pc_line (selected_frame->pc, selected_frame->next != NULL && !selected_frame->next->signal_handler_caller && !frame_in_dummy (selected_frame->next)); } else { pc = read_pc (); sal = find_pc_line (pc, 0); } } else if (objc == 2) { struct symtabs_and_lines sals; int nelts; sals = decode_line_spec (Tcl_GetStringFromObj (objv[1], NULL), 1); nelts = sals.nelts; sal = sals.sals[0]; free (sals.sals); if (sals.nelts != 1) { Tcl_SetStringObj (result_ptr->obj_ptr, "Ambiguous line spec", -1); return TCL_ERROR; } resolve_sal_pc (&sal); pc = sal.pc; } else { Tcl_WrongNumArgs (interp, 1, objv, "?symbol?"); return TCL_ERROR; } if (sal.symtab) Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj (sal.symtab->filename, -1)); else Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj ("", 0)); fname = pc_function_name (pc); Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj (fname, -1)); filename = symtab_to_filename (sal.symtab); if (filename == NULL) filename = ""; /* file name */ Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj (filename, -1)); /* line number */ Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewIntObj (sal.line)); /* PC in current frame */ sprintf_append_element_to_obj (result_ptr->obj_ptr, "0x%s", paddr_nz (pc)); /* Real PC */ sprintf_append_element_to_obj (result_ptr->obj_ptr, "0x%s", paddr_nz (stop_pc)); /* shared library */ #ifdef PC_SOLIB Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj (PC_SOLIB (pc), -1)); #else Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj ("", -1)); #endif return TCL_OK; } /* This implements the TCL command gdb_entry_point. It returns the current entry point address. */ static int gdb_entry_point (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { char *addrstr; /* If we have not yet loaded an exec file, then we have no entry point, so return an empty string.*/ if ((int) current_target.to_stratum > (int) dummy_stratum) { addrstr = paddr_nz (entry_point_address ()); Tcl_SetStringObj (result_ptr->obj_ptr, addrstr, -1); } else Tcl_SetStringObj (result_ptr->obj_ptr, "", -1); return TCL_OK; } /* Covert hex to binary. Stolen from remote.c, but added error handling */ static int fromhex (int a) { if (a >= '0' && a <= '9') return a - '0'; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else if (a >= 'A' && a <= 'F') return a - 'A' + 10; return -1; } static int hex2bin (const char *hex, char *bin, int count) { int i; int m, n; for (i = 0; i < count; i++) { if (hex[0] == 0 || hex[1] == 0) { /* Hex string is short, or of uneven length. Return the count that has been converted so far. */ return i; } m = fromhex (hex[0]); n = fromhex (hex[1]); if (m == -1 || n == -1) return -1; *bin++ = m * 16 + n; hex += 2; } return i; } /* This implements the Tcl command 'gdb_set_mem', which * sets some chunk of memory. * * Arguments: * gdb_set_mem addr hexstr len * * addr: address of data to set * hexstr: ascii string of data to set * len: number of bytes of data to set */ static int gdb_set_mem (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { CORE_ADDR addr; char buf[128]; char *hexstr; int len, size; if (objc != 4) { Tcl_WrongNumArgs (interp, 1, objv, "addr hex_data len"); return TCL_ERROR; } /* Address to write */ addr = parse_and_eval_address (Tcl_GetStringFromObj (objv[1], NULL)); /* String value to write: it's in hex */ hexstr = Tcl_GetStringFromObj (objv[2], NULL); if (hexstr == NULL) return TCL_ERROR; /* Length of buf */ if (Tcl_GetIntFromObj (interp, objv[3], &len) != TCL_OK) return TCL_ERROR; /* Convert hexstr to binary and write */ if (hexstr[0] == '0' && hexstr[1] == 'x') hexstr += 2; size = hex2bin (hexstr, buf, strlen (hexstr)); if (size < 0) { /* Error in input */ char *res; xasprintf (&res, "Invalid hexadecimal input: \"0x%s\"", hexstr); Tcl_SetObjResult (interp, Tcl_NewStringObj (res, -1)); free (res); return TCL_ERROR; } target_write_memory (addr, buf, len); return TCL_OK; } /* This implements the Tcl command 'gdb_get_mem', which * dumps a block of memory * Arguments: * gdb_get_mem addr form size nbytes bpr aschar * * addr: address of data to dump * form: a char indicating format * size: size of each element; 1,2,4, or 8 bytes * nbytes: the number of bytes to read * bpr: bytes per row * aschar: if present, an ASCII dump of the row is included. ASCHAR * used for unprintable characters. * * Return: * a list of elements followed by an optional ASCII dump */ static int gdb_get_mem (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { int size, asize, i, j, bc; CORE_ADDR addr; int nbytes, rnum, bpr; long tmp; char format, buff[128], aschar, *mbuf, *mptr, *cptr, *bptr; struct type *val_type; if (objc < 6 || objc > 7) { Tcl_SetStringObj (result_ptr->obj_ptr, "addr format size bytes bytes_per_row ?ascii_char?", -1); return TCL_ERROR; } if (Tcl_GetIntFromObj (interp, objv[3], &size) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } else if (size <= 0) { Tcl_SetStringObj (result_ptr->obj_ptr, "Invalid size, must be > 0", -1); return TCL_ERROR; } if (Tcl_GetIntFromObj (interp, objv[4], &nbytes) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } else if (nbytes <= 0) { Tcl_SetStringObj (result_ptr->obj_ptr, "Invalid number of bytes, must be > 0", -1); return TCL_ERROR; } if (Tcl_GetIntFromObj (interp, objv[5], &bpr) != TCL_OK) { result_ptr->flags |= GDBTK_IN_TCL_RESULT; return TCL_ERROR; } else if (bpr <= 0) { Tcl_SetStringObj (result_ptr->obj_ptr, "Invalid bytes per row, must be > 0", -1); return TCL_ERROR; } if (Tcl_GetLongFromObj (interp, objv[1], &tmp) != TCL_OK) return TCL_OK; addr = (CORE_ADDR) tmp; format = *(Tcl_GetStringFromObj (objv[2], NULL)); mbuf = (char *) malloc (nbytes + 32); if (!mbuf) { Tcl_SetStringObj (result_ptr->obj_ptr, "Out of memory.", -1); return TCL_ERROR; } memset (mbuf, 0, nbytes + 32); mptr = cptr = mbuf; rnum = 0; while (rnum < nbytes) { int error; int num = target_read_memory_partial (addr + rnum, mbuf + rnum, nbytes - rnum, &error); if (num <= 0) break; rnum += num; } if (objc == 7) aschar = *(Tcl_GetStringFromObj (objv[6], NULL)); else aschar = 0; switch (size) { case 1: val_type = builtin_type_int8; asize = 'b'; break; case 2: val_type = builtin_type_int16; asize = 'h'; break; case 4: val_type = builtin_type_int32; asize = 'w'; break; case 8: val_type = builtin_type_int64; asize = 'g'; break; default: val_type = builtin_type_int8; asize = 'b'; } bc = 0; /* count of bytes in a row */ bptr = &buff[0]; /* pointer for ascii dump */ /* Build up the result as a list... */ result_ptr->flags |= GDBTK_MAKES_LIST; for (i = 0; i < nbytes; i += size) { if (i >= rnum) { Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj ("N/A", 3)); if (aschar) for (j = 0; j < size; j++) *bptr++ = 'X'; } else { print_scalar_formatted (mptr, val_type, format, asize, gdb_stdout); if (aschar) { for (j = 0; j < size; j++) { *bptr = *cptr++; if (*bptr < 32 || *bptr > 126) *bptr = aschar; bptr++; } } } mptr += size; bc += size; if (aschar && (bc >= bpr)) { /* end of row. Add it to the result and reset variables */ Tcl_ListObjAppendElement (NULL, result_ptr->obj_ptr, Tcl_NewStringObj (buff, bc)); bc = 0; bptr = &buff[0]; } } result_ptr->flags &= ~GDBTK_MAKES_LIST; free (mbuf); return TCL_OK; } /* This implements the tcl command "gdb_loadfile" * It loads a c source file into a text widget. * * Tcl Arguments: * widget: the name of the text widget to fill * filename: the name of the file to load * linenumbers: A boolean indicating whether or not to display line numbers. * Tcl Result: * */ /* In this routine, we will build up a "line table", i.e. a * table of bits showing which lines in the source file are executible. * LTABLE_SIZE is the number of bytes to allocate for the line table. * * Its size limits the maximum number of lines * in a file to 8 * LTABLE_SIZE. This memory is freed after * the file is loaded, so it is OK to make this very large. * Additional memory will be allocated if needed. */ #define LTABLE_SIZE 20000 static int gdb_loadfile (ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) { char *file, *widget; int linenumbers, ln, lnum, ltable_size; FILE *fp; char *ltable; struct symtab *symtab; struct linetable_entry *le; long mtime = 0; struct stat st; char line[10000], line_num_buf[18]; char *text_argv[9]; Tcl_CmdInfo text_cmd; if (objc != 4) { Tcl_WrongNumArgs(interp, 1, objv, "widget filename linenumbers"); return TCL_ERROR; } widget = Tcl_GetStringFromObj (objv[1], NULL); if ( Tk_NameToWindow (interp, widget, Tk_MainWindow (interp)) == NULL) { return TCL_ERROR; } if (!Tcl_GetCommandInfo (interp, widget, &text_cmd)) { Tcl_SetStringObj (result_ptr->obj_ptr, "Can't get widget command info", -1); return TCL_ERROR; } file = Tcl_GetStringFromObj (objv[2], NULL); Tcl_GetBooleanFromObj (interp, objv[3], &linenumbers); symtab = full_lookup_symtab (file); if (!symtab) { Tcl_SetStringObj ( result_ptr->obj_ptr, "File not found in symtab", -1); return TCL_ERROR; } file = symtab_to_filename ( symtab ); if ((fp = fopen ( file, "r" )) == NULL) { Tcl_SetStringObj ( result_ptr->obj_ptr, "Can't open file for reading", -1); return TCL_ERROR; } if (stat (file, &st) < 0) { catch_errors (perror_with_name_wrapper, "gdbtk: get time stamp", "", RETURN_MASK_ALL); return TCL_ERROR; } if (symtab && symtab->objfile && symtab->objfile->obfd) mtime = bfd_get_mtime(symtab->objfile->obfd); else if (exec_bfd) mtime = bfd_get_mtime(exec_bfd); if (mtime && mtime < st.st_mtime) { gdbtk_ignorable_warning("file_times",\ "Source file is more recent than executable.\n"); } /* Source linenumbers don't appear to be in order, and a sort is */ /* too slow so the fastest solution is just to allocate a huge */ /* array and set the array entry for each linenumber */ ltable_size = LTABLE_SIZE; ltable = (char *)malloc (LTABLE_SIZE); if (ltable == NULL) { Tcl_SetStringObj ( result_ptr->obj_ptr, "Out of memory.", -1); fclose (fp); return TCL_ERROR; } memset (ltable, 0, LTABLE_SIZE); if (symtab->linetable && symtab->linetable->nitems) { le = symtab->linetable->item; for (ln = symtab->linetable->nitems ;ln > 0; ln--, le++) { lnum = le->line >> 3; if (lnum >= ltable_size) { char *new_ltable; new_ltable = (char *)realloc (ltable, ltable_size*2); memset (new_ltable + ltable_size, 0, ltable_size); ltable_size *= 2; if (new_ltable == NULL) { Tcl_SetStringObj ( result_ptr->obj_ptr, "Out of memory.", -1); free (ltable); fclose (fp); return TCL_ERROR; } ltable = new_ltable; } ltable[lnum] |= 1 << (le->line % 8); } } ln = 1; line[0] = '\t'; text_argv[0] = widget; text_argv[1] = "insert"; text_argv[2] = "end"; text_argv[5] = line; text_argv[6] = "source_tag"; text_argv[8] = NULL; if (linenumbers) { int found_carriage_return = 1; line_num_buf[1] = '\t'; text_argv[3] = line_num_buf; while (fgets (line + 1, 9980, fp)) { /* Look for DOS style \r\n endings, and if found, * strip off the \r. We assume (for the sake of * speed) that ALL lines in the file have DOS endings, * or none do. */ if (found_carriage_return) { char *p; p = strrchr(line, '\0') - 2; if (*p == '\r') { *p = '\n'; *(p + 1) = '\0'; } else { found_carriage_return = 0; } } sprintf (line_num_buf+2, "%d", ln); if (ltable[ln >> 3] & (1 << (ln % 8))) { line_num_buf[0] = '-'; text_argv[4] = "break_rgn_tag"; } else { line_num_buf[0] = ' '; text_argv[4] = ""; } text_cmd.proc(text_cmd.clientData, interp, 7, text_argv); ln++; } } else { int found_carriage_return = 1; while (fgets (line + 1, 9980, fp)) { if (found_carriage_return) { char *p; p = strrchr(line, '\0') - 2; if (*p == '\r') { *p = '\n'; *(p + 1) = '\0'; } else { found_carriage_return = 0; } } if (ltable[ln >> 3] & (1 << (ln % 8))) { text_argv[3] = "- "; text_argv[4] = "break_rgn_tag"; } else { text_argv[3] = " "; text_argv[4] = ""; } text_cmd.proc(text_cmd.clientData, interp, 7, text_argv); ln++; } } free (ltable); fclose (fp); return TCL_OK; } /* * This section contains a bunch of miscellaneous utility commands */ /* This implements the tcl command gdb_path_conv * On Windows, it canonicalizes the pathname, * On Unix, it is a no op. * * Arguments: * path * Tcl Result: * The canonicalized path. */ static int gdb_path_conv (clientData, interp, objc, objv) ClientData clientData; Tcl_Interp *interp; int objc; Tcl_Obj *CONST objv[]; { if (objc != 2) { Tcl_WrongNumArgs (interp, 1, objv, NULL); return TCL_ERROR; } #ifdef __CYGWIN__ { char pathname[256], *ptr; cygwin32_conv_to_full_win32_path (Tcl_GetStringFromObj (objv[1], NULL), pathname); for (ptr = pathname; *ptr; ptr++) { if (*ptr == '\\') *ptr = '/'; } Tcl_SetStringObj (result_ptr->obj_ptr, pathname, -1); } #else Tcl_SetStringObj (result_ptr->obj_ptr, Tcl_GetStringFromObj (objv[1], NULL), -1); #endif return TCL_OK; } /* * This section has utility routines that are not Tcl commands. */ static int perror_with_name_wrapper (args) PTR args; { perror_with_name (args); return 1; } /* The lookup_symtab() in symtab.c doesn't work correctly */ /* It will not work will full pathnames and if multiple */ /* source files have the same basename, it will return */ /* the first one instead of the correct one. */ /* symtab->fullname will be NULL if the file is not available. */ struct symtab * full_lookup_symtab (file) char *file; { struct symtab *st; struct objfile *objfile; char *bfile, *fullname; struct partial_symtab *pt; if (!file) return NULL; /* first try a direct lookup */ st = lookup_symtab (file); if (st) { if (!st->fullname) symtab_to_filename (st); return st; } /* if the direct approach failed, try */ /* looking up the basename and checking */ /* all matches with the fullname */ bfile = basename (file); ALL_SYMTABS (objfile, st) { if (!strcmp (bfile, basename (st->filename))) { if (!st->fullname) fullname = symtab_to_filename (st); else fullname = st->fullname; if (!strcmp (file, fullname)) return st; } } /* still no luck? look at psymtabs */ ALL_PSYMTABS (objfile, pt) { if (!strcmp (bfile, basename (pt->filename))) { st = PSYMTAB_TO_SYMTAB (pt); if (st) { fullname = symtab_to_filename (st); if (!strcmp (file, fullname)) return st; } } } return NULL; } /* Look for the function that contains PC and return the source (demangled) name for this function. If no symbol is found, it returns an empty string. In either case, memory is owned by gdb. Do not attempt to free it. */ char * pc_function_name (pc) CORE_ADDR pc; { struct symbol *sym; char *funcname = NULL; /* First lookup the address in the symbol table... */ sym = find_pc_function (pc); if (sym != NULL) funcname = GDBTK_SYMBOL_SOURCE_NAME (sym); else { /* ... if that fails, look it up in the minimal symbols. */ struct minimal_symbol *msym = NULL; msym = lookup_minimal_symbol_by_pc (pc); if (msym != NULL) funcname = GDBTK_SYMBOL_SOURCE_NAME (msym); } if (funcname == NULL) funcname = ""; return funcname; }
Go to most recent revision | Compare with Previous | Blame | View Log