URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [insight/] [gdb/] [memattr.c] - Rev 1771
Go to most recent revision | Compare with Previous | Blame | View Log
/* Memory attributes support, for GDB. Copyright 2001 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "command.h" #include "gdbcmd.h" #include "memattr.h" #include "target.h" #include "value.h" #include "language.h" #include "gdb_string.h" /* FIXME: While this conflicts with the enum defined in breakpoint.h, I used them to be consistant with how breakpoints, tracepoints, and displays are implemented. It doesn't lose now because breakpoint.h is not included. */ enum enable { disabled, enabled }; const struct mem_attrib default_mem_attrib = { MEM_RW, /* mode */ MEM_WIDTH_UNSPECIFIED, false, /* hwbreak */ false, /* cache */ false /* verify */ }; static struct mem_region *mem_region_chain = NULL; static int mem_number = 0; static struct mem_region * create_mem_region (CORE_ADDR lo, CORE_ADDR hi, const struct mem_attrib *attrib) { struct mem_region *n, *new; if (lo > hi) { printf_unfiltered ("invalid memory region\n"); return NULL; } n = mem_region_chain; while (n) { /* overlapping node */ if ((lo >= n->lo && lo <= n->hi) || (hi >= n->lo && hi <= n->hi)) { printf_unfiltered ("overlapping memory region\n"); return NULL; } n = n->next; } new = xmalloc (sizeof (struct mem_region)); new->lo = lo; new->hi = hi; new->number = ++mem_number; new->status = enabled; new->attrib = *attrib; /* link in new node */ new->next = mem_region_chain; mem_region_chain = new; return new; } static void delete_mem_region (struct mem_region *m) { xfree (m); } /* * Look up the memory region cooresponding to ADDR. */ struct mem_region * lookup_mem_region (CORE_ADDR addr) { static struct mem_region region; struct mem_region *m; CORE_ADDR lo; CORE_ADDR hi; /* First we initialize LO and HI so that they describe the entire memory space. As we process the memory region chain, they are redefined to describe the minimal region containing ADDR. LO and HI are used in the case where no memory region is defined that contains ADDR. If a memory region is disabled, it is treated as if it does not exist. */ lo = (CORE_ADDR) 0; hi = (CORE_ADDR) ~ 0; for (m = mem_region_chain; m; m = m->next) { if (m->status == enabled) { if (addr >= m->lo && addr < m->hi) return m; if (addr >= m->hi && lo < m->hi) lo = m->hi; if (addr <= m->lo && hi > m->lo) hi = m->lo; } } /* Because no region was found, we must cons up one based on what was learned above. */ region.lo = lo; region.hi = hi; region.attrib = default_mem_attrib; return ®ion; } static void mem_command (char *args, int from_tty) { CORE_ADDR lo, hi; char *tok; struct mem_attrib attrib; if (!args) error_no_arg ("No mem"); tok = strtok (args, " \t"); if (!tok) error ("no lo address"); lo = parse_and_eval_address (tok); tok = strtok (NULL, " \t"); if (!tok) error ("no hi address"); hi = parse_and_eval_address (tok); attrib = default_mem_attrib; while ((tok = strtok (NULL, " \t")) != NULL) { if (strcmp (tok, "rw") == 0) attrib.mode = MEM_RW; else if (strcmp (tok, "ro") == 0) attrib.mode = MEM_RO; else if (strcmp (tok, "wo") == 0) attrib.mode = MEM_WO; else if (strcmp (tok, "8") == 0) attrib.width = MEM_WIDTH_8; else if (strcmp (tok, "16") == 0) { if ((lo % 2 != 0) || (hi % 2 != 0)) error ("region bounds not 16 bit aligned"); attrib.width = MEM_WIDTH_16; } else if (strcmp (tok, "32") == 0) { if ((lo % 4 != 0) || (hi % 4 != 0)) error ("region bounds not 32 bit aligned"); attrib.width = MEM_WIDTH_32; } else if (strcmp (tok, "64") == 0) { if ((lo % 8 != 0) || (hi % 8 != 0)) error ("region bounds not 64 bit aligned"); attrib.width = MEM_WIDTH_64; } #if 0 else if (strcmp (tok, "hwbreak") == 0) attrib.hwbreak = true; else if (strcmp (tok, "swbreak") == 0) attrib.hwbreak = false; #endif else if (strcmp (tok, "cache") == 0) attrib.cache = true; else if (strcmp (tok, "nocache") == 0) attrib.cache = false; #if 0 else if (strcmp (tok, "verify") == 0) attrib.verify = true; else if (strcmp (tok, "noverify") == 0) attrib.verify = false; #endif else error ("unknown attribute: %s", tok); } create_mem_region (lo, hi, &attrib); } static void mem_info_command (char *args, int from_tty) { struct mem_region *m; struct mem_attrib *attrib; if (!mem_region_chain) { printf_unfiltered ("There are no memory regions defined.\n"); return; } printf_filtered ("Memory regions now in effect:\n"); for (m = mem_region_chain; m; m = m->next) { printf_filtered ("%d: %c\t", m->number, m->status ? 'y' : 'n'); printf_filtered ("%s - ", local_hex_string_custom ((unsigned long) m->lo, "08l")); printf_filtered ("%s\t", local_hex_string_custom ((unsigned long) m->hi, "08l")); /* Print a token for each attribute. * FIXME: Should we output a comma after each token? It may * make it easier for users to read, but we'd lose the ability * to cut-and-paste the list of attributes when defining a new * region. Perhaps that is not important. * * FIXME: If more attributes are added to GDB, the output may * become cluttered and difficult for users to read. At that * time, we may want to consider printing tokens only if they * are different from the default attribute. */ attrib = &m->attrib; switch (attrib->mode) { case MEM_RW: printf_filtered ("rw "); break; case MEM_RO: printf_filtered ("ro "); break; case MEM_WO: printf_filtered ("wo "); break; } switch (attrib->width) { case MEM_WIDTH_8: printf_filtered ("8 "); break; case MEM_WIDTH_16: printf_filtered ("16 "); break; case MEM_WIDTH_32: printf_filtered ("32 "); break; case MEM_WIDTH_64: printf_filtered ("64 "); break; case MEM_WIDTH_UNSPECIFIED: break; } #if 0 if (attrib->hwbreak) printf_filtered ("hwbreak"); else printf_filtered ("swbreak"); #endif if (attrib->cache) printf_filtered ("cache "); else printf_filtered ("nocache "); #if 0 if (attrib->verify) printf_filtered ("verify "); else printf_filtered ("noverify "); #endif printf_filtered ("\n"); gdb_flush (gdb_stdout); } } /* Enable the memory region number NUM. */ static void mem_enable (int num) { struct mem_region *m; for (m = mem_region_chain; m; m = m->next) if (m->number == num) { m->status = enabled; return; } printf_unfiltered ("No memory region number %d.\n", num); } static void mem_enable_command (char *args, int from_tty) { char *p = args; char *p1; int num; struct mem_region *m; dcache_invalidate (target_dcache); if (p == 0) { for (m = mem_region_chain; m; m = m->next) m->status = enabled; } else while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error ("Arguments must be memory region numbers."); num = atoi (p); mem_enable (num); p = p1; while (*p == ' ' || *p == '\t') p++; } } /* Disable the memory region number NUM. */ static void mem_disable (int num) { struct mem_region *m; for (m = mem_region_chain; m; m = m->next) if (m->number == num) { m->status = disabled; return; } printf_unfiltered ("No memory region number %d.\n", num); } static void mem_disable_command (char *args, int from_tty) { char *p = args; char *p1; int num; struct mem_region *m; dcache_invalidate (target_dcache); if (p == 0) { for (m = mem_region_chain; m; m = m->next) m->status = disabled; } else while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error ("Arguments must be memory region numbers."); num = atoi (p); mem_disable (num); p = p1; while (*p == ' ' || *p == '\t') p++; } } /* Clear memory region list */ static void mem_clear (void) { struct mem_region *m; while ((m = mem_region_chain) != 0) { mem_region_chain = m->next; delete_mem_region (m); } } /* Delete the memory region number NUM. */ static void mem_delete (int num) { struct mem_region *m1, *m; if (!mem_region_chain) { printf_unfiltered ("No memory region number %d.\n", num); return; } if (mem_region_chain->number == num) { m1 = mem_region_chain; mem_region_chain = m1->next; delete_mem_region (m1); } else for (m = mem_region_chain; m->next; m = m->next) { if (m->next->number == num) { m1 = m->next; m->next = m1->next; delete_mem_region (m1); break; } } } static void mem_delete_command (char *args, int from_tty) { char *p = args; char *p1; int num; dcache_invalidate (target_dcache); if (p == 0) { if (query ("Delete all memory regions? ")) mem_clear (); dont_repeat (); return; } while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error ("Arguments must be memory region numbers."); num = atoi (p); mem_delete (num); p = p1; while (*p == ' ' || *p == '\t') p++; } dont_repeat (); } void _initialize_mem () { add_com ("mem", class_vars, mem_command, "Define attributes for memory region."); add_cmd ("mem", class_vars, mem_enable_command, "Enable memory region.\n\ Arguments are the code numbers of the memory regions to enable.\n\ Do \"info mem\" to see current list of code numbers.", &enablelist); add_cmd ("mem", class_vars, mem_disable_command, "Disable memory region.\n\ Arguments are the code numbers of the memory regions to disable.\n\ Do \"info mem\" to see current list of code numbers.", &disablelist); add_cmd ("mem", class_vars, mem_delete_command, "Delete memory region.\n\ Arguments are the code numbers of the memory regions to delete.\n\ Do \"info mem\" to see current list of code numbers.", &deletelist); add_info ("mem", mem_info_command, "Memory region attributes"); }
Go to most recent revision | Compare with Previous | Blame | View Log