URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [insight/] [sim/] [mips/] [interp.c] - Rev 1765
Compare with Previous | Blame | View Log
/*> interp.c <*/ /* Simulator for the MIPS architecture. This file is part of the MIPS sim THIS SOFTWARE IS NOT COPYRIGHTED Cygnus offers the following for use in the public domain. Cygnus makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NOTEs: The IDT monitor (found on the VR4300 board), seems to lie about register contents. It seems to treat the registers as sign-extended 32-bit values. This cause *REAL* problems when single-stepping 64-bit code on the hardware. */ /* The TRACE manifests enable the provision of extra features. If they are not defined then a simpler (quicker) simulator is constructed without the required run-time checks, etc. */ #if 1 /* 0 to allow user build selection, 1 to force inclusion */ #define TRACE (1) #endif #include "bfd.h" #include "sim-main.h" #include "sim-utils.h" #include "sim-options.h" #include "sim-assert.h" #include "sim-hw.h" #include "itable.h" #include "config.h" #include <stdio.h> #include <stdarg.h> #include <ansidecl.h> #include <ctype.h> #include <limits.h> #include <math.h> #ifdef HAVE_STDLIB_H #include <stdlib.h> #endif #ifdef HAVE_STRING_H #include <string.h> #else #ifdef HAVE_STRINGS_H #include <strings.h> #endif #endif #include "getopt.h" #include "libiberty.h" #include "bfd.h" #include "callback.h" /* GDB simulator callback interface */ #include "remote-sim.h" /* GDB simulator interface */ #include "sysdep.h" #ifndef PARAMS #define PARAMS(x) #endif char* pr_addr PARAMS ((SIM_ADDR addr)); char* pr_uword64 PARAMS ((uword64 addr)); /* Within interp.c we refer to the sim_state and sim_cpu directly. */ #define CPU cpu #define SD sd /* The following reserved instruction value is used when a simulator trap is required. NOTE: Care must be taken, since this value may be used in later revisions of the MIPS ISA. */ #define RSVD_INSTRUCTION (0x00000005) #define RSVD_INSTRUCTION_MASK (0xFC00003F) #define RSVD_INSTRUCTION_ARG_SHIFT 6 #define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF /* Bits in the Debug register */ #define Debug_DBD 0x80000000 /* Debug Branch Delay */ #define Debug_DM 0x40000000 /* Debug Mode */ #define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */ /*---------------------------------------------------------------------------*/ /*-- GDB simulator interface ------------------------------------------------*/ /*---------------------------------------------------------------------------*/ static void ColdReset PARAMS((SIM_DESC sd)); /*---------------------------------------------------------------------------*/ #define DELAYSLOT() {\ if (STATE & simDELAYSLOT)\ sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\ STATE |= simDELAYSLOT;\ } #define JALDELAYSLOT() {\ DELAYSLOT ();\ STATE |= simJALDELAYSLOT;\ } #define NULLIFY() {\ STATE &= ~simDELAYSLOT;\ STATE |= simSKIPNEXT;\ } #define CANCELDELAYSLOT() {\ DSSTATE = 0;\ STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\ } #define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0) #define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0) /* Note that the monitor code essentially assumes this layout of memory. If you change these, change the monitor code, too. */ #define K0BASE (0x80000000) #define K0SIZE (0x20000000) #define K1BASE (0xA0000000) #define K1SIZE (0x20000000) /* Simple run-time monitor support. We emulate the monitor by placing magic reserved instructions at the monitor's entry points; when we hit these instructions, instead of raising an exception (as we would normally), we look at the instruction and perform the appropriate monitory operation. `*_monitor_base' are the physical addresses at which the corresponding monitor vectors are located. `0' means none. By default, install all three. The RSVD_INSTRUCTION... macros specify the magic instructions we use at the monitor entry points. */ static int firmware_option_p = 0; static SIM_ADDR idt_monitor_base = 0xBFC00000; static SIM_ADDR pmon_monitor_base = 0xBFC00500; static SIM_ADDR lsipmon_monitor_base = 0xBFC00200; static SIM_RC sim_firmware_command (SIM_DESC sd, char* arg); #define MEM_SIZE (2 << 20) #if defined(TRACE) static char *tracefile = "trace.din"; /* default filename for trace log */ FILE *tracefh = NULL; static void open_trace PARAMS((SIM_DESC sd)); #endif /* TRACE */ static const char * get_insn_name (sim_cpu *, int); /* simulation target board. NULL=canonical */ static char* board = NULL; static DECLARE_OPTION_HANDLER (mips_option_handler); enum { OPTION_DINERO_TRACE = OPTION_START, OPTION_DINERO_FILE, OPTION_FIRMWARE, OPTION_BOARD }; static SIM_RC mips_option_handler (sd, cpu, opt, arg, is_command) SIM_DESC sd; sim_cpu *cpu; int opt; char *arg; int is_command; { int cpu_nr; switch (opt) { case OPTION_DINERO_TRACE: /* ??? */ #if defined(TRACE) /* Eventually the simTRACE flag could be treated as a toggle, to allow external control of the program points being traced (i.e. only from main onwards, excluding the run-time setup, etc.). */ for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++) { sim_cpu *cpu = STATE_CPU (sd, cpu_nr); if (arg == NULL) STATE |= simTRACE; else if (strcmp (arg, "yes") == 0) STATE |= simTRACE; else if (strcmp (arg, "no") == 0) STATE &= ~simTRACE; else if (strcmp (arg, "on") == 0) STATE |= simTRACE; else if (strcmp (arg, "off") == 0) STATE &= ~simTRACE; else { fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg); return SIM_RC_FAIL; } } return SIM_RC_OK; #else /* !TRACE */ fprintf(stderr,"\ Simulator constructed without dinero tracing support (for performance).\n\ Re-compile simulator with \"-DTRACE\" to enable this option.\n"); return SIM_RC_FAIL; #endif /* !TRACE */ case OPTION_DINERO_FILE: #if defined(TRACE) if (optarg != NULL) { char *tmp; tmp = (char *)malloc(strlen(optarg) + 1); if (tmp == NULL) { sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg); return SIM_RC_FAIL; } else { strcpy(tmp,optarg); tracefile = tmp; sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile); } } #endif /* TRACE */ return SIM_RC_OK; case OPTION_FIRMWARE: return sim_firmware_command (sd, arg); case OPTION_BOARD: { if (arg) { board = zalloc(strlen(arg) + 1); strcpy(board, arg); } return SIM_RC_OK; } } return SIM_RC_OK; } static const OPTION mips_options[] = { { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE}, '\0', "on|off", "Enable dinero tracing", mips_option_handler }, { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE}, '\0', "FILE", "Write dinero trace to FILE", mips_option_handler }, { {"firmware", required_argument, NULL, OPTION_FIRMWARE}, '\0', "[idt|pmon|lsipmon|none][@ADDRESS]", "Emulate ROM monitor", mips_option_handler }, { {"board", required_argument, NULL, OPTION_BOARD}, '\0', "none" /* rely on compile-time string concatenation for other options */ #define BOARD_JMR3904 "jmr3904" "|" BOARD_JMR3904 #define BOARD_JMR3904_PAL "jmr3904pal" "|" BOARD_JMR3904_PAL #define BOARD_JMR3904_DEBUG "jmr3904debug" "|" BOARD_JMR3904_DEBUG #define BOARD_BSP "bsp" "|" BOARD_BSP , "Customize simulation for a particular board.", mips_option_handler }, { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL } }; int interrupt_pending; void interrupt_event (SIM_DESC sd, void *data) { sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */ address_word cia = CIA_GET (cpu); if (SR & status_IE) { interrupt_pending = 0; SignalExceptionInterrupt (1); /* interrupt "1" */ } else if (!interrupt_pending) sim_events_schedule (sd, 1, interrupt_event, data); } /*---------------------------------------------------------------------------*/ /*-- Device registration hook -----------------------------------------------*/ /*---------------------------------------------------------------------------*/ static void device_init(SIM_DESC sd) { #ifdef DEVICE_INIT extern void register_devices(SIM_DESC); register_devices(sd); #endif } /*---------------------------------------------------------------------------*/ /*-- GDB simulator interface ------------------------------------------------*/ /*---------------------------------------------------------------------------*/ SIM_DESC sim_open (kind, cb, abfd, argv) SIM_OPEN_KIND kind; host_callback *cb; struct _bfd *abfd; char **argv; { SIM_DESC sd = sim_state_alloc (kind, cb); sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */ SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* FIXME: watchpoints code shouldn't need this */ STATE_WATCHPOINTS (sd)->pc = &(PC); STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC); STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event; /* Initialize the mechanism for doing insn profiling. */ CPU_INSN_NAME (cpu) = get_insn_name; CPU_MAX_INSNS (cpu) = nr_itable_entries; STATE = 0; if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) return 0; sim_add_option_table (sd, NULL, mips_options); /* getopt will print the error message so we just have to exit if this fails. FIXME: Hmmm... in the case of gdb we need getopt to call print_filtered. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ sim_module_uninstall (sd); return 0; } /* handle board-specific memory maps */ if (board == NULL) { /* Allocate core managed memory */ /* For compatibility with the old code - under this (at level one) are the kernel spaces K0 & K1. Both of these map to a single smaller sub region */ sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x", K1BASE, K0SIZE, MEM_SIZE, /* actual size */ K0BASE); device_init(sd); } else if (board != NULL && (strcmp(board, BOARD_BSP) == 0)) { int i; STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT; /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x", 0x9FC00000, 4 * 1024 * 1024, /* 4 MB */ 0xBFC00000); /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x", 0x80000000, 4 * 1024 * 1024, /* 4 MB */ 0xA0000000); /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */ for (i=0; i<8; i++) /* 32 MB total */ { unsigned size = 4 * 1024 * 1024; /* 4 MB */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x", 0x88000000 + (i * size), size, 0xA8000000 + (i * size)); } } #if (WITH_HW) else if (board != NULL && (strcmp(board, BOARD_JMR3904) == 0 || strcmp(board, BOARD_JMR3904_PAL) == 0 || strcmp(board, BOARD_JMR3904_DEBUG) == 0)) { /* match VIRTUAL memory layout of JMR-TX3904 board */ int i; /* --- disable monitor unless forced on by user --- */ if (! firmware_option_p) { idt_monitor_base = 0; pmon_monitor_base = 0; lsipmon_monitor_base = 0; } /* --- environment --- */ STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT; /* --- memory --- */ /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x", 0x9FC00000, 4 * 1024 * 1024, /* 4 MB */ 0xBFC00000); /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x", 0x80000000, 4 * 1024 * 1024, /* 4 MB */ 0xA0000000); /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */ for (i=0; i<8; i++) /* 32 MB total */ { unsigned size = 4 * 1024 * 1024; /* 4 MB */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x", 0x88000000 + (i * size), size, 0xA8000000 + (i * size)); } /* Dummy memory regions for unsimulated devices - sorted by address */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB1000000, 0x400); /* ISA I/O */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2100000, 0x004); /* ISA ctl */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2500000, 0x004); /* LED/switch */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2700000, 0x004); /* RTC */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB3C00000, 0x004); /* RTC */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF8000, 0x900); /* DRAMC */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF9000, 0x200); /* EBIF */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFE000, 0x01c); /* EBIF */ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFF500, 0x300); /* PIO */ /* --- simulated devices --- */ sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20"); sim_hw_parse (sd, "/tx3904cpu"); sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100"); sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100"); sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100"); sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100"); { /* FIXME: poking at dv-sockser internals, use tcp backend if --sockser_addr option was given.*/ extern char* sockser_addr; if(sockser_addr == NULL) sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio"); else sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp"); } sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100"); sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio"); /* -- device connections --- */ sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu"); sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc"); sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc"); sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc"); sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc"); sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc"); /* add PAL timer & I/O module */ if(! strcmp(board, BOARD_JMR3904_PAL)) { /* the device */ sim_hw_parse (sd, "/pal@0xffff0000"); sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64"); /* wire up interrupt ports to irc */ sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc"); sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc"); sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc"); } if(! strcmp(board, BOARD_JMR3904_DEBUG)) { /* -- DEBUG: glue interrupt generators --- */ sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50"); sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc"); sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu"); } device_init(sd); } #endif /* check for/establish the a reference program image */ if (sim_analyze_program (sd, (STATE_PROG_ARGV (sd) != NULL ? *STATE_PROG_ARGV (sd) : NULL), abfd) != SIM_RC_OK) { sim_module_uninstall (sd); return 0; } /* Configure/verify the target byte order and other runtime configuration options */ if (sim_config (sd) != SIM_RC_OK) { sim_module_uninstall (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ sim_module_uninstall (sd); return 0; } /* verify assumptions the simulator made about the host type system. This macro does not return if there is a problem */ SIM_ASSERT (sizeof(int) == (4 * sizeof(char))); SIM_ASSERT (sizeof(word64) == (8 * sizeof(char))); /* This is NASTY, in that we are assuming the size of specific registers: */ { int rn; for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++) { if (rn < 32) cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE; else if ((rn >= FGRIDX) && (rn < (FGRIDX + NR_FGR))) cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE; else if ((rn >= 33) && (rn <= 37)) cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE; else if ((rn == SRIDX) || (rn == FCR0IDX) || (rn == FCR31IDX) || ((rn >= 72) && (rn <= 89))) cpu->register_widths[rn] = 32; else cpu->register_widths[rn] = 0; } } #if defined(TRACE) if (STATE & simTRACE) open_trace(sd); #endif /* TRACE */ /* sim_io_eprintf (sd, "idt@%x pmon@%x lsipmon@%x\n", idt_monitor_base, pmon_monitor_base, lsipmon_monitor_base); */ /* Write the monitor trap address handlers into the monitor (eeprom) address space. This can only be done once the target endianness has been determined. */ if (idt_monitor_base != 0) { unsigned loop; unsigned idt_monitor_size = 1 << 11; /* the default monitor region */ sim_do_commandf (sd, "memory region 0x%x,0x%x", idt_monitor_base, idt_monitor_size); /* Entry into the IDT monitor is via fixed address vectors, and not using machine instructions. To avoid clashing with use of the MIPS TRAP system, we place our own (simulator specific) "undefined" instructions into the relevant vector slots. */ for (loop = 0; (loop < idt_monitor_size); loop += 4) { address_word vaddr = (idt_monitor_base + loop); unsigned32 insn = (RSVD_INSTRUCTION | (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK) << RSVD_INSTRUCTION_ARG_SHIFT)); H2T (insn); sim_write (sd, vaddr, (char *)&insn, sizeof (insn)); } } if ((pmon_monitor_base != 0) || (lsipmon_monitor_base != 0)) { /* The PMON monitor uses the same address space, but rather than branching into it the address of a routine is loaded. We can cheat for the moment, and direct the PMON routine to IDT style instructions within the monitor space. This relies on the IDT monitor not using the locations from 0xBFC00500 onwards as its entry points.*/ unsigned loop; for (loop = 0; (loop < 24); loop++) { unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */ switch (loop) { case 0: /* read */ value = 7; break; case 1: /* write */ value = 8; break; case 2: /* open */ value = 6; break; case 3: /* close */ value = 10; break; case 5: /* printf */ value = ((0x500 - 16) / 8); /* not an IDT reason code */ break; case 8: /* cliexit */ value = 17; break; case 11: /* flush_cache */ value = 28; break; } SIM_ASSERT (idt_monitor_base != 0); value = ((unsigned int) idt_monitor_base + (value * 8)); H2T (value); if (pmon_monitor_base != 0) { address_word vaddr = (pmon_monitor_base + (loop * 4)); sim_write (sd, vaddr, (char *)&value, sizeof (value)); } if (lsipmon_monitor_base != 0) { address_word vaddr = (lsipmon_monitor_base + (loop * 4)); sim_write (sd, vaddr, (char *)&value, sizeof (value)); } } /* Write an abort sequence into the TRAP (common) exception vector addresses. This is to catch code executing a TRAP (et.al.) instruction without installing a trap handler. */ if ((idt_monitor_base != 0) || (pmon_monitor_base != 0) || (lsipmon_monitor_base != 0)) { unsigned32 halt[2] = { 0x2404002f /* addiu r4, r0, 47 */, HALT_INSTRUCTION /* BREAK */ }; H2T (halt[0]); H2T (halt[1]); sim_write (sd, 0x80000000, (char *) halt, sizeof (halt)); sim_write (sd, 0x80000180, (char *) halt, sizeof (halt)); sim_write (sd, 0x80000200, (char *) halt, sizeof (halt)); /* XXX: Write here unconditionally? */ sim_write (sd, 0xBFC00200, (char *) halt, sizeof (halt)); sim_write (sd, 0xBFC00380, (char *) halt, sizeof (halt)); sim_write (sd, 0xBFC00400, (char *) halt, sizeof (halt)); } } return sd; } #if defined(TRACE) static void open_trace(sd) SIM_DESC sd; { tracefh = fopen(tracefile,"wb+"); if (tracefh == NULL) { sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile); tracefh = stderr; } } #endif /* TRACE */ /* Return name of an insn, used by insn profiling. */ static const char * get_insn_name (sim_cpu *cpu, int i) { return itable[i].name; } void sim_close (sd, quitting) SIM_DESC sd; int quitting; { #ifdef DEBUG printf("DBG: sim_close: entered (quitting = %d)\n",quitting); #endif /* "quitting" is non-zero if we cannot hang on errors */ /* shut down modules */ sim_module_uninstall (sd); /* Ensure that any resources allocated through the callback mechanism are released: */ sim_io_shutdown (sd); #if defined(TRACE) if (tracefh != NULL && tracefh != stderr) fclose(tracefh); tracefh = NULL; #endif /* TRACE */ /* FIXME - free SD */ return; } int sim_write (sd,addr,buffer,size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int index; sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */ /* Return the number of bytes written, or zero if error. */ #ifdef DEBUG sim_io_printf(sd,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size); #endif /* We use raw read and write routines, since we do not want to count the GDB memory accesses in our statistics gathering. */ for (index = 0; index < size; index++) { address_word vaddr = (address_word)addr + index; address_word paddr; int cca; if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isSTORE, &paddr, &cca, isRAW)) break; if (sim_core_write_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1) break; } return(index); } int sim_read (sd,addr,buffer,size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int index; sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */ /* Return the number of bytes read, or zero if error. */ #ifdef DEBUG sim_io_printf(sd,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size); #endif /* DEBUG */ for (index = 0; (index < size); index++) { address_word vaddr = (address_word)addr + index; address_word paddr; int cca; if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isLOAD, &paddr, &cca, isRAW)) break; if (sim_core_read_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1) break; } return(index); } int sim_store_register (sd,rn,memory,length) SIM_DESC sd; int rn; unsigned char *memory; int length; { sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */ /* NOTE: gdb (the client) stores registers in target byte order while the simulator uses host byte order */ #ifdef DEBUG sim_io_printf(sd,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory))); #endif /* DEBUG */ /* Unfortunately this suffers from the same problem as the register numbering one. We need to know what the width of each logical register number is for the architecture being simulated. */ if (cpu->register_widths[rn] == 0) { sim_io_eprintf(sd,"Invalid register width for %d (register store ignored)\n",rn); return 0; } if (rn >= FGRIDX && rn < FGRIDX + NR_FGR) { cpu->fpr_state[rn - FGRIDX] = fmt_uninterpreted; if (cpu->register_widths[rn] == 32) { if (length == 8) { cpu->fgr[rn - FGRIDX] = (unsigned32) T2H_8 (*(unsigned64*)memory); return 8; } else { cpu->fgr[rn - FGRIDX] = T2H_4 (*(unsigned32*)memory); return 4; } } else { cpu->fgr[rn - FGRIDX] = T2H_8 (*(unsigned64*)memory); return 8; } } if (cpu->register_widths[rn] == 32) { if (length == 8) { cpu->registers[rn] = (unsigned32) T2H_8 (*(unsigned64*)memory); return 8; } else { cpu->registers[rn] = T2H_4 (*(unsigned32*)memory); return 4; } } else { cpu->registers[rn] = T2H_8 (*(unsigned64*)memory); return 8; } return 0; } int sim_fetch_register (sd,rn,memory,length) SIM_DESC sd; int rn; unsigned char *memory; int length; { sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */ /* NOTE: gdb (the client) stores registers in target byte order while the simulator uses host byte order */ #ifdef DEBUG #if 0 /* FIXME: doesn't compile */ sim_io_printf(sd,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn])); #endif #endif /* DEBUG */ if (cpu->register_widths[rn] == 0) { sim_io_eprintf (sd, "Invalid register width for %d (register fetch ignored)\n",rn); return 0; } /* Any floating point register */ if (rn >= FGRIDX && rn < FGRIDX + NR_FGR) { if (cpu->register_widths[rn] == 32) { if (length == 8) { *(unsigned64*)memory = H2T_8 ((unsigned32) (cpu->fgr[rn - FGRIDX])); return 8; } else { *(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGRIDX]); return 4; } } else { *(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGRIDX]); return 8; } } if (cpu->register_widths[rn] == 32) { if (length == 8) { *(unsigned64*)memory = H2T_8 ((unsigned32) (cpu->registers[rn])); return 8; } else { *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn])); return 4; } } else { *(unsigned64*)memory = H2T_8 ((unsigned64)(cpu->registers[rn])); return 8; } return 0; } SIM_RC sim_create_inferior (sd, abfd, argv,env) SIM_DESC sd; struct _bfd *abfd; char **argv; char **env; { #ifdef DEBUG #if 0 /* FIXME: doesn't compile */ printf("DBG: sim_create_inferior entered: start_address = 0x%s\n", pr_addr(PC)); #endif #endif /* DEBUG */ ColdReset(sd); if (abfd != NULL) { /* override PC value set by ColdReset () */ int cpu_nr; for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++) { sim_cpu *cpu = STATE_CPU (sd, cpu_nr); CIA_SET (cpu, (unsigned64) bfd_get_start_address (abfd)); } } #if 0 /* def DEBUG */ if (argv || env) { /* We should really place the argv slot values into the argument registers, and onto the stack as required. However, this assumes that we have a stack defined, which is not necessarily true at the moment. */ char **cptr; sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n"); for (cptr = argv; (cptr && *cptr); cptr++) printf("DBG: arg \"%s\"\n",*cptr); } #endif /* DEBUG */ return SIM_RC_OK; } void sim_do_command (sd,cmd) SIM_DESC sd; char *cmd; { if (sim_args_command (sd, cmd) != SIM_RC_OK) sim_io_printf (sd, "Error: \"%s\" is not a valid MIPS simulator command.\n", cmd); } /*---------------------------------------------------------------------------*/ /*-- Private simulator support interface ------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Read a null terminated string from memory, return in a buffer */ static char * fetch_str (SIM_DESC sd, address_word addr) { char *buf; int nr = 0; char null; while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0) nr++; buf = NZALLOC (char, nr + 1); sim_read (sd, addr, buf, nr); return buf; } /* Implements the "sim firmware" command: sim firmware NAME[@ADDRESS] --- emulate ROM monitor named NAME. NAME can be idt, pmon, or lsipmon. If omitted, ADDRESS defaults to the normal address for that monitor. sim firmware none --- don't emulate any ROM monitor. Useful if you need a clean address space. */ static SIM_RC sim_firmware_command (SIM_DESC sd, char *arg) { int address_present = 0; SIM_ADDR address; /* Signal occurrence of this option. */ firmware_option_p = 1; /* Parse out the address, if present. */ { char *p = strchr (arg, '@'); if (p) { char *q; address_present = 1; p ++; /* skip over @ */ address = strtoul (p, &q, 0); if (*q != '\0') { sim_io_printf (sd, "Invalid address given to the" "`sim firmware NAME@ADDRESS' command: %s\n", p); return SIM_RC_FAIL; } } else address_present = 0; } if (! strncmp (arg, "idt", 3)) { idt_monitor_base = address_present ? address : 0xBFC00000; pmon_monitor_base = 0; lsipmon_monitor_base = 0; } else if (! strncmp (arg, "pmon", 4)) { /* pmon uses indirect calls. Hook into implied idt. */ pmon_monitor_base = address_present ? address : 0xBFC00500; idt_monitor_base = pmon_monitor_base - 0x500; lsipmon_monitor_base = 0; } else if (! strncmp (arg, "lsipmon", 7)) { /* lsipmon uses indirect calls. Hook into implied idt. */ pmon_monitor_base = 0; lsipmon_monitor_base = address_present ? address : 0xBFC00200; idt_monitor_base = lsipmon_monitor_base - 0x200; } else if (! strncmp (arg, "none", 4)) { if (address_present) { sim_io_printf (sd, "The `sim firmware none' command does " "not take an `ADDRESS' argument.\n"); return SIM_RC_FAIL; } idt_monitor_base = 0; pmon_monitor_base = 0; lsipmon_monitor_base = 0; } else { sim_io_printf (sd, "\ Unrecognized name given to the `sim firmware NAME' command: %s\n\ Recognized firmware names are: `idt', `pmon', `lsipmon', and `none'.\n", arg); return SIM_RC_FAIL; } return SIM_RC_OK; } /* Simple monitor interface (currently setup for the IDT and PMON monitors) */ int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int reason) { #ifdef DEBUG printf("DBG: sim_monitor: entered (reason = %d)\n",reason); #endif /* DEBUG */ /* The IDT monitor actually allows two instructions per vector slot. However, the simulator currently causes a trap on each individual instruction. We cheat, and lose the bottom bit. */ reason >>= 1; /* The following callback functions are available, however the monitor we are simulating does not make use of them: get_errno, isatty, lseek, rename, system, time and unlink */ switch (reason) { case 6: /* int open(char *path,int flags) */ { char *path = fetch_str (sd, A0); V0 = sim_io_open (sd, path, (int)A1); zfree (path); break; } case 7: /* int read(int file,char *ptr,int len) */ { int fd = A0; int nr = A2; char *buf = zalloc (nr); V0 = sim_io_read (sd, fd, buf, nr); sim_write (sd, A1, buf, nr); zfree (buf); } break; case 8: /* int write(int file,char *ptr,int len) */ { int fd = A0; int nr = A2; char *buf = zalloc (nr); sim_read (sd, A1, buf, nr); V0 = sim_io_write (sd, fd, buf, nr); zfree (buf); break; } case 10: /* int close(int file) */ { V0 = sim_io_close (sd, (int)A0); break; } case 2: /* Densan monitor: char inbyte(int waitflag) */ { if (A0 == 0) /* waitflag == NOWAIT */ V0 = (unsigned_word)-1; } /* Drop through to case 11 */ case 11: /* char inbyte(void) */ { char tmp; /* ensure that all output has gone... */ sim_io_flush_stdout (sd); if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char)) { sim_io_error(sd,"Invalid return from character read"); V0 = (unsigned_word)-1; } else V0 = (unsigned_word)tmp; break; } case 3: /* Densan monitor: void co(char chr) */ case 12: /* void outbyte(char chr) : write a byte to "stdout" */ { char tmp = (char)(A0 & 0xFF); sim_io_write_stdout (sd, &tmp, sizeof(char)); break; } case 17: /* void _exit() */ { sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n"); sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited, (unsigned int)(A0 & 0xFFFFFFFF)); break; } case 28 : /* PMON flush_cache */ break; case 55: /* void get_mem_info(unsigned int *ptr) */ /* in: A0 = pointer to three word memory location */ /* out: [A0 + 0] = size */ /* [A0 + 4] = instruction cache size */ /* [A0 + 8] = data cache size */ { unsigned_4 value = MEM_SIZE /* FIXME STATE_MEM_SIZE (sd) */; unsigned_4 zero = 0; H2T (value); sim_write (sd, A0 + 0, (char *)&value, 4); sim_write (sd, A0 + 4, (char *)&zero, 4); sim_write (sd, A0 + 8, (char *)&zero, 4); /* sim_io_eprintf (sd, "sim: get_mem_info() depreciated\n"); */ break; } case 158 : /* PMON printf */ /* in: A0 = pointer to format string */ /* A1 = optional argument 1 */ /* A2 = optional argument 2 */ /* A3 = optional argument 3 */ /* out: void */ /* The following is based on the PMON printf source */ { address_word s = A0; char c; signed_word *ap = &A1; /* 1st argument */ /* This isn't the quickest way, since we call the host print routine for every character almost. But it does avoid having to allocate and manage a temporary string buffer. */ /* TODO: Include check that we only use three arguments (A1, A2 and A3) */ while (sim_read (sd, s++, &c, 1) && c != '\0') { if (c == '%') { char tmp[40]; enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST; int width = 0, trunc = 0, haddot = 0, longlong = 0; while (sim_read (sd, s++, &c, 1) && c != '\0') { if (strchr ("dobxXulscefg%", c)) break; else if (c == '-') fmt = FMT_LJUST; else if (c == '0') fmt = FMT_RJUST0; else if (c == '~') fmt = FMT_CENTER; else if (c == '*') { if (haddot) trunc = (int)*ap++; else width = (int)*ap++; } else if (c >= '1' && c <= '9') { address_word t = s; unsigned int n; while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c)) tmp[s - t] = c; tmp[s - t] = '\0'; n = (unsigned int)strtol(tmp,NULL,10); if (haddot) trunc = n; else width = n; s--; } else if (c == '.') haddot = 1; } switch (c) { case '%': sim_io_printf (sd, "%%"); break; case 's': if ((int)*ap != 0) { address_word p = *ap++; char ch; while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0') sim_io_printf(sd, "%c", ch); } else sim_io_printf(sd,"(null)"); break; case 'c': sim_io_printf (sd, "%c", (int)*ap++); break; default: if (c == 'l') { sim_read (sd, s++, &c, 1); if (c == 'l') { longlong = 1; sim_read (sd, s++, &c, 1); } } if (strchr ("dobxXu", c)) { word64 lv = (word64) *ap++; if (c == 'b') sim_io_printf(sd,"<binary not supported>"); else { sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c); if (longlong) sim_io_printf(sd, tmp, lv); else sim_io_printf(sd, tmp, (int)lv); } } else if (strchr ("eEfgG", c)) { double dbl = *(double*)(ap++); sprintf (tmp, "%%%d.%d%c", width, trunc, c); sim_io_printf (sd, tmp, dbl); trunc = 0; } } } else sim_io_printf(sd, "%c", c); } break; } default: /* Unknown reason. */ return 0; } return 1; } /* Store a word into memory. */ static void store_word (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64 vaddr, signed_word val) { address_word paddr; int uncached; if ((vaddr & 3) != 0) SignalExceptionAddressStore (); else { if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL)) { const uword64 mask = 7; uword64 memval; unsigned int byte; paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)); byte = (vaddr & mask) ^ (BigEndianCPU << 2); memval = ((uword64) val) << (8 * byte); StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr, isREAL); } } } /* Load a word from memory. */ static signed_word load_word (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64 vaddr) { if ((vaddr & 3) != 0) { SIM_CORE_SIGNAL (SD, cpu, cia, read_map, AccessLength_WORD+1, vaddr, read_transfer, sim_core_unaligned_signal); } else { address_word paddr; int uncached; if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL)) { const uword64 mask = 0x7; const unsigned int reverse = ReverseEndian ? 1 : 0; const unsigned int bigend = BigEndianCPU ? 1 : 0; uword64 memval; unsigned int byte; paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2)); LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr, isDATA, isREAL); byte = (vaddr & mask) ^ (bigend << 2); return SIGNEXTEND (((memval >> (8 * byte)) & 0xffffffff), 32); } } return 0; } /* Simulate the mips16 entry and exit pseudo-instructions. These would normally be handled by the reserved instruction exception code, but for ease of simulation we just handle them directly. */ static void mips16_entry (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int insn) { int aregs, sregs, rreg; #ifdef DEBUG printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn); #endif /* DEBUG */ aregs = (insn & 0x700) >> 8; sregs = (insn & 0x0c0) >> 6; rreg = (insn & 0x020) >> 5; /* This should be checked by the caller. */ if (sregs == 3) abort (); if (aregs < 5) { int i; signed_word tsp; /* This is the entry pseudo-instruction. */ for (i = 0; i < aregs; i++) store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]); tsp = SP; SP -= 32; if (rreg) { tsp -= 4; store_word (SD, CPU, cia, (uword64) tsp, RA); } for (i = 0; i < sregs; i++) { tsp -= 4; store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]); } } else { int i; signed_word tsp; /* This is the exit pseudo-instruction. */ tsp = SP + 32; if (rreg) { tsp -= 4; RA = load_word (SD, CPU, cia, (uword64) tsp); } for (i = 0; i < sregs; i++) { tsp -= 4; GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp); } SP += 32; if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT) { if (aregs == 5) { FGR[0] = WORD64LO (GPR[4]); FPR_STATE[0] = fmt_uninterpreted; } else if (aregs == 6) { FGR[0] = WORD64LO (GPR[5]); FGR[1] = WORD64LO (GPR[4]); FPR_STATE[0] = fmt_uninterpreted; FPR_STATE[1] = fmt_uninterpreted; } } PC = RA; } } /*-- trace support ----------------------------------------------------------*/ /* The TRACE support is provided (if required) in the memory accessing routines. Since we are also providing the architecture specific features, the architecture simulation code can also deal with notifying the TRACE world of cache flushes, etc. Similarly we do not need to provide profiling support in the simulator engine, since we can sample in the instruction fetch control loop. By defining the TRACE manifest, we add tracing as a run-time option. */ #if defined(TRACE) /* Tracing by default produces "din" format (as required by dineroIII). Each line of such a trace file *MUST* have a din label and address field. The rest of the line is ignored, so comments can be included if desired. The first field is the label which must be one of the following values: 0 read data 1 write data 2 instruction fetch 3 escape record (treated as unknown access type) 4 escape record (causes cache flush) The address field is a 32bit (lower-case) hexadecimal address value. The address should *NOT* be preceded by "0x". The size of the memory transfer is not important when dealing with cache lines (as long as no more than a cache line can be transferred in a single operation :-), however more information could be given following the dineroIII requirement to allow more complete memory and cache simulators to provide better results. i.e. the University of Pisa has a cache simulator that can also take bus size and speed as (variable) inputs to calculate complete system performance (a much more useful ability when trying to construct an end product, rather than a processor). They currently have an ARM version of their tool called ChARM. */ void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment,...) { if (STATE & simTRACE) { va_list ap; fprintf(tracefh,"%d %s ; width %d ; ", type, pr_addr(address), width); va_start(ap,comment); vfprintf(tracefh,comment,ap); va_end(ap); fprintf(tracefh,"\n"); } /* NOTE: Since the "din" format will only accept 32bit addresses, and we may be generating 64bit ones, we should put the hi-32bits of the address into the comment field. */ /* TODO: Provide a buffer for the trace lines. We can then avoid performing writes until the buffer is filled, or the file is being closed. */ /* NOTE: We could consider adding a comment field to the "din" file produced using type 3 markers (unknown access). This would then allow information about the program that the "din" is for, and the MIPs world that was being simulated, to be placed into the trace file. */ return; } #endif /* TRACE */ /*---------------------------------------------------------------------------*/ /*-- simulator engine -------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ static void ColdReset (SIM_DESC sd) { int cpu_nr; for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++) { sim_cpu *cpu = STATE_CPU (sd, cpu_nr); /* RESET: Fixed PC address: */ PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000); /* The reset vector address is in the unmapped, uncached memory space. */ SR &= ~(status_SR | status_TS | status_RP); SR |= (status_ERL | status_BEV); /* Cheat and allow access to the complete register set immediately */ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT && WITH_TARGET_WORD_BITSIZE == 64) SR |= status_FR; /* 64bit registers */ /* Ensure that any instructions with pending register updates are cleared: */ PENDING_INVALIDATE(); /* Initialise the FPU registers to the unknown state */ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT) { int rn; for (rn = 0; (rn < 32); rn++) FPR_STATE[rn] = fmt_uninterpreted; } } } /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Signal an exception condition. This will result in an exception that aborts the instruction. The instruction operation pseudocode will never see a return from this function call. */ void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception,...) { /* int vector; */ #ifdef DEBUG sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia)); #endif /* DEBUG */ /* Ensure that any active atomic read/modify/write operation will fail: */ LLBIT = 0; /* Save registers before interrupt dispatching */ #ifdef SIM_CPU_EXCEPTION_TRIGGER SIM_CPU_EXCEPTION_TRIGGER(sd, cpu, cia); #endif switch (exception) { case DebugBreakPoint : if (! (Debug & Debug_DM)) { if (INDELAYSLOT()) { CANCELDELAYSLOT(); Debug |= Debug_DBD; /* signaled from within in delay slot */ DEPC = cia - 4; /* reference the branch instruction */ } else { Debug &= ~Debug_DBD; /* not signaled from within a delay slot */ DEPC = cia; } Debug |= Debug_DM; /* in debugging mode */ Debug |= Debug_DBp; /* raising a DBp exception */ PC = 0xBFC00200; sim_engine_restart (SD, CPU, NULL, NULL_CIA); } break; case ReservedInstruction : { va_list ap; unsigned int instruction; va_start(ap,exception); instruction = va_arg(ap,unsigned int); va_end(ap); /* Provide simple monitor support using ReservedInstruction exceptions. The following code simulates the fixed vector entry points into the IDT monitor by causing a simulator trap, performing the monitor operation, and returning to the address held in the $ra register (standard PCS return address). This means we only need to pre-load the vector space with suitable instruction values. For systems were actual trap instructions are used, we would not need to perform this magic. */ if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION) { int reason = (instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK; if (!sim_monitor (SD, CPU, cia, reason)) sim_io_error (sd, "sim_monitor: unhandled reason = %d, pc = 0x%s\n", reason, pr_addr (cia)); /* NOTE: This assumes that a branch-and-link style instruction was used to enter the vector (which is the case with the current IDT monitor). */ sim_engine_restart (SD, CPU, NULL, RA); } /* Look for the mips16 entry and exit instructions, and simulate a handler for them. */ else if ((cia & 1) != 0 && (instruction & 0xf81f) == 0xe809 && (instruction & 0x0c0) != 0x0c0) { mips16_entry (SD, CPU, cia, instruction); sim_engine_restart (sd, NULL, NULL, NULL_CIA); } /* else fall through to normal exception processing */ sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia)); } default: /* Store exception code into current exception id variable (used by exit code): */ /* TODO: If not simulating exceptions then stop the simulator execution. At the moment we always stop the simulation. */ #ifdef SUBTARGET_R3900 /* update interrupt-related registers */ /* insert exception code in bits 6:2 */ CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2); /* shift IE/KU history bits left */ SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2); if (STATE & simDELAYSLOT) { STATE &= ~simDELAYSLOT; CAUSE |= cause_BD; EPC = (cia - 4); /* reference the branch instruction */ } else EPC = cia; if (SR & status_BEV) PC = (signed)0xBFC00000 + 0x180; else PC = (signed)0x80000000 + 0x080; #else /* See figure 5-17 for an outline of the code below */ if (! (SR & status_EXL)) { CAUSE = (exception << 2); if (STATE & simDELAYSLOT) { STATE &= ~simDELAYSLOT; CAUSE |= cause_BD; EPC = (cia - 4); /* reference the branch instruction */ } else EPC = cia; /* FIXME: TLB et.al. */ /* vector = 0x180; */ } else { CAUSE = (exception << 2); /* vector = 0x180; */ } SR |= status_EXL; /* Store exception code into current exception id variable (used by exit code): */ if (SR & status_BEV) PC = (signed)0xBFC00200 + 0x180; else PC = (signed)0x80000000 + 0x180; #endif switch ((CAUSE >> 2) & 0x1F) { case Interrupt: /* Interrupts arrive during event processing, no need to restart */ return; case NMIReset: /* Ditto */ #ifdef SUBTARGET_3900 /* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */ PC = (signed)0xBFC00000; #endif SUBTARGET_3900 return; case TLBModification: case TLBLoad: case TLBStore: case AddressLoad: case AddressStore: case InstructionFetch: case DataReference: /* The following is so that the simulator will continue from the exception handler address. */ sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGBUS); case ReservedInstruction: case CoProcessorUnusable: PC = EPC; sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGILL); case IntegerOverflow: case FPE: sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGFPE); case BreakPoint: sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP); break; case SystemCall: case Trap: sim_engine_restart (SD, CPU, NULL, PC); break; case Watch: PC = EPC; sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP); default : /* Unknown internal exception */ PC = EPC; sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGABRT); } case SimulatorFault: { va_list ap; char *msg; va_start(ap,exception); msg = va_arg(ap,char *); va_end(ap); sim_engine_abort (SD, CPU, NULL_CIA, "FATAL: Simulator error \"%s\"\n",msg); } } return; } #if defined(WARN_RESULT) /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* This function indicates that the result of the operation is undefined. However, this should not affect the instruction stream. All that is meant to happen is that the destination register is set to an undefined result. To keep the simulator simple, we just don't bother updating the destination register, so the overall result will be undefined. If desired we can stop the simulator by raising a pseudo-exception. */ #define UndefinedResult() undefined_result (sd,cia) static void undefined_result(sd,cia) SIM_DESC sd; address_word cia; { sim_io_eprintf(sd,"UndefinedResult: PC = 0x%s\n",pr_addr(cia)); #if 0 /* Disabled for the moment, since it actually happens a lot at the moment. */ state |= simSTOP; #endif return; } #endif /* WARN_RESULT */ /*-- FPU support routines ---------------------------------------------------*/ /* Numbers are held in normalized form. The SINGLE and DOUBLE binary formats conform to ANSI/IEEE Std 754-1985. */ /* SINGLE precision floating: * seeeeeeeefffffffffffffffffffffff * s = 1bit = sign * e = 8bits = exponent * f = 23bits = fraction */ /* SINGLE precision fixed: * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii * s = 1bit = sign * i = 31bits = integer */ /* DOUBLE precision floating: * seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff * s = 1bit = sign * e = 11bits = exponent * f = 52bits = fraction */ /* DOUBLE precision fixed: * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii * s = 1bit = sign * i = 63bits = integer */ /* Extract sign-bit: */ #define FP_S_s(v) (((v) & ((unsigned)1 << 31)) ? 1 : 0) #define FP_D_s(v) (((v) & ((uword64)1 << 63)) ? 1 : 0) /* Extract biased exponent: */ #define FP_S_be(v) (((v) >> 23) & 0xFF) #define FP_D_be(v) (((v) >> 52) & 0x7FF) /* Extract unbiased Exponent: */ #define FP_S_e(v) (FP_S_be(v) - 0x7F) #define FP_D_e(v) (FP_D_be(v) - 0x3FF) /* Extract complete fraction field: */ #define FP_S_f(v) ((v) & ~((unsigned)0x1FF << 23)) #define FP_D_f(v) ((v) & ~((uword64)0xFFF << 52)) /* Extract numbered fraction bit: */ #define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0) #define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0) /* Explicit QNaN values used when value required: */ #define FPQNaN_SINGLE (0x7FBFFFFF) #define FPQNaN_WORD (0x7FFFFFFF) #define FPQNaN_DOUBLE (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF) #define FPQNaN_LONG (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF) /* Explicit Infinity values used when required: */ #define FPINF_SINGLE (0x7F800000) #define FPINF_DOUBLE (((uword64)0x7FF00000 << 32) | 0x00000000) #define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor"))) #define DOFMT(v) (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : (((v) == fmt_uninterpreted_32) ? "<uninterpreted_32>" : (((v) == fmt_uninterpreted_64) ? "<uninterpreted_64>" : "<format error>")))))))) uword64 value_fpr (SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt) { uword64 value = 0; int err = 0; /* Treat unused register values, as fixed-point 64bit values: */ if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown)) #if 1 /* If request to read data as "uninterpreted", then use the current encoding: */ fmt = FPR_STATE[fpr]; #else fmt = fmt_long; #endif /* For values not yet accessed, set to the desired format: */ if (FPR_STATE[fpr] == fmt_uninterpreted) { FPR_STATE[fpr] = fmt; #ifdef DEBUG printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt)); #endif /* DEBUG */ } if (fmt != FPR_STATE[fpr]) { sim_io_eprintf(sd,"FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",fpr,DOFMT(FPR_STATE[fpr]),DOFMT(fmt),pr_addr(cia)); FPR_STATE[fpr] = fmt_unknown; } if (FPR_STATE[fpr] == fmt_unknown) { /* Set QNaN value: */ switch (fmt) { case fmt_single: value = FPQNaN_SINGLE; break; case fmt_double: value = FPQNaN_DOUBLE; break; case fmt_word: value = FPQNaN_WORD; break; case fmt_long: value = FPQNaN_LONG; break; default: err = -1; break; } } else if (SizeFGR() == 64) { switch (fmt) { case fmt_single: case fmt_word: value = (FGR[fpr] & 0xFFFFFFFF); break; case fmt_uninterpreted: case fmt_double: case fmt_long: value = FGR[fpr]; break; default : err = -1; break; } } else { switch (fmt) { case fmt_single: case fmt_word: value = (FGR[fpr] & 0xFFFFFFFF); break; case fmt_uninterpreted: case fmt_double: case fmt_long: if ((fpr & 1) == 0) { /* even registers only */ #ifdef DEBUG printf("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n", fpr+1, pr_uword64( (uword64) FGR[fpr+1] ), fpr, pr_uword64( (uword64) FGR[fpr] )); #endif value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF)); } else { SignalException(ReservedInstruction,0); } break; default : err = -1; break; } } if (err) SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR()"); #ifdef DEBUG printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR()); #endif /* DEBUG */ return(value); } void store_fpr (SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, uword64 value) { int err = 0; #ifdef DEBUG printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d,\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR()); #endif /* DEBUG */ if (SizeFGR() == 64) { switch (fmt) { case fmt_uninterpreted_32: fmt = fmt_uninterpreted; case fmt_single : case fmt_word : if (STATE_VERBOSE_P(SD)) sim_io_eprintf (SD, "Warning: PC 0x%s: interp.c store_fpr DEADCODE\n", pr_addr(cia)); FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF)); FPR_STATE[fpr] = fmt; break; case fmt_uninterpreted_64: fmt = fmt_uninterpreted; case fmt_uninterpreted: case fmt_double : case fmt_long : FGR[fpr] = value; FPR_STATE[fpr] = fmt; break; default : FPR_STATE[fpr] = fmt_unknown; err = -1; break; } } else { switch (fmt) { case fmt_uninterpreted_32: fmt = fmt_uninterpreted; case fmt_single : case fmt_word : FGR[fpr] = (value & 0xFFFFFFFF); FPR_STATE[fpr] = fmt; break; case fmt_uninterpreted_64: fmt = fmt_uninterpreted; case fmt_uninterpreted: case fmt_double : case fmt_long : if ((fpr & 1) == 0) { /* even register number only */ FGR[fpr+1] = (value >> 32); FGR[fpr] = (value & 0xFFFFFFFF); FPR_STATE[fpr + 1] = fmt; FPR_STATE[fpr] = fmt; } else { FPR_STATE[fpr] = fmt_unknown; FPR_STATE[fpr + 1] = fmt_unknown; SignalException(ReservedInstruction,0); } break; default : FPR_STATE[fpr] = fmt_unknown; err = -1; break; } } #if defined(WARN_RESULT) else UndefinedResult(); #endif /* WARN_RESULT */ if (err) SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR()"); #ifdef DEBUG printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_uword64(FGR[fpr]),DOFMT(fmt)); #endif /* DEBUG */ return; } int NaN(op,fmt) uword64 op; FP_formats fmt; { int boolean = 0; switch (fmt) { case fmt_single: case fmt_word: { sim_fpu wop; sim_fpu_32to (&wop, op); boolean = sim_fpu_is_nan (&wop); break; } case fmt_double: case fmt_long: { sim_fpu wop; sim_fpu_64to (&wop, op); boolean = sim_fpu_is_nan (&wop); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt)); #endif /* DEBUG */ return(boolean); } int Infinity(op,fmt) uword64 op; FP_formats fmt; { int boolean = 0; #ifdef DEBUG printf("DBG: Infinity: format %s 0x%s\n",DOFMT(fmt),pr_addr(op)); #endif /* DEBUG */ switch (fmt) { case fmt_single: { sim_fpu wop; sim_fpu_32to (&wop, op); boolean = sim_fpu_is_infinity (&wop); break; } case fmt_double: { sim_fpu wop; sim_fpu_64to (&wop, op); boolean = sim_fpu_is_infinity (&wop); break; } default: printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt)); break; } #ifdef DEBUG printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt)); #endif /* DEBUG */ return(boolean); } int Less(op1,op2,fmt) uword64 op1; uword64 op2; FP_formats fmt; { int boolean = 0; /* Argument checking already performed by the FPCOMPARE code */ #ifdef DEBUG printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); boolean = sim_fpu_is_lt (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); boolean = sim_fpu_is_lt (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt)); #endif /* DEBUG */ return(boolean); } int Equal(op1,op2,fmt) uword64 op1; uword64 op2; FP_formats fmt; { int boolean = 0; /* Argument checking already performed by the FPCOMPARE code */ #ifdef DEBUG printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); boolean = sim_fpu_is_eq (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); boolean = sim_fpu_is_eq (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt)); #endif /* DEBUG */ return(boolean); } uword64 AbsoluteValue(op,fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; unsigned32 ans; sim_fpu_32to (&wop, op); sim_fpu_abs (&wop, &wop); sim_fpu_to32 (&ans, &wop); result = ans; break; } case fmt_double: { sim_fpu wop; unsigned64 ans; sim_fpu_64to (&wop, op); sim_fpu_abs (&wop, &wop); sim_fpu_to64 (&ans, &wop); result = ans; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } return(result); } uword64 Negate(op,fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op)); #endif /* DEBUG */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; unsigned32 ans; sim_fpu_32to (&wop, op); sim_fpu_neg (&wop, &wop); sim_fpu_to32 (&ans, &wop); result = ans; break; } case fmt_double: { sim_fpu wop; unsigned64 ans; sim_fpu_64to (&wop, op); sim_fpu_neg (&wop, &wop); sim_fpu_to64 (&ans, &wop); result = ans; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } return(result); } uword64 Add(op1,op2,fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_add (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_add (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } uword64 Sub(op1,op2,fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_sub (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; } break; case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_sub (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; } break; default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } uword64 Multiply(op1,op2,fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_mul (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_mul (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } uword64 Divide(op1,op2,fmt) uword64 op1; uword64 op2; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); sim_fpu_div (&ans, &wop1, &wop2); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); sim_fpu_div (&ans, &wop1, &wop2); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } uword64 UNUSED Recip(op,fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop, op); sim_fpu_inv (&ans, &wop); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop, op); sim_fpu_inv (&ans, &wop); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } uword64 SquareRoot(op,fmt) uword64 op; FP_formats fmt; { uword64 result = 0; #ifdef DEBUG printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop; sim_fpu ans; unsigned32 res; sim_fpu_32to (&wop, op); sim_fpu_sqrt (&ans, &wop); sim_fpu_to32 (&res, &ans); result = res; break; } case fmt_double: { sim_fpu wop; sim_fpu ans; unsigned64 res; sim_fpu_64to (&wop, op); sim_fpu_sqrt (&ans, &wop); sim_fpu_to64 (&res, &ans); result = res; break; } default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } #if 0 uword64 Max (uword64 op1, uword64 op2, FP_formats fmt) { int cmp; unsigned64 result; #ifdef DEBUG printf("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } switch (cmp) { case SIM_FPU_IS_SNAN: case SIM_FPU_IS_QNAN: result = op1; case SIM_FPU_IS_NINF: case SIM_FPU_IS_NNUMBER: case SIM_FPU_IS_NDENORM: case SIM_FPU_IS_NZERO: result = op2; /* op1 - op2 < 0 */ case SIM_FPU_IS_PINF: case SIM_FPU_IS_PNUMBER: case SIM_FPU_IS_PDENORM: case SIM_FPU_IS_PZERO: result = op1; /* op1 - op2 > 0 */ default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Max: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } #endif #if 0 uword64 Min (uword64 op1, uword64 op2, FP_formats fmt) { int cmp; unsigned64 result; #ifdef DEBUG printf("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2)); #endif /* DEBUG */ /* The registers must specify FPRs valid for operands of type "fmt". If they are not valid, the result is undefined. */ /* The format type should already have been checked: */ switch (fmt) { case fmt_single: { sim_fpu wop1; sim_fpu wop2; sim_fpu_32to (&wop1, op1); sim_fpu_32to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } case fmt_double: { sim_fpu wop1; sim_fpu wop2; sim_fpu_64to (&wop1, op1); sim_fpu_64to (&wop2, op2); cmp = sim_fpu_cmp (&wop1, &wop2); break; } default: fprintf (stderr, "Bad switch\n"); abort (); } switch (cmp) { case SIM_FPU_IS_SNAN: case SIM_FPU_IS_QNAN: result = op1; case SIM_FPU_IS_NINF: case SIM_FPU_IS_NNUMBER: case SIM_FPU_IS_NDENORM: case SIM_FPU_IS_NZERO: result = op1; /* op1 - op2 < 0 */ case SIM_FPU_IS_PINF: case SIM_FPU_IS_PNUMBER: case SIM_FPU_IS_PDENORM: case SIM_FPU_IS_PZERO: result = op2; /* op1 - op2 > 0 */ default: fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Min: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt)); #endif /* DEBUG */ return(result); } #endif uword64 convert (SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, uword64 op, FP_formats from, FP_formats to) { sim_fpu wop; sim_fpu_round round; unsigned32 result32; unsigned64 result64; #ifdef DEBUG #if 0 /* FIXME: doesn't compile */ printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC)); #endif #endif /* DEBUG */ switch (rm) { case FP_RM_NEAREST: /* Round result to nearest representable value. When two representable values are equally near, round to the value that has a least significant bit of zero (i.e. is even). */ round = sim_fpu_round_near; break; case FP_RM_TOZERO: /* Round result to the value closest to, and not greater in magnitude than, the result. */ round = sim_fpu_round_zero; break; case FP_RM_TOPINF: /* Round result to the value closest to, and not less than, the result. */ round = sim_fpu_round_up; break; case FP_RM_TOMINF: /* Round result to the value closest to, and not greater than, the result. */ round = sim_fpu_round_down; break; default: round = 0; fprintf (stderr, "Bad switch\n"); abort (); } /* Convert the input to sim_fpu internal format */ switch (from) { case fmt_double: sim_fpu_64to (&wop, op); break; case fmt_single: sim_fpu_32to (&wop, op); break; case fmt_word: sim_fpu_i32to (&wop, op, round); break; case fmt_long: sim_fpu_i64to (&wop, op, round); break; default: fprintf (stderr, "Bad switch\n"); abort (); } /* Convert sim_fpu format into the output */ /* The value WOP is converted to the destination format, rounding using mode RM. When the destination is a fixed-point format, then a source value of Infinity, NaN or one which would round to an integer outside the fixed point range then an IEEE Invalid Operation condition is raised. */ switch (to) { case fmt_single: sim_fpu_round_32 (&wop, round, 0); sim_fpu_to32 (&result32, &wop); result64 = result32; break; case fmt_double: sim_fpu_round_64 (&wop, round, 0); sim_fpu_to64 (&result64, &wop); break; case fmt_word: sim_fpu_to32i (&result32, &wop, round); result64 = result32; break; case fmt_long: sim_fpu_to64i (&result64, &wop, round); break; default: result64 = 0; fprintf (stderr, "Bad switch\n"); abort (); } #ifdef DEBUG printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result64),DOFMT(to)); #endif /* DEBUG */ return(result64); } /*-- co-processor support routines ------------------------------------------*/ static int UNUSED CoProcPresent(unsigned int coproc_number) { /* Return TRUE if simulator provides a model for the given co-processor number */ return(0); } void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword) { switch (coproc_num) { case 1: if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT) { #ifdef DEBUG printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword)); #endif StoreFPR(coproc_reg,fmt_word,(uword64)memword); FPR_STATE[coproc_reg] = fmt_uninterpreted; break; } default: #if 0 /* this should be controlled by a configuration option */ sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia)); #endif break; } return; } void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword) { #ifdef DEBUG printf("DBG: COP_LD: coproc_num = %d, coproc_reg = %d, value = 0x%s : PC = 0x%s\n", coproc_num, coproc_reg, pr_uword64(memword), pr_addr(cia) ); #endif switch (coproc_num) { case 1: if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT) { StoreFPR(coproc_reg,fmt_uninterpreted,memword); break; } default: #if 0 /* this message should be controlled by a configuration option */ sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia)); #endif break; } return; } unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg) { unsigned int value = 0; switch (coproc_num) { case 1: if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT) { FP_formats hold; hold = FPR_STATE[coproc_reg]; FPR_STATE[coproc_reg] = fmt_word; value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted); FPR_STATE[coproc_reg] = hold; break; } default: #if 0 /* should be controlled by configuration option */ sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia)); #endif break; } return(value); } uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg) { uword64 value = 0; switch (coproc_num) { case 1: if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT) { value = ValueFPR(coproc_reg,fmt_uninterpreted); break; } default: #if 0 /* should be controlled by configuration option */ sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia)); #endif break; } return(value); } void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction) { int coprocnum = ((instruction >> 26) & 3); switch (coprocnum) { case 0: /* standard CPU control and cache registers */ { int code = ((instruction >> 21) & 0x1F); int rt = ((instruction >> 16) & 0x1F); int rd = ((instruction >> 11) & 0x1F); int tail = instruction & 0x3ff; /* R4000 Users Manual (second edition) lists the following CP0 instructions: CODE><-RT><RD-><--TAIL---> DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000) DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000) MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000) MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000) TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001) TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010) TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110) TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000) CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii) ERET Exception return (VR4100 = 01000010000000000000000000011000) */ if (((code == 0x00) || (code == 0x04) /* MFC0 / MTC0 */ || (code == 0x01) || (code == 0x05)) /* DMFC0 / DMTC0 */ && tail == 0) { /* Clear double/single coprocessor move bit. */ code &= ~1; /* M[TF]C0 (32 bits) | DM[TF]C0 (64 bits) */ switch (rd) /* NOTEs: Standard CP0 registers */ { /* 0 = Index R4000 VR4100 VR4300 */ /* 1 = Random R4000 VR4100 VR4300 */ /* 2 = EntryLo0 R4000 VR4100 VR4300 */ /* 3 = EntryLo1 R4000 VR4100 VR4300 */ /* 4 = Context R4000 VR4100 VR4300 */ /* 5 = PageMask R4000 VR4100 VR4300 */ /* 6 = Wired R4000 VR4100 VR4300 */ /* 8 = BadVAddr R4000 VR4100 VR4300 */ /* 9 = Count R4000 VR4100 VR4300 */ /* 10 = EntryHi R4000 VR4100 VR4300 */ /* 11 = Compare R4000 VR4100 VR4300 */ /* 12 = SR R4000 VR4100 VR4300 */ #ifdef SUBTARGET_R3900 case 3: /* 3 = Config R3900 */ case 7: /* 7 = Cache R3900 */ case 15: /* 15 = PRID R3900 */ /* ignore */ break; case 8: /* 8 = BadVAddr R4000 VR4100 VR4300 */ if (code == 0x00) GPR[rt] = COP0_BADVADDR; else COP0_BADVADDR = GPR[rt]; break; #endif /* SUBTARGET_R3900 */ case 12: if (code == 0x00) GPR[rt] = SR; else SR = GPR[rt]; break; /* 13 = Cause R4000 VR4100 VR4300 */ case 13: if (code == 0x00) GPR[rt] = CAUSE; else CAUSE = GPR[rt]; break; /* 14 = EPC R4000 VR4100 VR4300 */ case 14: if (code == 0x00) GPR[rt] = (signed_word) (signed_address) EPC; else EPC = GPR[rt]; break; /* 15 = PRId R4000 VR4100 VR4300 */ #ifdef SUBTARGET_R3900 /* 16 = Debug */ case 16: if (code == 0x00) GPR[rt] = Debug; else Debug = GPR[rt]; break; #else /* 16 = Config R4000 VR4100 VR4300 */ case 16: if (code == 0x00) GPR[rt] = C0_CONFIG; else C0_CONFIG = GPR[rt]; break; #endif #ifdef SUBTARGET_R3900 /* 17 = Debug */ case 17: if (code == 0x00) GPR[rt] = DEPC; else DEPC = GPR[rt]; break; #else /* 17 = LLAddr R4000 VR4100 VR4300 */ #endif /* 18 = WatchLo R4000 VR4100 VR4300 */ /* 19 = WatchHi R4000 VR4100 VR4300 */ /* 20 = XContext R4000 VR4100 VR4300 */ /* 26 = PErr or ECC R4000 VR4100 VR4300 */ /* 27 = CacheErr R4000 VR4100 */ /* 28 = TagLo R4000 VR4100 VR4300 */ /* 29 = TagHi R4000 VR4100 VR4300 */ /* 30 = ErrorEPC R4000 VR4100 VR4300 */ if (STATE_VERBOSE_P(SD)) sim_io_eprintf (SD, "Warning: PC 0x%lx:interp.c decode_coproc DEADC0DE\n", (unsigned long)cia); GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */ /* CPR[0,rd] = GPR[rt]; */ default: if (code == 0x00) GPR[rt] = (signed_word) (signed32) COP0_GPR[rd]; else COP0_GPR[rd] = GPR[rt]; #if 0 if (code == 0x00) sim_io_printf(sd,"Warning: MFC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia); else sim_io_printf(sd,"Warning: MTC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia); #endif } } else if (code == 0x10 && (tail & 0x3f) == 0x18) { /* ERET */ if (SR & status_ERL) { /* Oops, not yet available */ sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet"); PC = EPC; SR &= ~status_ERL; } else { PC = EPC; SR &= ~status_EXL; } } else if (code == 0x10 && (tail & 0x3f) == 0x10) { /* RFE */ #ifdef SUBTARGET_R3900 /* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */ /* shift IE/KU history bits right */ SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0); /* TODO: CACHE register */ #endif /* SUBTARGET_R3900 */ } else if (code == 0x10 && (tail & 0x3f) == 0x1F) { /* DERET */ Debug &= ~Debug_DM; DELAYSLOT(); DSPC = DEPC; } else sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia)); /* TODO: When executing an ERET or RFE instruction we should clear LLBIT, to ensure that any out-standing atomic read/modify/write sequence fails. */ } break; case 2: /* co-processor 2 */ { int handle = 0; if(! handle) { sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n", instruction,pr_addr(cia)); } } break; case 1: /* should not occur (FPU co-processor) */ case 3: /* should not occur (FPU co-processor) */ SignalException(ReservedInstruction,instruction); break; } return; } /* This code copied from gdb's utils.c. Would like to share this code, but don't know of a common place where both could get to it. */ /* Temporary storage using circular buffer */ #define NUMCELLS 16 #define CELLSIZE 32 static char* get_cell (void) { static char buf[NUMCELLS][CELLSIZE]; static int cell=0; if (++cell>=NUMCELLS) cell=0; return buf[cell]; } /* Print routines to handle variable size regs, etc */ /* Eliminate warning from compiler on 32-bit systems */ static int thirty_two = 32; char* pr_addr(addr) SIM_ADDR addr; { char *paddr_str=get_cell(); switch (sizeof(addr)) { case 8: sprintf(paddr_str,"%08lx%08lx", (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff)); break; case 4: sprintf(paddr_str,"%08lx",(unsigned long)addr); break; case 2: sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff)); break; default: sprintf(paddr_str,"%x",addr); } return paddr_str; } char* pr_uword64(addr) uword64 addr; { char *paddr_str=get_cell(); sprintf(paddr_str,"%08lx%08lx", (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff)); return paddr_str; } void mips_core_signal (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, unsigned map, int nr_bytes, address_word addr, transfer_type transfer, sim_core_signals sig) { const char *copy = (transfer == read_transfer ? "read" : "write"); address_word ip = CIA_ADDR (cia); switch (sig) { case sim_core_unmapped_signal: sim_io_eprintf (sd, "mips-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n", nr_bytes, copy, (unsigned long) addr, (unsigned long) ip); COP0_BADVADDR = addr; SignalExceptionDataReference(); break; case sim_core_unaligned_signal: sim_io_eprintf (sd, "mips-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n", nr_bytes, copy, (unsigned long) addr, (unsigned long) ip); COP0_BADVADDR = addr; if(transfer == read_transfer) SignalExceptionAddressLoad(); else SignalExceptionAddressStore(); break; default: sim_engine_abort (sd, cpu, cia, "mips_core_signal - internal error - bad switch"); } } void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia) { ASSERT(cpu != NULL); if(cpu->exc_suspended > 0) sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", cpu->exc_suspended); PC = cia; memcpy(cpu->exc_trigger_registers, cpu->registers, sizeof(cpu->exc_trigger_registers)); cpu->exc_suspended = 0; } void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception) { ASSERT(cpu != NULL); if(cpu->exc_suspended > 0) sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n", cpu->exc_suspended, exception); memcpy(cpu->exc_suspend_registers, cpu->registers, sizeof(cpu->exc_suspend_registers)); memcpy(cpu->registers, cpu->exc_trigger_registers, sizeof(cpu->registers)); cpu->exc_suspended = exception; } void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception) { ASSERT(cpu != NULL); if(exception == 0 && cpu->exc_suspended > 0) { /* warn not for breakpoints */ if(cpu->exc_suspended != sim_signal_to_host(sd, SIM_SIGTRAP)) sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n", cpu->exc_suspended); } else if(exception != 0 && cpu->exc_suspended > 0) { if(exception != cpu->exc_suspended) sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n", cpu->exc_suspended, exception); memcpy(cpu->registers, cpu->exc_suspend_registers, sizeof(cpu->registers)); } else if(exception != 0 && cpu->exc_suspended == 0) { sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception); } cpu->exc_suspended = 0; } /*---------------------------------------------------------------------------*/ /*> EOF interp.c <*/