OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [jtag/] [jp2.c] - Rev 1773

Go to most recent revision | Compare with Previous | Blame | View Log

/* jp2-linux.c -- JTAG protocol via parallel port for linux
   Copyright(C) 2001 Marko Mlinar, markom@opencores.org
   Code for TCP/IP copied from gdb, by Chris Ziomkowski
 
This file is part of OpenRISC 1000 Architectural Simulator.
 
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
 
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
 
/* Establishes jtag proxy server and communicates with parallel
 port directly.  Requires root access. */
 
#include <assert.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
 
#include "mc.h"
#include "gdb.h"
#include "jp2.h"
#include "jp.h"
 
#define TC_RESET           0
#define TC_BRIGHT          1
#define TC_DIM             2
#define TC_UNDERLINE       3
#define TC_BLINK           4
#define TC_REVERSE         7
#define TC_HIDDEN          8
 
#define TC_BLACK           0
#define TC_RED             1
#define TC_GREEN           2
#define TC_YELLOW          3
#define TC_BLUE            4
#define TC_MAGENTA         5
#define TC_CYAN            6
#define TC_WHITE           7
 
#define SDRAM_BASE       0x00000000
#define SDRAM_SIZE       0x04000000
#define SRAM_BASE        0x40000000
#define SRAM_SIZE        0x04000000 // This is not ok
 
 
int err = 0;
int set_pc = 0;
int set_step = 0;
int waiting = 0;
 
/* Scan chain info. */
static int chain_addr_size[] = { 0,  32, 0,  0,  5,  32, 32};
static int chain_data_size[] = { 0,  32, 0,  32, 32, 32, 32};
static int chain_is_valid[]  = { 0,  1,  0,  1,  1,  1,   1};
static int chain_has_crc[]   = { 0,  1,  0,  1,  1,  1,   1};
static int chain_has_rw[]    = { 0,  1,  0,  0,  1,  1,   1};
 
/* Currently selected scan chain - just to prevent unnecessary
   transfers. */
static int current_chain = -1;
 
/* The chain that should be currently selected. */
static int dbg_chain = -1;
 
/* Crc of current read or written data.  */
static int crc_r, crc_w = 0;
 
/* Address of previous read */
static unsigned long prev_regno = 0;
 
/* Generates new crc, sending in new bit input_bit */
static unsigned long crc_calc(unsigned long crc, int input_bit) {
  unsigned long d = (input_bit&1) ? 0xfffffff : 0x0000000;
  unsigned long crc_32 = ((crc >> 31)&1) ? 0xfffffff : 0x0000000;
  crc <<= 1;
  return crc ^ (d ^ crc_32) & DBG_CRC_POLY;
}
 
/* Writes TCLK=0, TRST=1, TMS=bit1, TDI=bit0
   and    TCLK=1, TRST=1, TMS=bit1, TDI=bit0 */
static void jp2_write_JTAG(uint8_t packet) {
  uint8_t data = TRST_BIT;
  if(packet & 1) data |= TDI_BIT;
  if(packet & 2) data |= TMS_BIT;
 
  jp_out(data);
  jp_wait();
  crc_w = crc_calc(crc_w, packet&1);
 
  /* rise clock */
  jp_out(data | TCLK_BIT);
  jp_wait();
}
 
/* Reads TDI.  */
static int jp2_read_JTAG() {
  uint8_t data;
  data = jp_in();
  crc_r = crc_calc(crc_r, data);
  return data;
}
 
/* Writes bitstream.  LS bit first if len < 0, MS bit first if len > 0.  */
static void jp2_write_stream(ULONGEST stream, int len, int set_last_bit) {
  int i;
  if (len < 0) {
    len = -len;
    debug("writeL%d(", len);
    for(i = 0; i < len - 1; i++)
      jp2_write_JTAG((stream >> i) & 1);
 
    if(set_last_bit) jp2_write_JTAG((stream >>(len - 1))& 1 | TMS);
    else jp2_write_JTAG((stream >>(len - 1))& 1);
  } else {
    debug("write%d(", len);
    for(i = 0; i < len - 1; i++)
      jp2_write_JTAG((stream >> (len - 1 - i)) & 1);
 
    if(set_last_bit) jp2_write_JTAG((stream >> 0) & 1 | TMS);
    else jp2_write_JTAG((stream >> 0)& 1);
  }
  debug(")\n");
}
 
/* Gets bitstream.  LS bit first if len < 0, MS bit first if len > 0.  */
static ULONGEST jp2_read_stream(unsigned long stream, int len, int set_last_bit) {
  int i;
  ULONGEST data = 0;
  if (len < 0) {
    debug("readL(");
    for(i = 0; i < len - 1; i++) {      
      jp2_write_JTAG((stream >> i) & 1);   /* LSB first */
      data |= jp2_read_JTAG() << i; /* LSB first */
    }
 
    if (set_last_bit) jp2_write_JTAG((stream >> (len - 1)) & 1 | TMS);
    else jp2_write_JTAG((stream >> (len - 1)) & 1);
    data |= jp2_read_JTAG() << (len - 1);
  } else {
    debug("read(");
    for(i = 0; i < len - 1; i++) {      
      jp2_write_JTAG((stream >> (len - 1 - i)) & 1);   /* MSB first */
      data |= jp2_read_JTAG() << (len - 1 - i); /* MSB first */
    }
 
    if (set_last_bit) jp2_write_JTAG((stream >> 0) & 1 | TMS);
    else jp2_write_JTAG((stream >> 0) & 1);
    data |= jp2_read_JTAG() << 0;
  }
  debug(")\n");
  return data;
}
 
/* Sets scan chain.  */
void jtag_set_ir(int ir) {
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(TMS); /* SELECT_IR SCAN */
 
  jp2_write_JTAG(0); /* CAPTURE_IR */
  jp2_write_JTAG(0); /* SHIFT_IR */      
 
  /* write data, EXIT1_IR */
  jp2_write_stream(ir, -JI_SIZE, 1);
 
  jp2_write_JTAG(TMS); /* UPDATE_IR */
  jp2_write_JTAG(0); /* IDLE */  
  current_chain = -1;
}
 
/* Resets JTAG
   Writes TRST=0
   and    TRST=1 */
static void jp2_reset_JTAG() {
  int i;
  debug2("\nreset(");
  jp_out(0);
  JTAG_RETRY_WAIT();
  /* In case we don't have TRST reset it manually */
  for(i = 0; i < 8; i++) jp2_write_JTAG(TMS);
  jp_out(TRST_BIT);
  JTAG_RETRY_WAIT();
  jp2_write_JTAG(0);
  debug2(")\n");
}
 
/* Resets JTAG, and sets DEBUG scan chain */
static int dbg_reset() {
  int err;
  unsigned long id;
  jp2_reset_JTAG();
 
  /* read ID */
  jtag_set_ir(JI_IDCODE);
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(0); /* CAPTURE_DR */
  jp2_write_JTAG(0); /* SHIFT_DR */      
  /* read ID, EXIT1_DR */
  crc_w = 0xffffffff;
  id = jp2_read_stream(0, 32, 1);
  jp2_write_JTAG(TMS); /* UPDATE_DR */
  jp2_write_JTAG(0); /* IDLE */  
  printf("JTAG ID = %08x\n", id);
 
  /* select debug scan chain and stay in it forever */
  jtag_set_ir(JI_DEBUG);
  current_chain = -1;
  return DBG_ERR_OK;
}
 
/* counts retries and returns zero if we should abort */
/* TODO: dinamically adjust timings for jp2 */
static int retry_no = 0;
int retry_do() {
  int i, err;
  printf("RETRY\n");
  //exit(2);
  if (retry_no >= NUM_SOFT_RETRIES) {
    if ((err = dbg_reset())) return err;
  } else { /* quick reset */
    for(i = 0; i < 8; i++) jp2_write_JTAG(TMS);
    jp2_write_JTAG(0); /* go into IDLE state */
  }
  if (retry_no >= NUM_SOFT_RETRIES + NUM_HARD_RETRIES) {
    retry_no = 0;
    return 0;
  }
  retry_no++;
  return 1;
}
 
/* resets retry counter */
void retry_ok() {
  retry_no = 0;
}
 
/* Sets scan chain.  */
int dbg_set_chain(int chain) {
  int status, crc_generated, crc_read;
  dbg_chain = chain;
 
try_again:
  if (current_chain == chain) return DBG_ERR_OK;
  current_chain = -1;
  debug("\n");
  debug2("set_chain %i\n", chain);
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(0); /* CAPTURE_DR */
  jp2_write_JTAG(0); /* SHIFT_DR */      
 
  /* write data, EXIT1_DR */
  crc_w = 0xffffffff;
  jp2_write_stream((chain & 0xf | (1<<DC_SIZE)), DC_SIZE + 1, 0);
  jp2_write_stream(crc_w, DBG_CRC_SIZE, 0);
  crc_r = 0xffffffff;
  status = jp2_read_stream(0, DC_STATUS_SIZE, 0);
  crc_generated = crc_r;
  crc_read = jp2_read_stream(0, DBG_CRC_SIZE, 1);
 
  //printf("%x %x %x\n", status, crc_read, crc_generated);
  /* CRCs must match, otherwise retry */
  if (crc_read != crc_generated) {
    if (retry_do()) goto try_again;
    else return DBG_ERR_CRC;
  }
  /* we should read expected status value, otherwise retry */
  if (status != 0) {
    if (retry_do()) goto try_again;
    else return status;
  }
 
  /* reset retry counter */
  retry_ok();
 
  jp2_write_JTAG(TMS); /* UPDATE_DR */
  jp2_write_JTAG(0); /* IDLE */  
  current_chain = chain;
  return DBG_ERR_OK;
}
 
/* sends out a command with 32bit address and 16bit length, if len >= 0 */
int dbg_command(int type, unsigned long adr, int len) {
  int status, crc_generated, crc_read;
 
try_again:
  dbg_set_chain(dbg_chain);
  debug("\n");
  debug2("comm %i\n", type);
 
  /***** WRITEx *****/
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(0); /* CAPTURE_DR */
  jp2_write_JTAG(0); /* SHIFT_DR */      
 
  /* write data, EXIT1_DR */
  crc_w = 0xffffffff;
  jp2_write_stream((DI_WRITE_CMD & 0xf | (0<<DC_SIZE)), DC_SIZE + 1, 0);
  jp2_write_stream(type, 4, 0);
  jp2_write_stream(adr, 32, 0);
  assert(len > 0);
  jp2_write_stream(len - 1, 16, 0);
  jp2_write_stream(crc_w, DBG_CRC_SIZE, 0);
  crc_r = 0xffffffff;
  status = jp2_read_stream(0, DC_STATUS_SIZE, 0);
  crc_generated = crc_r;
  crc_read = jp2_read_stream(0, DBG_CRC_SIZE, 1);
 
  /* CRCs must match, otherwise retry */
  if (crc_read != crc_generated) {
    if (retry_do()) goto try_again;
    else return DBG_ERR_CRC;
  }
  /* we should read expected status value, otherwise retry */
  if (status != 0) {
    if (retry_do()) goto try_again;
    else return status;
  }
  jp2_write_JTAG(TMS); /* UPDATE_DR */
  jp2_write_JTAG(0); /* IDLE */  
 
  /* reset retry counter */
  retry_ok();
  return DBG_ERR_OK;
}
 
/* writes a ctrl reg */
int dbg_ctrl(int reset, int stall) {
  int status, crc_generated, crc_read;
 
try_again:
  dbg_set_chain(dbg_chain);
  debug("\n");
  debug2("ctrl\n");
 
  /***** WRITEx *****/
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(0); /* CAPTURE_DR */
  jp2_write_JTAG(0); /* SHIFT_DR */      
 
  /* write data, EXIT1_DR */
  crc_w = 0xffffffff;
  jp2_write_stream((DI_WRITE_CTRL & 0xf | (0<<DC_SIZE)), DC_SIZE + 1, 0);
  jp2_write_stream(reset, 1, 0);
  jp2_write_stream(stall, 1, 0);
  jp2_write_stream(0, 50, 0);
  jp2_write_stream(crc_w, DBG_CRC_SIZE, 0);
  crc_r = 0xffffffff;
  status = jp2_read_stream(0, DC_STATUS_SIZE, 0);
  crc_generated = crc_r;
  crc_read = jp2_read_stream(0, DBG_CRC_SIZE, 1);
 
  /* CRCs must match, otherwise retry */
  //printf("%x %x %x\n", status, crc_read, crc_generated);
  if (crc_read != crc_generated) {
    if (retry_do()) goto try_again;
    else return DBG_ERR_CRC;
  }
  /* we should read expected status value, otherwise retry */
  if (status != 0) {
    if (retry_do()) goto try_again;
    else return status;
  }
  jp2_write_JTAG(TMS); /* UPDATE_DR */
  jp2_write_JTAG(0); /* IDLE */  
 
  /* reset retry counter */
  retry_ok();
  return DBG_ERR_OK;
}
 
/* reads control register */
int dbg_ctrl_read(int *reset, int *stall) {
  int status, crc_generated, crc_read;
 
try_again:
  dbg_set_chain(dbg_chain);
  debug("\n");
  debug2("ctrl_read\n");
 
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(0); /* CAPTURE_DR */
  jp2_write_JTAG(0); /* SHIFT_DR */      
 
  /* write data, EXIT1_DR */
  crc_w = 0xffffffff;
  jp2_write_stream(DI_READ_CTRL | (0<<DC_SIZE), DC_SIZE + 1, 0);
  jp2_write_stream(crc_w, DBG_CRC_SIZE, 0);
  crc_r = 0xffffffff;
  *reset = jp2_read_stream(0, 1, 0);
  *stall = jp2_read_stream(0, 1, 0);
  jp2_read_stream(0, 50, 0);
  status = jp2_read_stream(0, DC_STATUS_SIZE, 0);
  crc_generated = crc_r;
  crc_read = jp2_read_stream(0, DBG_CRC_SIZE, 1);
 
  /* CRCs must match, otherwise retry */
  //printf("%x %x %x\n", status, crc_read, crc_generated);
  if (crc_read != crc_generated) {
    if (retry_do()) goto try_again;
    else return DBG_ERR_CRC;
  }
  /* we should read expected status value, otherwise retry */
  if (status != 0) {
    if (retry_do()) goto try_again;
    else return status;
  }
  jp2_write_JTAG(TMS); /* UPDATE_DR */
  jp2_write_JTAG(0); /* IDLE */  
 
  /* reset retry counter */
  retry_ok();
  return DBG_ERR_OK;
}
/* issues a burst read/write */
int dbg_go(unsigned char *data, unsigned short len, int read) {
  int status, crc_generated, crc_read;
  int i;
 
try_again:
  dbg_set_chain(dbg_chain);
  debug("\n");
  debug2("go len = %d\n", len);
 
  jp2_write_JTAG(TMS); /* SELECT_DR SCAN */
  jp2_write_JTAG(0); /* CAPTURE_DR */
  jp2_write_JTAG(0); /* SHIFT_DR */      
 
  /* write data, EXIT1_DR */
  crc_w = 0xffffffff;
  jp2_write_stream(DI_GO | (0<<DC_SIZE), DC_SIZE + 1, 0);
  if (!read) {
    /* reverse byte ordering, since we must send in big endian */
    for (i = 0; i < len; i++)
      jp2_write_stream(data[i], 8, 0);
  }
  jp2_write_stream(crc_w, DBG_CRC_SIZE, 0);
  crc_r = 0xffffffff;
  if (read) {
    /* reverse byte ordering, since we must send in big endian */
    for (i = 0; i < len; i++)
      data[i] = jp2_read_stream(data[i], 8, 0);
  }
  status = jp2_read_stream(0, DC_STATUS_SIZE, 0);
  crc_generated = crc_r;
  crc_read = jp2_read_stream(0, DBG_CRC_SIZE, 1);
 
  /* CRCs must match, otherwise retry */
  //printf("%x %x %x\n", status, crc_read, crc_generated);
  if (crc_read != crc_generated) {
    if (retry_do()) goto try_again;
    else return DBG_ERR_CRC;
  }
  /* we should read expected status value, otherwise retry */
  if (status != 0) {
    if (retry_do()) goto try_again;
    else return status;
  }
  jp2_write_JTAG(TMS); /* UPDATE_DR */
  jp2_write_JTAG(0); /* IDLE */  
 
  /* reset retry counter */
  retry_ok();
  return DBG_ERR_OK;
}
 
/* read a word from wishbone */
int dbg_wb_read32(unsigned long adr, unsigned long *data) {
  int err;
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x6, adr, 4))) return err;
  if ((err = dbg_go((unsigned char*)data, 4, 1))) return err;
  *data = ntohl(*data);
  return err;
}
 
/* write a word to wishbone */
int dbg_wb_write32(unsigned long adr, unsigned long data) {
  int err;
  data = ntohl(data);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x2, adr, 4))) return err;
  if ((err = dbg_go((unsigned char*)&data, 4, 0))) return err;
  return DBG_ERR_OK;
}
 
/* write a word to wishbone */
int dbg_wb_write16(unsigned long adr, unsigned short data) {
  int err;
  data = ntohs(data);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x1, adr, 2))) return err;
  if ((err = dbg_go((unsigned char*)&data, 2, 0))) return err;
  return DBG_ERR_OK;
}
 
/* write a word to wishbone */
int dbg_wb_write8(unsigned long adr, unsigned long data) {
  int err;
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x0, adr, 1))) return err;
  if ((err = dbg_go((unsigned char*)&data, 1, 0))) return err;
  return DBG_ERR_OK;
}
 
/* read a block from wishbone */
int dbg_wb_read_block32(unsigned long adr, unsigned long *data, int len) {
  int i, err;
  //printf("%08x %08x\n", adr, len);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x6, adr, len))) return err;
  if ((err = dbg_go((unsigned char*)data, len, 1))) return err;
  for (i = 0; i < len / 4; i ++) data[i] = ntohl(data[i]);
  //printf("%08x\n", err);
  return DBG_ERR_OK;
}
 
/* read a block from wishbone */
int dbg_wb_read_block16(unsigned long adr, unsigned short *data, int len) {
  int i, err;
  //printf("%08x %08x\n", adr, len);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x5, adr, len))) return err;
  if ((err = dbg_go((unsigned char*)data, len, 1))) return err;
  for (i = 0; i < len / 2; i ++) data[i] = ntohs(data[i]);
  //printf("%08x\n", err);
  return DBG_ERR_OK;
}
 
/* read a block from wishbone */
int dbg_wb_read_block8(unsigned long adr, unsigned char *data, int len) {
  int i, err;
  //printf("%08x %08x\n", adr, len);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x4, adr, len))) return err;
  if ((err = dbg_go((unsigned char*)data, len, 1))) return err;
  //printf("%08x\n", err);
  return DBG_ERR_OK;
}
 
/* write a block to wishbone */
int dbg_wb_write_block32(unsigned long adr, unsigned long *data, int len) {
  int i, err;
  for (i = 0; i < len / 4; i ++) data[i] = ntohl(data[i]);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x2, adr, len))) return err;
  if ((err = dbg_go((unsigned char*)data, len, 0))) return err;
  return DBG_ERR_OK;
}
 
/* write a block to wishbone */
int dbg_wb_write_block16(unsigned long adr, unsigned short *data, int len) {
  int i, err;
  for (i = 0; i < len / 2; i ++) data[i] = ntohs(data[i]);
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x1, adr, len))) return err;
  if ((err = dbg_go((unsigned char*)data, len, 0))) return err;
  return DBG_ERR_OK;
}
 
/* write a block to wishbone */
int dbg_wb_write_block8(unsigned long adr, unsigned char *data, int len) {
  int i, err;
  if ((err = dbg_set_chain(DC_WISHBONE))) return err;
  if ((err = dbg_command(0x0, adr, len))) return err;
  if ((err = dbg_go((unsigned char*)data, len, 0))) return err;
  return DBG_ERR_OK;
}
 
/* read a register from cpu */
int dbg_cpu0_read(unsigned long adr, unsigned long *data) {
  int err;
  if ((err = dbg_set_chain(DC_CPU0))) return err;
  if ((err = dbg_command(0x6, adr, 4))) return err;
  if ((err = dbg_go((unsigned char*)data, 4, 1))) return err;
  *data = ntohl(*data);
  return DBG_ERR_OK;
}
 
/* write a cpu register */
int dbg_cpu0_write(unsigned long adr, unsigned long data) {
  int err;
  data = ntohl(data);
  if ((err = dbg_set_chain(DC_CPU0))) return err;
  if ((err = dbg_command(0x2, adr, 4))) return err;
  if ((err = dbg_go((unsigned char*)&data, 4, 0))) return err;
  return DBG_ERR_OK;
}
 
/* read a register from cpu */
int dbg_cpu1_read(unsigned long adr, unsigned long *data) {
  int err;
  if ((err = dbg_set_chain(DC_CPU1))) return err;
  if ((err = dbg_command(0x6, adr, 4))) return err;
  if ((err = dbg_go((unsigned char*)data, 4, 1))) return err;
  *data = ntohl(*data);
  return DBG_ERR_OK;
}
 
/* write a cpu register */
int dbg_cpu1_write(unsigned long adr, unsigned long data) {
  int err;
  data = ntohl(data);
  if ((err = dbg_set_chain(DC_CPU1))) return err;
  if ((err = dbg_command(0x2, adr, 4))) return err;
  if ((err = dbg_go((unsigned char*)&data, 4, 0))) return err;
  return DBG_ERR_OK;
}
 
/* write a cpu module register */
int dbg_cpu1_write_reg(unsigned long adr, unsigned char data) {
  int err;
  if ((err = dbg_set_chain(DC_CPU1))) return err;
  if ((err = dbg_ctrl(data & 2, data &1))) return err;
  return DBG_ERR_OK;
}
 
/* read a register from cpu module */
int dbg_cpu1_read_ctrl(unsigned long adr, unsigned char *data) {
  int err;
  int r, s;
  if ((err = dbg_set_chain(DC_CPU1))) return err;
  if ((err = dbg_ctrl_read(&r, &s))) return err;
  *data = (r << 1) | s;
  return DBG_ERR_OK;
}
 
/* write a cpu module register */
int dbg_cpu0_write_ctrl(unsigned long adr, unsigned char data) {
  int err;
  if ((err = dbg_set_chain(DC_CPU0))) return err;
  if ((err = dbg_ctrl(data & 2, data &1))) return err;
  return DBG_ERR_OK;
}
 
/* read a register from cpu module */
int dbg_cpu0_read_ctrl(unsigned long adr, unsigned char *data) {
  int err;
  int r, s;
  if ((err = dbg_set_chain(DC_CPU0))) return err;
  if ((err = dbg_ctrl_read(&r, &s))) return err;
  *data = (r << 1) | s;
  return DBG_ERR_OK;
}
 
void check(char *fn, int l, int i) {
  if (i != DBG_ERR_OK) {
    fprintf(stderr, "%s:%d: Jtag error %d occured; exiting.\n", fn, l, i);
    exit(1);
  }
}
 
 
void test_sdram (void) {
  unsigned long insn;
  unsigned long i;
  unsigned long data4_out[0x08];
  unsigned long data4_in[0x08];
  unsigned short data2_out[0x10];
  unsigned short data2_in[0x10];
  unsigned char data1_out[0x20];
  unsigned char data1_in[0x20];
 
  printf("Start SDRAM WR\n");
  for (i=0x10; i<(SDRAM_SIZE+SDRAM_BASE); i=i<<1) {
    //printf("0x%x: 0x%x\n", SDRAM_BASE+i, i);
    CHECK(dbg_wb_write32(SDRAM_BASE+i, i));
  }
 
  printf("Start SDRAM RD\n");
  for (i=0x10; i<(SDRAM_SIZE+SDRAM_BASE); i=i<<1) {
    CHECK(dbg_wb_read32(SDRAM_BASE+i, &insn));
    //printf("0x%x: 0x%x\n", SDRAM_BASE+i, insn);
    if (i != insn) {
      printf("SDRAM not OK");
      exit (1);
    }
  }
 
  printf("32-bit block write from %x to %x\n", SDRAM_BASE, SDRAM_BASE + 0x20);
  for (i=0; i<(0x20/4); i++) {
    data4_out[i] = data4_in[i] = ((4*i+3)<<24) | ((4*i+2)<<16) | ((4*i+1)<<8) | (4*i);
    //printf("data_out = %0x\n", data4_out[i]);
  }
 
  //printf("Press a key for write\n"); getchar();
  CHECK(dbg_wb_write_block32(SDRAM_BASE, &data4_out[0], 0x20));
 
  // 32-bit block read is used for checking
  printf("32-bit block read from %x to %x\n", SDRAM_BASE, SDRAM_BASE + 0x20);
  CHECK(dbg_wb_read_block32(SDRAM_BASE, &data4_out[0], 0x20));
  for (i=0; i<(0x20/4); i++) {
    //printf("0x%x: 0x%x\n", SDRAM_BASE+(i*4), data_out[i]);
    if (data4_in[i] != data4_out[i]) {
      printf("SDRAM data differs. Expected: 0x%0x, read: 0x%0x\n", data4_in[i], data4_out[i]);
      exit(1);
    }
  }
 
  printf("16-bit block write from %x to %x\n", SDRAM_BASE, SDRAM_BASE + 0x20);
  for (i=0; i<(0x20/2); i++) {
    data2_out[i] = data2_in[i] = ((4*i+1)<<8) | (4*i);
    //printf("data_out = %0x\n", data_out[i]);
  }
  CHECK(dbg_wb_write_block16(SDRAM_BASE, &data2_out[0], 0x20));
 
  // 16-bit block read is used for checking
  printf("16-bit block read from %x to %x\n", SDRAM_BASE, SDRAM_BASE + 0x20);
  CHECK(dbg_wb_read_block16(SDRAM_BASE, &data2_out[0], 0x20));
  for (i=0; i<(0x20/2); i++) {
    //printf("0x%x: 0x%x\n", SDRAM_BASE+(i*4), data_out[i]);
    if (data2_in[i] != data2_out[i]) {
      printf("SDRAM data differs. Expected: 0x%0x, read: 0x%0x\n", data2_in[i], data2_out[i]);
      exit(1);
    }
  }
 
  printf("8-bit block write from %x to %x\n", SDRAM_BASE, SDRAM_BASE + 0x20);
  for (i=0; i<(0x20/1); i++) {
    data1_out[i] = data1_in[i] = (4*i);
    //printf("data_out = %0x\n", data_out[i]);
  }
  CHECK(dbg_wb_write_block8(SDRAM_BASE, &data1_out[0], 0x20));
 
  // 32-bit block read is used for checking
  printf("8-bit block read from %x to %x\n", SDRAM_BASE, SDRAM_BASE + 0x20);
  CHECK(dbg_wb_read_block8(SDRAM_BASE, &data1_out[0], 0x20));
  for (i=0; i<(0x20/1); i++) {
    //printf("0x%x: 0x%x\n", SDRAM_BASE+(i*4), data_out[i]);
    if (data1_in[i] != data1_out[i]) {
      printf("SDRAM data differs. Expected: 0x%0x, read: 0x%0x\n", data1_in[i], data1_out[i]);
      exit(1);
    }
  }
}
 
 
void dbg_test() {
  int i;
  unsigned long npc, ppc, r1, insn, result;
  unsigned char stalled;
#if 1
#define MC_BASE_ADDR     0x93000000
#define FLASH_BASE_ADDR  0xf0000000
#define FLASH_BAR_VAL    FLASH_BASE_ADDR
#define FLASH_AMR_VAL    0xf0000000
#define FLASH_WTR_VAL    0x00011009
#define FLASH_RTR_VAL    0x01002009
#define SDRAM_BASE_ADDR  0x00000000
#define SDRAM_BAR_VAL    SDRAM_BASE_ADDR
//#define SDRAM_SIZE       0x04000000  defined at the start of this program
#define SDRAM_AMR_VAL    (~(SDRAM_SIZE -1))
#define SDRAM_RATR_VAL   0x00000006
#define SDRAM_RCDR_VAL   0x00000002
#define SDRAM_RCTR_VAL   0x00000006
#define SDRAM_REFCTR_VAL 0x00000006
#define SDRAM_PTR_VAL    0x00000001
#define SDRAM_RRDR_VAL   0x00000000
#define SDRAM_RIR_VAL    0x000000C0
 
#define MC_BAR_0         0x00
#define MC_AMR_0         0x04
#define MC_WTR_0         0x30
#define MC_RTR_0         0x34
#define MC_OSR           0xe8
#define MC_BAR_1         0x08
#define MC_BAR_4         0x80
#define MC_AMR_1         0x0c
#define MC_AMR_4         0x84
#define MC_CCR_1         0x24
#define MC_CCR_4         0xa0
#define MC_RATR          0xb0
#define MC_RCDR          0xc8
#define MC_RCTR          0xb4
#define MC_REFCTR        0xc4
#define MC_PTR           0xbc
#define MC_RRDR          0xb8
#define MC_RIR           0xcc
#define MC_ORR           0xe4
 
  //usleep(1000000);
 
  printf("Stall 8051\n");
  CHECK(dbg_cpu1_write_reg(0, 0x01)); // stall 8051
 
  printf("Stall or1k\n");
  CHECK(dbg_cpu0_write_ctrl(0, 0x01));      // stall or1k
 
  CHECK(dbg_cpu1_read_ctrl(0, &stalled));
  if (!(stalled & 0x1)) {
    printf("8051 should be stalled\n");   // check stall 8051
    exit(1);
  }
 
  CHECK(dbg_cpu0_read_ctrl(0, &stalled));
  if (!(stalled & 0x1)) {
    printf("or1k should be stalled\n");   // check stall or1k
    exit(1);
  }
 
  printf("Initialize Memory Controller\n");
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_BAR_0, FLASH_BAR_VAL & 0xffff0000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_AMR_0, FLASH_AMR_VAL & 0xffff0000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_WTR_0, FLASH_WTR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_RTR_0, FLASH_RTR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_OSR, 0x40000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_BAR_4, SDRAM_BAR_VAL & 0xffff0000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_AMR_4, SDRAM_AMR_VAL & 0xffff0000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_CCR_4, 0x00bf0005));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_RATR, SDRAM_RATR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_RCDR, SDRAM_RCDR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_RCTR, SDRAM_RCTR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_REFCTR, SDRAM_REFCTR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_PTR, SDRAM_PTR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_RRDR, SDRAM_RRDR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_RIR, SDRAM_RIR_VAL));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_OSR, 0x5e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x5e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_OSR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x6e000000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_OSR, 0x7e000033));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_ORR, 0x7e000033));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_CCR_4, 0xc0bf0005));
 
  CHECK(dbg_wb_read32(MC_BASE_ADDR+MC_CCR_4, &insn));
  printf("expected %x, read %x\n", 0xc0bf0005, insn);
 
  // SRAM initialized to 0x40000000
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_BAR_1, SRAM_BASE & 0xffff0000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_AMR_1, ~(SRAM_SIZE - 1) & 0xffff0000));
  CHECK(dbg_wb_write32(MC_BASE_ADDR + MC_CCR_1, 0xc020001f));
#endif
 
#if 1
#define CPU_OP_ADR  0
#define CPU_SEL_ADR 1
 
  /* unstall the or1200 in highland_sys */
  printf("Unstall or1k\n");
  CHECK(dbg_wb_write32(0xb8070000, 2));
 
  CHECK(dbg_cpu1_read_ctrl(0, &stalled));
  if (!(stalled & 0x1)) {
    printf("8051 should be stalled\n");   // check stall 8051
    exit(1);
  }
 
  printf("Stall or1k\n");
  CHECK(dbg_cpu0_write_ctrl(0, 0x01));         // stall or1k
 
  printf("SDRAM test: \n");
  CHECK(dbg_wb_write32(SDRAM_BASE+0x00, 0x12345678));
  CHECK(dbg_wb_read32(SDRAM_BASE+0x00, &insn));
  printf("expected %x, read %x\n", 0x12345678, insn);
  if (insn != 0x12345678) exit(1);
 
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0000, 0x11112222));
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0000, &insn));
  printf("expected %x, read %x\n", 0x11112222, insn);
  if (insn != 0x11112222) exit(1);
 
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0004, 0x33334444));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0008, 0x55556666));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x000c, 0x77778888));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0010, 0x9999aaaa));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0014, 0xbbbbcccc));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0018, 0xddddeeee));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x001c, 0xffff0000));
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0020, 0xdeadbeef));
 
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0000, &insn));
  printf("expected %x, read %x\n", 0x11112222, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0004, &insn));
  printf("expected %x, read %x\n", 0x33334444, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0008, &insn));
  printf("expected %x, read %x\n", 0x55556666, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x000c, &insn));
  printf("expected %x, read %x\n", 0x77778888, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0010, &insn));
  printf("expected %x, read %x\n", 0x9999aaaa, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0014, &insn));
  printf("expected %x, read %x\n", 0xbbbbcccc, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0018, &insn));
  printf("expected %x, read %x\n", 0xddddeeee, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x001c, &insn));
  printf("expected %x, read %x\n", 0xffff0000, insn);
  CHECK(dbg_wb_read32(SDRAM_BASE+0x0020, &insn));
  printf("expected %x, read %x\n", 0xdeadbeef, insn);
 
  if (insn != 0xdeadbeef) {
    printf("SDRAM test failed !!!\n");
    exit(1);
  }
    else
    printf("SDRAM test passed\n");
 
  printf("SRAM test: \n");
  CHECK(dbg_wb_write32(SRAM_BASE+0x0000, 0x11112222));
  CHECK(dbg_wb_write32(SRAM_BASE+0x0004, 0x33334444));
  CHECK(dbg_wb_write32(SRAM_BASE+0x0008, 0x55556666));
  CHECK(dbg_wb_write32(SRAM_BASE+0x000c, 0x77778888));
  CHECK(dbg_wb_write32(SRAM_BASE+0x0010, 0x9999aaaa));
  CHECK(dbg_wb_write32(SRAM_BASE+0x0014, 0xbbbbcccc));
  CHECK(dbg_wb_write32(SRAM_BASE+0x0018, 0xddddeeee));
  CHECK(dbg_wb_write32(SRAM_BASE+0x001c, 0xffff0000));
  CHECK(dbg_wb_write32(SRAM_BASE+0x0020, 0xdedababa));
 
  CHECK(dbg_wb_read32(SRAM_BASE+0x0000, &insn));
  printf("expected %x, read %x\n", 0x11112222, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x0004, &insn));
  printf("expected %x, read %x\n", 0x33334444, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x0008, &insn));
  printf("expected %x, read %x\n", 0x55556666, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x000c, &insn));
  printf("expected %x, read %x\n", 0x77778888, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x0010, &insn));
  printf("expected %x, read %x\n", 0x9999aaaa, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x0014, &insn));
  printf("expected %x, read %x\n", 0xbbbbcccc, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x0018, &insn));
  printf("expected %x, read %x\n", 0xddddeeee, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x001c, &insn));
  printf("expected %x, read %x\n", 0xffff0000, insn);
  CHECK(dbg_wb_read32(SRAM_BASE+0x0020, &insn));
  printf("expected %x, read %x\n", 0xdedababa, insn);
 
  if (insn != 0xdedababa) {
    printf("SRAN test failed!!!\n");
    exit(1);
  }
    else
    printf("SRAM test passed\n");
 
  #if 1
    test_sdram();
  #endif
 
  CHECK(dbg_wb_write32(SDRAM_BASE+0x00, 0xe0000005));   /* l.xor   r0,r0,r0   */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x04, 0x9c200000));   /* l.addi  r1,r0,0x0  */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x08, 0x18400000));   /* l.movhi r2,0x4000  */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x0c, 0xa8420030));   /* l.ori   r2,r2,0x30 */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x10, 0x9c210001));   /* l.addi  r1,r1,1    */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x14, 0x9c210001));   /* l.addi  r1,r1,1    */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x18, 0xd4020800));   /* l.sw    0(r2),r1   */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x1c, 0x9c210001));   /* l.addi  r1,r1,1    */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x20, 0x84620000));   /* l.lwz   r3,0(r2)   */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x24, 0x03fffffb));   /* l.j     loop2      */
  CHECK(dbg_wb_write32(SDRAM_BASE+0x28, 0xe0211800));   /* l.add   r1,r1,r3   */
 
  CHECK(dbg_cpu0_write((0 << 11) + 17, 0x01));  /* Enable exceptions */
  CHECK(dbg_cpu0_write((6 << 11) + 20, 0x2000));  /* Trap causes stall */
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE));  /* Set PC */
  CHECK(dbg_cpu0_write((6 << 11) + 16, 1 << 22));  /* Set step bit */
  for(i = 0; i < 11; i++) {
    CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* 11x Unstall */
    do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  }
 
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000010, 0x00000028, 5);
  result = npc + ppc + r1;
 
  CHECK(dbg_cpu0_write((6 << 11) + 16, 0));  /* Reset step bit */
  CHECK(dbg_wb_read32(SDRAM_BASE + 0x28, &insn));  /* Set trap insn in delay slot */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x28, 0x21000001));
  CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
  do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x28, insn));  /* Set back original insn */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000010, 0x00000028, 8);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_wb_read32(SDRAM_BASE + 0x24, &insn));  /* Set trap insn in place of branch insn */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x24, 0x21000001));
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE + 0x10));  /* Set PC */
  CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
  do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x24, insn));  /* Set back original insn */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000028, 0x00000024, 11);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_wb_read32(SDRAM_BASE + 0x20, &insn));  /* Set trap insn before branch insn */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x20, 0x21000001));
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE + 0x24));  /* Set PC */
  CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
  do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x20, insn));  /* Set back original insn */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000024, 0x00000020, 24);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_wb_read32(SDRAM_BASE + 0x1c, &insn));  /* Set trap insn behind lsu insn */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x1c, 0x21000001));
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE + 0x20));  /* Set PC */
  CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
  do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x1c, insn));  /* Set back original insn */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000020, 0x0000001c, 49);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_wb_read32(SDRAM_BASE + 0x20, &insn));  /* Set trap insn very near previous one */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x20, 0x21000001));
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE + 0x1c));  /* Set PC */
  CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
  do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x20, insn));  /* Set back original insn */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000024, 0x00000020, 50);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_wb_read32(SDRAM_BASE + 0x10, &insn));  /* Set trap insn to the start */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x10, 0x21000001));
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE + 0x20)  /* Set PC */);
  CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
  do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  CHECK(dbg_wb_write32(SDRAM_BASE + 0x10, insn));  /* Set back original insn */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000014, 0x00000010, 99);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_cpu0_write((6 << 11) + 16, 1 << 22));  /* Set step bit */
  for(i = 0; i < 5; i++) {
    CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
    do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  }
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000028, 0x00000024, 101);
  result = npc + ppc + r1 + result;
 
  CHECK(dbg_cpu0_write((0 << 11) + 16, SDRAM_BASE + 0x24));  /* Set PC */
  for(i = 0; i < 2; i++) {
    CHECK(dbg_cpu0_write_ctrl(CPU_OP_ADR, 0x00));  /* Unstall */
    do CHECK(dbg_cpu0_read_ctrl(CPU_OP_ADR, &stalled)); while (!(stalled & 1));
  }
  CHECK(dbg_cpu0_read((0 << 11) + 16, &npc));  /* Read NPC */
  CHECK(dbg_cpu0_read((0 << 11) + 18, &ppc));  /* Read PPC */
  CHECK(dbg_cpu0_read(0x401, &r1));  /* Read R1 */
  printf("Read      npc = %.8lx ppc = %.8lx r1 = %.8lx\n", npc, ppc, r1);
  printf("Expected  npc = %.8lx ppc = %.8lx r1 = %.8lx\n", 0x00000010, 0x00000028, 201);
  result = npc + ppc + r1 + result;
  printf("result = %.8lx\n", result ^ 0xdeaddae1);
 
 
  { // 8051 TEST
    unsigned long npc[3], tmp;
 
    // WRITE ACC
    CHECK(dbg_cpu1_write(0x20e0, 0xa6));
 
    // READ ACC
    CHECK(dbg_cpu1_read(0x20e0, &tmp));   // select SFR space
    printf("Read  8051   ACC = %0x (expected a6)\n", tmp);
    result = result + tmp;
 
    // set exception to single step to jump over a loop
    CHECK(dbg_cpu1_write(0x3010, 0xa0)); // set single step and global enable in EER
    CHECK(dbg_cpu1_write(0x3011, 0x40)); // set evec = 24'h000040
    CHECK(dbg_cpu1_write(0x3012, 0x00)); // (already reset value)
    CHECK(dbg_cpu1_write(0x3013, 0x00)); // (already reset value)
 
    // set HW breakpoint at PC == 0x41
    CHECK(dbg_cpu1_write(0x3020, 0x41)); // DVR0 = 24'h000041
    CHECK(dbg_cpu1_write(0x3023, 0x39)); // DCR0 = valid, == PC
    CHECK(dbg_cpu1_write(0x3001, 0x04)); // DSR = watchpoint
 
    // flush 8051 instruction cache
    CHECK(dbg_cpu1_write(0x209f, 0x00));
 
    // Put some instructions in ram (8-bit mode on wishbone)
    CHECK(dbg_wb_write8 (0x40, 0x04));  // inc a
    CHECK(dbg_wb_write8 (0x41, 0x03));  // rr a;
    CHECK(dbg_wb_write8 (0x42, 0x14));  // dec a; 
    CHECK(dbg_wb_write8 (0x43, 0xf5));  // mov 0e5h, a;
    CHECK(dbg_wb_write8 (0x44, 0xe5));
 
    // unstall just 8051
    CHECK(dbg_cpu1_write_reg(0, 0));
 
    // read PC
    CHECK(dbg_cpu1_read(0, &npc[0]));
    CHECK(dbg_cpu1_read(1, &npc[1]));
    CHECK(dbg_cpu1_read(2, &npc[2]));
    printf("Read  8051   npc = %02x%02x%02x (expected 41)\n", npc[2], npc[1], npc[0]);
    result = result + (npc[2] << 16) + (npc[1] << 8) + npc[0];
 
    // READ ACC
    CHECK(dbg_cpu1_read(0x20e0, &tmp));   // select SFR space
    printf("Read  8051   ACC = %0x (expected a7)\n", tmp);
    result = result + tmp;
 
    // set sigle step to stop execution
    CHECK(dbg_cpu1_write(0x3001, 0x20)); // set single step and global enable in DSR
 
    // clear DRR
    CHECK(dbg_cpu1_write(0x3000, 0x00)); // set single step and global enable in DRR
 
    // unstall just 8051
    CHECK(dbg_cpu1_write_reg(0, 0));
 
    // read PC
    CHECK(dbg_cpu1_read(0, &npc[0]));
    CHECK(dbg_cpu1_read(1, &npc[1]));
    CHECK(dbg_cpu1_read(2, &npc[2]));
    printf("Read  8051   npc = %02x%02x%02x (expected 42)\n", npc[2], npc[1], npc[0]);
    result = result + (npc[2] << 16) + (npc[1] << 8) + npc[0];
 
    // READ ACC
    CHECK(dbg_cpu1_read(0x20e0, &tmp));   // select SFR space
    printf("Read  8051   ACC = %0x (expected d3)\n", tmp);
    result = result + tmp;
 
    printf("report (%x)\n", result ^ 0x6c1 ^ 0xdeaddead);
  }
#endif
}
 
int main(int argc,  char *argv[]) {
  char *redirstr;
  int trace_fd = 0;
  char *s;
  int err = DBG_ERR_OK;
 
  int c;
  const char *args;
  char *port;
  char *cable;
 
  srand(getpid());
  if ((argc < 3) || (argv[1][0] == '-') || (argv[2][0] == '-')) {
    printf("JTAG protocol via parallel port for linux.\n");
    printf("Copyright (C) 2001 Marko Mlinar, markom@opencores.org\n\n");
    printf("Usage: %s [cable] [JTAG port_number]\n", argv[0]);
    jp_print_cable_help();
    return -1;
  }
 
  cable = argv[1];
  port = argv[2];
 
  if (!jp_select_cable(cable)) {
    fprintf(stderr,"Error selecting cable %s\n", cable);
    return -1;
  }
 
  /* Get the cable-arguments */
  args = jp_get_cable_args();
 
  /* Parse the cable arguments (if-any) */
  for(;;) {
    c = getopt(argc, argv, args);
    if(c == -1)
      break;
    if(c == '?')
      return 1;
    if(!jp_cable_opt(c, optarg))
      return 1;
  }
  if(!jp_init_cable())
    return 1;
 
  /* Initialize a new connection to the or1k board, and make sure we are
     really connected.  */
  current_chain = -1;
  if ((err = dbg_reset())) goto error;
 
  /* Test the connection.  */
  dbg_test();
 
  /* We have a connection.  Establish server.  */
  serverPort = strtol(port,&s,10);
  if(*s) return -1;
 
  if(server_fd = GetServerSocket("or1ksim","tcp", serverPort)) {
    printf("JTAG Proxy server started on port %d\n", serverPort);
    printf("Press CTRL+c to exit.\n");
  } else {
    fprintf(stderr,"Cannot start JTAG Proxy server on port %d\n", serverPort);
    exit(-1);
  }
 
  /* Do endless loop of checking and handle GDB requests.  Ctrl-c exits.  */
  HandleServerSocket(true);
  return 0;
error:
  fprintf(stderr,"Connection with jtag via parallel port failed (err = %d).\n", err);
  exit(-1);
}
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.