OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [cris/] [drivers/] [ethernet.c] - Rev 1765

Compare with Previous | Blame | View Log

/* $Id: ethernet.c,v 1.1.1.1 2004-04-15 01:22:16 phoenix Exp $
 *
 * e100net.c: A network driver for the ETRAX 100LX network controller.
 *
 * Copyright (c) 1998-2002 Axis Communications AB.
 *
 * The outline of this driver comes from skeleton.c.
 *
 * $Log: not supported by cvs2svn $
 * Revision 1.48  2003/12/03 13:44:39  starvik
 * Use hardware pad for short packets. This prevents information leakage
 * reported by Nessus.
 *
 * Revision 1.47  2003/11/25 15:12:38  anderstj
 * Make sure the LED always is inititated.
 *
 * Revision 1.46  2003/08/28 14:35:29  jonasw
 * Added support for TDK 2120C and fixed led when not connected
 *
 * Revision 1.45  2003/08/21 07:22:25  matsfg
 * Optional behaviour on networkled when no connection.
 *
 * Revision 1.44  2003/07/01 10:55:07  starvik
 * Never bring down link to make stupid POE equipment happy
 *
 * Revision 1.43  2003/04/24 08:26:50  starvik
 * New LED behaviour: LED off when no link
 *
 * Revision 1.42  2003/04/10 07:14:58  starvik
 * Merge of changes from todo list
 *
 * Revision 1.41  2003/04/09 08:31:14  pkj
 * Typo correction (taken from Linux 2.5).
 *
 * Revision 1.40  2003/04/01 14:12:06  starvik
 * Added loglevel for lots of printks
 *
 * Revision 1.39.2.3  2003/04/01 07:51:14  starvik
 * Default Ethernet Stations Address can be specified with command line option.
 *
 * Revision 1.39.2.2  2003/03/31 15:41:07  starvik
 * Only communicate with transciever when ETRAX is properly configured.
 *
 * Revision 1.39.2.1  2003/03/31 14:12:46  starvik
 * Transmit interrupt always enabled. This has two side effects:
 *   1. UDP (and possibly other protocols) works on quiet networks
 *   2. Slightly lower transmit performance
 *
 * Revision 1.39  2003/03/06 15:45:39  henriken
 * Off by one error in group address register setting.
 *
 * Revision 1.38  2003/02/27 17:23:07  starvik
 * Corrected Rev to Revision
 *
 * Revision 1.37  2003/02/27 10:52:59  magnusmn
 * More generic transceiver support.
 *
 * Revision 1.33.2.4  2003/02/24 16:51:26  magnusmn
 * TDK specific registers to check speed/duplex
 *
 * Revision 1.33.2.3  2003/02/24 09:16:31  magnusmn
 * ethernet.c
 *
 * Revision 1.33.2.2  2003/02/21 11:57:27  magnusmn
 * Merging differences between 1.36 and 1.33 into ethernet.c (needed ethtool ioctl)
 *
 * Revision 1.33.2.1  2002/12/04 07:54:49  starvik
 * First attempt to get more generic transceiver support
 *
 * Revision 1.33  2002/10/02 20:16:17  hp
 * SETF, SETS: Use underscored IO_x_ macros rather than incorrect token concatenation
 *
 * Revision 1.32  2002/09/16 06:05:58  starvik
 * Align memory returned by dev_alloc_skb
 * Moved handling of sent packets to interrupt to avoid reference counting problem
 *
 * Revision 1.31  2002/09/10 13:28:23  larsv
 * Return -EINVAL for unknown ioctls to avoid confusing tools that tests
 * for supported functionality by issuing special ioctls, i.e. wireless
 * extensions.
 *
 * Revision 1.30  2002/05/07 18:50:08  johana
 * Correct spelling in comments.
 *
 * Revision 1.29  2002/05/06 05:38:49  starvik
 * Performance improvements:
 *    Large packets are not copied (breakpoint set to 256 bytes)
 *    The cache bug workaround is delayed until half of the receive list
 *      has been used
 *    Added transmit list
 *    Transmit interrupts are only enabled when transmit queue is full
 *
 * Revision 1.28.2.1  2002/04/30 08:15:51  starvik
 * Performance improvements:
 *   Large packets are not copied (breakpoint set to 256 bytes)
 *   The cache bug workaround is delayed until half of the receive list
 *     has been used.
 *   Added transmit list
 *   Transmit interrupts are only enabled when transmit queue is full
 *
 * Revision 1.28  2002/04/22 11:47:21  johana
 * Fix according to 2.4.19-pre7. time_after/time_before and
 * missing end of comment.
 * The patch has a typo for ethernet.c in e100_clear_network_leds(),
 *  that is fixed here.
 *
 * Revision 1.27  2002/04/12 11:55:11  bjornw
 * Added TODO
 *
 * Revision 1.26  2002/03/15 17:11:02  bjornw
 * Use prepare_rx_descriptor after the CPU has touched the receiving descs
 *
 * Revision 1.25  2002/03/08 13:07:53  bjornw
 * Unnecessary spinlock removed
 *
 * Revision 1.24  2002/02/20 12:57:43  fredriks
 * Replaced MIN() with min().
 *
 * Revision 1.23  2002/02/20 10:58:14  fredriks
 * Strip the Ethernet checksum (4 bytes) before forwarding a frame to upper layers.
 *
 * Revision 1.22  2002/01/30 07:48:22  matsfg
 * Initiate R_NETWORK_TR_CTRL
 *
 * Revision 1.21  2001/11/23 11:54:49  starvik
 * Added IFF_PROMISC and IFF_ALLMULTI handling in set_multicast_list
 * Removed compiler warnings
 *
 * Revision 1.20  2001/11/12 19:26:00  pkj
 * * Corrected e100_negotiate() to not assign half to current_duplex when
 *   it was supposed to compare them...
 * * Cleaned up failure handling in e100_open().
 * * Fixed compiler warnings.
 *
 * Revision 1.19  2001/11/09 07:43:09  starvik
 * Added full duplex support
 * Added ioctl to set speed and duplex
 * Clear LED timer only runs when LED is lit
 *
 * Revision 1.18  2001/10/03 14:40:43  jonashg
 * Update rx_bytes counter.
 *
 * Revision 1.17  2001/06/11 12:43:46  olof
 * Modified defines for network LED behavior
 *
 * Revision 1.16  2001/05/30 06:12:46  markusl
 * TxDesc.next should not be set to NULL
 *
 * Revision 1.15  2001/05/29 10:27:04  markusl
 * Updated after review remarks:
 * +Use IO_EXTRACT
 * +Handle underrun
 *
 * Revision 1.14  2001/05/29 09:20:14  jonashg
 * Use driver name on printk output so one can tell which driver that complains.
 *
 * Revision 1.13  2001/05/09 12:35:59  johana
 * Use DMA_NBR and IRQ_NBR defines from dma.h and irq.h
 *
 * Revision 1.12  2001/04/05 11:43:11  tobiasa
 * Check dev before panic.
 *
 * Revision 1.11  2001/04/04 11:21:05  markusl
 * Updated according to review remarks
 *
 * Revision 1.10  2001/03/26 16:03:06  bjornw
 * Needs linux/config.h
 *
 * Revision 1.9  2001/03/19 14:47:48  pkj
 * * Make sure there is always a pause after the network LEDs are
 *   changed so they will not look constantly lit during heavy traffic.
 * * Always use HZ when setting times relative to jiffies.
 * * Use LED_NETWORK_SET() when setting the network LEDs.
 *
 * Revision 1.8  2001/02/27 13:52:48  bjornw
 * malloc.h -> slab.h
 *
 * Revision 1.7  2001/02/23 13:46:38  bjornw
 * Spellling check
 *
 * Revision 1.6  2001/01/26 15:21:04  starvik
 * Don't disable interrupts while reading MDIO registers (MDIO is slow)
 * Corrected promiscuous mode
 * Improved deallocation of IRQs ("ifconfig eth0 down" now works)
 *
 * Revision 1.5  2000/11/29 17:22:22  bjornw
 * Get rid of the udword types legacy stuff
 *
 * Revision 1.4  2000/11/22 16:36:09  bjornw
 * Please marketing by using the correct case when spelling Etrax.
 *
 * Revision 1.3  2000/11/21 16:43:04  bjornw
 * Minor short->int change
 *
 * Revision 1.2  2000/11/08 14:27:57  bjornw
 * 2.4 port
 *
 * Revision 1.1  2000/11/06 13:56:00  bjornw
 * Verbatim copy of the 1.24 version of e100net.c from elinux
 *
 * Revision 1.24  2000/10/04 15:55:23  bjornw
 * * Use virt_to_phys etc. for DMA addresses
 * * Removed bogus CHECKSUM_UNNECESSARY
 *
 *
 */
 
#include <linux/config.h>
 
#include <linux/module.h>
 
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
 
#include <linux/if.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
 
#include <asm/svinto.h>     /* DMA and register descriptions */
#include <asm/io.h>         /* LED_* I/O functions */
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/ethernet.h>
#include <asm/cache.h>
#include <asm/uaccess.h>
 
//#define ETHDEBUG
#define D(x)
 
/*
 * The name of the card. Is used for messages and in the requests for
 * io regions, irqs and dma channels
 */
 
static const char* cardname = "ETRAX 100LX built-in ethernet controller";
 
/* A default ethernet address. Highlevel SW will set the real one later */
 
static struct sockaddr default_mac = {
	0,
	{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
};
 
/* Information that need to be kept for each board. */
struct net_local {
	struct net_device_stats stats;
 
	/* Tx control lock.  This protects the transmit buffer ring
	 * state along with the "tx full" state of the driver.  This
	 * means all netif_queue flow control actions are protected
	 * by this lock as well.
	 */
	spinlock_t lock;
};
 
typedef struct etrax_eth_descr
{
	etrax_dma_descr descr;
	struct sk_buff* skb;
} etrax_eth_descr;
 
/* Some transceivers requires special handling */
struct transceiver_ops
{
	unsigned int oui;
	void (*check_speed)(void);
	void (*check_duplex)(void);
};
 
struct transceiver_ops* transceiver;
 
/* Duplex settings */
enum duplex
{
	half,
	full,
	autoneg
};
 
/* Dma descriptors etc. */
 
#define MAX_MEDIA_DATA_SIZE 1518
 
#define MIN_PACKET_LEN      46
#define ETHER_HEAD_LEN      14
 
/* 
** MDIO constants.
*/
#define MDIO_BASE_STATUS_REG                0x1
#define MDIO_BASE_CONTROL_REG               0x0
#define MDIO_PHY_ID_HIGH_REG                0x2
#define MDIO_PHY_ID_LOW_REG                 0x3
#define MDIO_BC_NEGOTIATE                0x0200
#define MDIO_BC_FULL_DUPLEX_MASK         0x0100
#define MDIO_BC_AUTO_NEG_MASK            0x1000
#define MDIO_BC_SPEED_SELECT_MASK        0x2000
#define MDIO_STATUS_100_FD               0x4000
#define MDIO_STATUS_100_HD               0x2000
#define MDIO_STATUS_10_FD                0x1000
#define MDIO_STATUS_10_HD                0x0800
#define MDIO_STATUS_SPEED_DUPLEX_MASK	 0x7800
#define MDIO_ADVERTISMENT_REG               0x4
#define MDIO_ADVERT_100_FD                0x100
#define MDIO_ADVERT_100_HD                0x080
#define MDIO_ADVERT_10_FD                 0x040
#define MDIO_ADVERT_10_HD                 0x020
#define MDIO_LINK_UP_MASK                   0x4
#define MDIO_START                          0x1
#define MDIO_READ                           0x2
#define MDIO_WRITE                          0x1
#define MDIO_PREAMBLE              0xfffffffful
 
/* Broadcom specific */
#define MDIO_AUX_CTRL_STATUS_REG           0x18
#define MDIO_BC_FULL_DUPLEX_IND             0x1
#define MDIO_BC_SPEED                       0x2
 
/* TDK specific */
#define MDIO_TDK_DIAGNOSTIC_REG              18
#define MDIO_TDK_DIAGNOSTIC_RATE          0x400
#define MDIO_TDK_DIAGNOSTIC_DPLX          0x800
 
/* Network flash constants */
#define NET_FLASH_TIME                  (HZ/50) /* 20 ms */
#define NET_FLASH_PAUSE                (HZ/100) /* 10 ms */
#define NET_LINK_UP_CHECK_INTERVAL       (2*HZ) /* 2 s   */
#define NET_DUPLEX_CHECK_INTERVAL        (2*HZ) /* 2 s   */
 
#define NO_NETWORK_ACTIVITY 0
#define NETWORK_ACTIVITY    1
 
#define NBR_OF_RX_DESC     64
#define NBR_OF_TX_DESC     256
 
/* Large packets are sent directly to upper layers while small packets are */
/* copied (to reduce memory waste). The following constant decides the breakpoint */
#define RX_COPYBREAK 256
 
/* Due to a chip bug we need to flush the cache when descriptors are returned */
/* to the DMA. To decrease performance impact we return descriptors in chunks. */
/* The following constant determines the number of descriptors to return. */
#define RX_QUEUE_THRESHOLD  NBR_OF_RX_DESC/2
 
#define GET_BIT(bit,val)   (((val) >> (bit)) & 0x01)
 
/* Define some macros to access ETRAX 100 registers */
#define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
					  IO_FIELD_(reg##_, field##_, val)
#define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
					  IO_STATE_(reg##_, field##_, _##val)
 
static etrax_eth_descr *myNextRxDesc;  /* Points to the next descriptor to
                                          to be processed */
static etrax_eth_descr *myLastRxDesc;  /* The last processed descriptor */
static etrax_eth_descr *myPrevRxDesc;  /* The descriptor right before myNextRxDesc */
 
static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
 
static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
static etrax_eth_descr* myLastTxDesc;  /* End of send queue */
static etrax_eth_descr* myNextTxDesc;  /* Next descriptor to use */
static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
 
static unsigned int network_rec_config_shadow = 0;
static unsigned int mdio_phy_addr; /* Transciever address */
 
/* Network speed indication. */
static struct timer_list speed_timer;
static struct timer_list clear_led_timer;
static int current_speed; /* Speed read from transceiver */
static int current_speed_selection; /* Speed selected by user */
static int led_next_time;
static int led_active;
static int rx_queue_len;
 
/* Duplex */
static struct timer_list duplex_timer;
static int full_duplex;
static enum duplex current_duplex;
 
/* Index to functions, as function prototypes. */
 
static int etrax_ethernet_init(struct net_device *dev);
 
static int e100_open(struct net_device *dev);
static int e100_set_mac_address(struct net_device *dev, void *addr);
static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
static void e100rxtx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void e100nw_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void e100_rx(struct net_device *dev);
static int e100_close(struct net_device *dev);
static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static int e100_ethtool_ioctl(struct net_device* dev, struct ifreq *ifr);
static void e100_tx_timeout(struct net_device *dev);
static struct net_device_stats *e100_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void e100_hardware_send_packet(char *buf, int length);
static void update_rx_stats(struct net_device_stats *);
static void update_tx_stats(struct net_device_stats *);
static int e100_probe_transceiver(void);
 
static void e100_check_speed(unsigned long dummy);
static void e100_set_speed(unsigned long speed);
static void e100_check_duplex(unsigned long dummy);
static void e100_set_duplex(enum duplex);
static void e100_negotiate(void);
 
static unsigned short e100_get_mdio_reg(unsigned char reg_num);
static void e100_set_mdio_reg(unsigned char reg, unsigned short data);
static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
static void e100_send_mdio_bit(unsigned char bit);
static unsigned char e100_receive_mdio_bit(void);
static void e100_reset_transceiver(void);
 
static void e100_clear_network_leds(unsigned long dummy);
static void e100_set_network_leds(int active);
 
static void broadcom_check_speed(void);
static void broadcom_check_duplex(void);
static void tdk_check_speed(void);
static void tdk_check_duplex(void);
static void generic_check_speed(void);
static void generic_check_duplex(void);
 
struct transceiver_ops transceivers[] = 
{
	{0x1018, broadcom_check_speed, broadcom_check_duplex},  /* Broadcom */
	{0xC039, tdk_check_speed, tdk_check_duplex},            /* TDK 2120 */
	{0x039C, tdk_check_speed, tdk_check_duplex},            /* TDK 2120C */
	{0x0000, generic_check_speed, generic_check_duplex}     /* Generic, must be last */
};
 
#define tx_done(dev) (*R_DMA_CH0_CMD == 0)
 
/*
 * Check for a network adaptor of this type, and return '0' if one exists.
 * If dev->base_addr == 0, probe all likely locations.
 * If dev->base_addr == 1, always return failure.
 * If dev->base_addr == 2, allocate space for the device and return success
 * (detachable devices only).
 */
 
static int __init
etrax_ethernet_init(struct net_device *dev)
{
	int i;
 
	printk(KERN_INFO
	       "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 2000-2001 Axis Communications AB\n");
 
	dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
 
	printk(KERN_INFO "%s initialized\n", dev->name);
 
	/* make Linux aware of the new hardware  */
 
	if (!dev) {
		printk(KERN_WARNING "%s: dev == NULL. Should this happen?\n",
		       cardname);
		dev = init_etherdev(dev, sizeof(struct net_local));
		if (!dev)
			panic("init_etherdev failed\n");
	}
 
	/* setup generic handlers and stuff in the dev struct */
 
	ether_setup(dev);
 
	/* make room for the local structure containing stats etc */
 
	dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL);
	if (dev->priv == NULL)
		return -ENOMEM;
	memset(dev->priv, 0, sizeof(struct net_local));
 
	/* now setup our etrax specific stuff */
 
	dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
	dev->dma = NETWORK_RX_DMA_NBR;
 
	/* fill in our handlers so the network layer can talk to us in the future */
 
	dev->open               = e100_open;
	dev->hard_start_xmit    = e100_send_packet;
	dev->stop               = e100_close;
	dev->get_stats          = e100_get_stats;
	dev->set_multicast_list = set_multicast_list;
	dev->set_mac_address    = e100_set_mac_address;
	dev->do_ioctl           = e100_ioctl;
	dev->tx_timeout         = e100_tx_timeout;
 
	/* set the default MAC address */
 
	e100_set_mac_address(dev, &default_mac);
 
	/* Initialise the list of Etrax DMA-descriptors */
 
	/* Initialise receive descriptors */
 
	for (i = 0; i < NBR_OF_RX_DESC; i++) {
		/* Allocate two extra cachelines to make sure that buffer used by DMA
		 * does not share cacheline with any other data (to avoid cache bug)
		 */
		RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
		RxDescList[i].descr.ctrl   = 0;
		RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
		RxDescList[i].descr.next   = virt_to_phys(&RxDescList[i + 1]);
		RxDescList[i].descr.buf    = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
		RxDescList[i].descr.status = 0;
		RxDescList[i].descr.hw_len = 0;
 
		prepare_rx_descriptor(&RxDescList[i].descr);
	}
 
	RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl   = d_eol;
	RxDescList[NBR_OF_RX_DESC - 1].descr.next   = virt_to_phys(&RxDescList[0]);
	rx_queue_len = 0;
 
	/* Initialize transmit descriptors */
	for (i = 0; i < NBR_OF_TX_DESC; i++) {
		TxDescList[i].descr.ctrl   = 0;
		TxDescList[i].descr.sw_len = 0;
		TxDescList[i].descr.next   = virt_to_phys(&TxDescList[i + 1].descr);
		TxDescList[i].descr.buf    = 0;
		TxDescList[i].descr.status = 0;
		TxDescList[i].descr.hw_len = 0;
		TxDescList[i].skb = 0;
	}
 
	TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl   = d_eol;
	TxDescList[NBR_OF_TX_DESC - 1].descr.next   = virt_to_phys(&TxDescList[0].descr);
 
	/* Initialise initial pointers */
 
	myNextRxDesc  = &RxDescList[0];
	myLastRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
	myPrevRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
	myFirstTxDesc = &TxDescList[0];
	myNextTxDesc  = &TxDescList[0];
	myLastTxDesc  = &TxDescList[NBR_OF_TX_DESC - 1];
 
	/* Initialize speed indicator stuff. */
 
	current_speed = 10;
	current_speed_selection = 0; /* Auto */
	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
	speed_timer.function = e100_check_speed;
 
	clear_led_timer.function = e100_clear_network_leds;
 
	full_duplex = 0;
	current_duplex = autoneg;
	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;		
	duplex_timer.function = e100_check_duplex;
 
        /* Initialize group address registers to make sure that no */
        /* unwanted addresses are matched */
	*R_NETWORK_GA_0 = 0x00000000;
	*R_NETWORK_GA_1 = 0x00000000;
	return 0;
}
 
/* set MAC address of the interface. called from the core after a
 * SIOCSIFADDR ioctl, and from the bootup above.
 */
 
static int
e100_set_mac_address(struct net_device *dev, void *p)
{
	struct sockaddr *addr = p;
	int i;
 
	/* remember it */
 
	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 
	/* Write it to the hardware.
	 * Note the way the address is wrapped:
	 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
	 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
	 */
 
	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
	*R_NETWORK_SA_2 = 0;
 
	/* show it in the log as well */
 
	printk(KERN_INFO "%s: changed MAC to ", dev->name);
	for (i = 0; i < 5; i++)
		printk("%02X:", dev->dev_addr[i]);
 
	printk("%02X\n", dev->dev_addr[i]);
 
	return 0;
}
 
/*
 * Open/initialize the board. This is called (in the current kernel)
 * sometime after booting when the 'ifconfig' program is run.
 *
 * This routine should set everything up anew at each open, even
 * registers that "should" only need to be set once at boot, so that
 * there is non-reboot way to recover if something goes wrong.
 */
 
static int
e100_open(struct net_device *dev)
{
	unsigned long flags;
 
	/* enable the MDIO output pin */
 
	*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
 
	*R_IRQ_MASK0_CLR =
		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
 
	/* clear dma0 and 1 eop and descr irq masks */
	*R_IRQ_MASK2_CLR =
		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
 
	/* Reset and wait for the DMA channels */
 
	RESET_DMA(NETWORK_TX_DMA_NBR);
	RESET_DMA(NETWORK_RX_DMA_NBR);
	WAIT_DMA(NETWORK_TX_DMA_NBR);
	WAIT_DMA(NETWORK_RX_DMA_NBR);
 
	/* Initialise the etrax network controller */
 
	/* allocate the irq corresponding to the receiving DMA */
 
	if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0,
			cardname, (void *)dev)) {
		goto grace_exit0;
	}
 
	/* allocate the irq corresponding to the transmitting DMA */
 
	if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
			cardname, (void *)dev)) {
		goto grace_exit1;
	}
 
	/* allocate the irq corresponding to the network errors etc */
 
	if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
			cardname, (void *)dev)) {
		goto grace_exit2;
	}
 
	/*
	 * Always allocate the DMA channels after the IRQ,
	 * and clean up on failure.
	 */
 
	if (request_dma(NETWORK_TX_DMA_NBR, cardname)) {
		goto grace_exit3;
	}
 
	if (request_dma(NETWORK_RX_DMA_NBR, cardname)) {
		goto grace_exit4;
	}
 
	/* give the HW an idea of what MAC address we want */
 
	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
	*R_NETWORK_SA_2 = 0;
 
#if 0
	/* use promiscuous mode for testing */
	*R_NETWORK_GA_0 = 0xffffffff;
	*R_NETWORK_GA_1 = 0xffffffff;
 
	*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
#else
	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
	SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
	*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
#endif
 
	*R_NETWORK_GEN_CONFIG =
		IO_STATE(R_NETWORK_GEN_CONFIG, phy,    mii_clk) |
		IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
 
	*R_NETWORK_TR_CTRL = 
		IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr) |
		IO_STATE(R_NETWORK_TR_CTRL, delay, none) |
		IO_STATE(R_NETWORK_TR_CTRL, cancel, dont) |
		IO_STATE(R_NETWORK_TR_CTRL, cd, enable) |
		IO_STATE(R_NETWORK_TR_CTRL, retry, enable) |
		IO_STATE(R_NETWORK_TR_CTRL, pad, enable) |
		IO_STATE(R_NETWORK_TR_CTRL, crc, enable);
 
	save_flags(flags);
	cli();
 
	/* enable the irq's for ethernet DMA */
 
	*R_IRQ_MASK2_SET =
		IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
		IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
 
	*R_IRQ_MASK0_SET =
		IO_STATE(R_IRQ_MASK0_SET, overrun,       set) |
		IO_STATE(R_IRQ_MASK0_SET, underrun,      set) |
		IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
 
	/* make sure the irqs are cleared */
 
	*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
	*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
 
	/* make sure the rec and transmit error counters are cleared */
 
	(void)*R_REC_COUNTERS;  /* dummy read */
	(void)*R_TR_COUNTERS;   /* dummy read */
 
	/* start the receiving DMA channel so we can receive packets from now on */
 
	*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
	*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
 
	/* Set up transmit DMA channel so it can be restarted later */
 
	*R_DMA_CH0_FIRST = 0;
	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
 
	restore_flags(flags);
 
	/* Probe for transceiver */
	if (e100_probe_transceiver())
		goto grace_exit4;
 
	/* Start duplex/speed timers */
	add_timer(&speed_timer);
	add_timer(&duplex_timer);
 
	/* We are now ready to accept transmit requeusts from
	 * the queueing layer of the networking.
	 */
	netif_start_queue(dev);
 
	return 0;
 
grace_exit4:
	free_dma(NETWORK_TX_DMA_NBR);
grace_exit3:
	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
grace_exit2:
	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
grace_exit1:
	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
grace_exit0:
	return -EAGAIN;
}
 
static void
generic_check_speed(void)
{
	unsigned long data;
	data = e100_get_mdio_reg(MDIO_ADVERTISMENT_REG);
	if ((data & MDIO_ADVERT_100_FD) ||
	    (data & MDIO_ADVERT_100_HD))
		current_speed = 100;
	else
		current_speed = 10;
}
 
static void
tdk_check_speed(void)
{
	unsigned long data;
	data = e100_get_mdio_reg(MDIO_TDK_DIAGNOSTIC_REG);
	current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
}
 
static void
broadcom_check_speed(void)
{
	unsigned long data;
	data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG);
	current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
}
 
static void
e100_check_speed(unsigned long dummy)
{
	static int led_initiated = 0;
	unsigned long data;
	int old_speed = current_speed;
 
	data = e100_get_mdio_reg(MDIO_BASE_STATUS_REG);
	if (!(data & MDIO_LINK_UP_MASK)) {
		current_speed = 0;
	} else {
		transceiver->check_speed();
	}
 
	if ((old_speed != current_speed) || !led_initiated) {
		led_initiated = 1;
		e100_set_network_leds(NO_NETWORK_ACTIVITY);
	}
 
	/* Reinitialize the timer. */
	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
	add_timer(&speed_timer);
}
 
static void
e100_negotiate(void)
{
	unsigned short data = e100_get_mdio_reg(MDIO_ADVERTISMENT_REG);
 
	/* Discard old speed and duplex settings */
	data &= ~(MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | 
	          MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD);
 
	switch (current_speed_selection) {
		case 10 :
			if (current_duplex == full)
				data |= MDIO_ADVERT_10_FD;
			else if (current_duplex == half)
				data |= MDIO_ADVERT_10_HD;
			else
				data |= MDIO_ADVERT_10_HD |  MDIO_ADVERT_10_FD;
			break;
 
		case 100 :
			 if (current_duplex == full)
				data |= MDIO_ADVERT_100_FD;
			else if (current_duplex == half)
				data |= MDIO_ADVERT_100_HD;
			else
				data |= MDIO_ADVERT_100_HD |  MDIO_ADVERT_100_FD;
			break;
 
		case 0 : /* Auto */
			 if (current_duplex == full)
				data |= MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD;
			else if (current_duplex == half)
				data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_10_HD;
			else
				data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD;
			break;
 
		default : /* assume autoneg speed and duplex */
			data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | 
			        MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD;
	}
 
	e100_set_mdio_reg(MDIO_ADVERTISMENT_REG, data);
 
	/* Renegotiate with link partner */
	data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG);
	data |= MDIO_BC_NEGOTIATE;
 
	e100_set_mdio_reg(MDIO_BASE_CONTROL_REG, data);
}
 
static void
e100_set_speed(unsigned long speed)
{
	if (speed != current_speed_selection) {
		current_speed_selection = speed;
		e100_negotiate();
	}
}
 
static void
e100_check_duplex(unsigned long dummy)
{
	int old_duplex = full_duplex;
	transceiver->check_duplex();
	if (old_duplex != full_duplex) { 
		/* Duplex changed */
		SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
	}
 
	/* Reinitialize the timer. */
	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
	add_timer(&duplex_timer);
}
 
static void
generic_check_duplex(void)
{
	unsigned long data;
	data = e100_get_mdio_reg(MDIO_ADVERTISMENT_REG);
	if ((data & MDIO_ADVERT_100_FD) ||
	    (data & MDIO_ADVERT_10_FD))
		full_duplex = 1;
	else
		full_duplex = 0;
}
 
static void
tdk_check_duplex(void)
{
	unsigned long data;
	data = e100_get_mdio_reg(MDIO_TDK_DIAGNOSTIC_REG);
	full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
}
 
static void
broadcom_check_duplex(void)
{
	unsigned long data;
	data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG);        
	full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
}
 
static void 
e100_set_duplex(enum duplex new_duplex)
{
	if (new_duplex != current_duplex) {
		current_duplex = new_duplex;
		e100_negotiate();
	}
}
 
static int 
e100_probe_transceiver(void)
{
	unsigned int phyid_high;
	unsigned int phyid_low;
	unsigned int oui;
	struct transceiver_ops* ops = NULL;
 
	/* Probe MDIO physical address */
	for (mdio_phy_addr = 0; mdio_phy_addr <= 31; mdio_phy_addr++) {
		if (e100_get_mdio_reg(MDIO_BASE_STATUS_REG) != 0xffff)
			break;
	}
	if (mdio_phy_addr == 32)
		 return -ENODEV;
 
	/* Get manufacturer */
	phyid_high = e100_get_mdio_reg(MDIO_PHY_ID_HIGH_REG);
	phyid_low = e100_get_mdio_reg(MDIO_PHY_ID_LOW_REG);
	oui = (phyid_high << 6) | (phyid_low >> 10);
 
	for (ops = &transceivers[0]; ops->oui; ops++) {
		if (ops->oui == oui)
			break;
	}
	transceiver = ops;
 
	return 0;
}
 
static unsigned short
e100_get_mdio_reg(unsigned char reg_num)
{
	unsigned short cmd;    /* Data to be sent on MDIO port */
	unsigned short data;   /* Data read from MDIO */
	int bitCounter;
 
	/* Start of frame, OP Code, Physical Address, Register Address */
	cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (mdio_phy_addr << 7) |
		(reg_num << 2);
 
	e100_send_mdio_cmd(cmd, 0);
 
	data = 0;
 
	/* Data... */
	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
		data |= (e100_receive_mdio_bit() << bitCounter);
	}
 
	return data;
}
 
static void
e100_set_mdio_reg(unsigned char reg, unsigned short data)
{
	int bitCounter;
	unsigned short cmd;
 
	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (mdio_phy_addr << 7) |
	      (reg << 2);
 
	e100_send_mdio_cmd(cmd, 1);
 
	/* Data... */
	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
		e100_send_mdio_bit(GET_BIT(bitCounter, data));
	}
 
}
 
static void
e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
{
	int bitCounter;
	unsigned char data = 0x2;
 
	/* Preamble */
	for (bitCounter = 31; bitCounter>= 0; bitCounter--)
		e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
 
	for (bitCounter = 15; bitCounter >= 2; bitCounter--)
		e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
 
	/* Turnaround */
	for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
		if (write_cmd)
			e100_send_mdio_bit(GET_BIT(bitCounter, data));
		else
			e100_receive_mdio_bit();
}
 
static void
e100_send_mdio_bit(unsigned char bit)
{
	*R_NETWORK_MGM_CTRL =
		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
	udelay(1);
	*R_NETWORK_MGM_CTRL =
		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
		IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
	udelay(1);
}
 
static unsigned char
e100_receive_mdio_bit()
{
	unsigned char bit;
	*R_NETWORK_MGM_CTRL = 0;
	bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
	udelay(1);
	*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
	udelay(1);
	return bit;
}
 
static void 
e100_reset_transceiver(void)
{
	unsigned short cmd;
	unsigned short data;
	int bitCounter;
 
	data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG);
 
	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (mdio_phy_addr << 7) | (MDIO_BASE_CONTROL_REG << 2);
 
	e100_send_mdio_cmd(cmd, 1);
 
	data |= 0x8000;
 
	for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
		e100_send_mdio_bit(GET_BIT(bitCounter, data));
	}
}
 
/* Called by upper layers if they decide it took too long to complete
 * sending a packet - we need to reset and stuff.
 */
 
static void
e100_tx_timeout(struct net_device *dev)
{
	struct net_local *np = (struct net_local *)dev->priv;
 
	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
	       tx_done(dev) ? "IRQ problem" : "network cable problem");
 
	/* remember we got an error */
 
	np->stats.tx_errors++; 
 
	/* reset the TX DMA in case it has hung on something */
 
	RESET_DMA(NETWORK_TX_DMA_NBR);
	WAIT_DMA(NETWORK_TX_DMA_NBR);
 
	/* Reset the transceiver. */
 
	e100_reset_transceiver();
 
	/* and get rid of the packets that never got an interrupt */
	while (myFirstTxDesc != myNextTxDesc)
	{
		dev_kfree_skb(myFirstTxDesc->skb);
		myFirstTxDesc->skb = 0;
		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
	}
 
	/* Set up transmit DMA channel so it can be restarted later */
	*R_DMA_CH0_FIRST = 0;
	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);	
 
	/* tell the upper layers we're ok again */
 
	netif_wake_queue(dev);
}
 
 
/* This will only be invoked if the driver is _not_ in XOFF state.
 * What this means is that we need not check it, and that this
 * invariant will hold if we make sure that the netif_*_queue()
 * calls are done at the proper times.
 */
 
static int
e100_send_packet(struct sk_buff *skb, struct net_device *dev)
{
	struct net_local *np = (struct net_local *)dev->priv;
	unsigned char *buf = skb->data;
 
#ifdef ETHDEBUG
	printk("send packet len %d\n", length);
#endif
	spin_lock_irq(&np->lock);  /* protect from tx_interrupt and ourself */
 
	myNextTxDesc->skb = skb;
 
	dev->trans_start = jiffies;
 
	e100_hardware_send_packet(buf, skb->len);
 
	myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
 
	/* Stop queue if full */
	if (myNextTxDesc == myFirstTxDesc) {
		netif_stop_queue(dev);
	}
 
	spin_unlock_irq(&np->lock);
 
	return 0;
}
 
/*
 * The typical workload of the driver:
 *   Handle the network interface interrupts.
 */
 
static void
e100rxtx_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct net_local *np = (struct net_local *)dev->priv;
	unsigned long irqbits = *R_IRQ_MASK2_RD;
 
	/* Disable RX/TX IRQs to avoid reentrancy */
	*R_IRQ_MASK2_CLR = 
	  IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
	  IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
 
	/* Handle received packets */
	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
		/* acknowledge the eop interrupt */
 
		*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
 
		/* check if one or more complete packets were indeed received */
 
		while (*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) {
			/* Take out the buffer and give it to the OS, then
			 * allocate a new buffer to put a packet in.
			 */
			e100_rx(dev);
			((struct net_local *)dev->priv)->stats.rx_packets++;
			/* restart/continue on the channel, for safety */
			*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
			/* clear dma channel 1 eop/descr irq bits */
			*R_DMA_CH1_CLR_INTR =
				IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
				IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
 
			/* now, we might have gotten another packet
			   so we have to loop back and check if so */
		}
	}
 
	/* Report any packets that have been sent */
	while (myFirstTxDesc != phys_to_virt(*R_DMA_CH0_FIRST) &&
	       myFirstTxDesc != myNextTxDesc)
	{
		np->stats.tx_bytes += myFirstTxDesc->skb->len;
		np->stats.tx_packets++;
 
		/* dma is ready with the transmission of the data in tx_skb, so now
		   we can release the skb memory */
		dev_kfree_skb_irq(myFirstTxDesc->skb);
		myFirstTxDesc->skb = 0;
		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
	}
 
	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
		/* acknowledge the eop interrupt and wake up queue */
		*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
		netif_wake_queue(dev);
	}
 
	/* Enable RX/TX IRQs again */
	*R_IRQ_MASK2_SET = 
	  IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
	  IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
}
 
static void
e100nw_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct net_local *np = (struct net_local *)dev->priv;
	unsigned long irqbits = *R_IRQ_MASK0_RD;
 
	/* check for underrun irq */
	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) { 
		*R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr);
		np->stats.tx_errors++;
		D(printk("ethernet receiver underrun!\n"));
	}
 
	/* check for overrun irq */
	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) { 
		update_rx_stats(&np->stats); /* this will ack the irq */
		D(printk("ethernet receiver overrun!\n"));
	}
	/* check for excessive collision irq */
	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) { 
		*R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr);
		np->stats.tx_errors++;
		D(printk("ethernet excessive collisions!\n"));
	}
}
 
/* We have a good packet(s), get it/them out of the buffers. */
static void
e100_rx(struct net_device *dev)
{
	struct sk_buff *skb;
	int length = 0;
	struct net_local *np = (struct net_local *)dev->priv;
	unsigned char *skb_data_ptr;
#ifdef ETHDEBUG
	int i;
#endif
 
	if (!led_active && time_after(jiffies, led_next_time)) {
		/* light the network leds depending on the current speed. */
		e100_set_network_leds(NETWORK_ACTIVITY);
 
		/* Set the earliest time we may clear the LED */
		led_next_time = jiffies + NET_FLASH_TIME;
		led_active = 1;
		mod_timer(&clear_led_timer, jiffies + HZ/10);
	}
 
	length = myNextRxDesc->descr.hw_len - 4;
	((struct net_local *)dev->priv)->stats.rx_bytes += length;
 
#ifdef ETHDEBUG
	printk("Got a packet of length %d:\n", length);
	/* dump the first bytes in the packet */
	skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
	for (i = 0; i < 8; i++) {
		printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
		       skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
		       skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
		skb_data_ptr += 8;
	}
#endif
 
	if (length < RX_COPYBREAK) {
		/* Small packet, copy data */
		skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
		if (!skb) {
			np->stats.rx_errors++;
			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
			return;
		}
 
		skb_put(skb, length - ETHER_HEAD_LEN);        /* allocate room for the packet body */
		skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
 
#ifdef ETHDEBUG
		printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
		  skb->head, skb->data, skb->tail, skb->end);
		printk("copying packet to 0x%x.\n", skb_data_ptr);
#endif
 
		memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
	}
	else {
		/* Large packet, send directly to upper layers and allocate new 
		 * memory (aligned to cache line boundary to avoid bug).
		 * Before sending the skb to upper layers we must make sure that 
		 * skb->data points to the aligned start of the packet. 
		 */
		int align;  
		struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
		if (!new_skb) {
			np->stats.rx_errors++;
			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
			return;
		}
		skb = myNextRxDesc->skb;
		align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;	
		skb_put(skb, length + align); 
		skb_pull(skb, align); /* Remove alignment bytes */
		myNextRxDesc->skb = new_skb;
		myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
	}
 
	skb->dev = dev;
	skb->protocol = eth_type_trans(skb, dev);
 
	/* Send the packet to the upper layers */
	netif_rx(skb);
 
	/* Prepare for next packet */
	myNextRxDesc->descr.status = 0;
	myPrevRxDesc = myNextRxDesc;
	myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
 
	rx_queue_len++;
 
	/* Check if descriptors should be returned */
	if (rx_queue_len == RX_QUEUE_THRESHOLD) {
		flush_etrax_cache();
		myPrevRxDesc->descr.ctrl |= d_eol;
		myLastRxDesc->descr.ctrl &= ~d_eol;
		myLastRxDesc = myPrevRxDesc;
		rx_queue_len = 0;
	}
}
 
/* The inverse routine to net_open(). */
static int
e100_close(struct net_device *dev)
{
	struct net_local *np = (struct net_local *)dev->priv;
 
	printk(KERN_INFO "Closing %s.\n", dev->name);
 
	netif_stop_queue(dev);
 
	*R_IRQ_MASK0_CLR =
		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
 
	*R_IRQ_MASK2_CLR =
		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
 
	/* Stop the receiver and the transmitter */
 
	RESET_DMA(NETWORK_TX_DMA_NBR);
	RESET_DMA(NETWORK_RX_DMA_NBR);
 
	/* Flush the Tx and disable Rx here. */
 
	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
 
	free_dma(NETWORK_TX_DMA_NBR);
	free_dma(NETWORK_RX_DMA_NBR);
 
	/* Update the statistics here. */
 
	update_rx_stats(&np->stats);
	update_tx_stats(&np->stats);
 
	/* Stop speed/duplex timers */
	del_timer(&speed_timer);
	del_timer(&duplex_timer);
	return 0;
}
 
static int
e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data;
 
	switch (cmd) {
		case SIOCETHTOOL:
			return e100_ethtool_ioctl(dev,ifr);
		case SIOCGMIIPHY: /* Get PHY address */
			data->phy_id = mdio_phy_addr;
			break;
		case SIOCGMIIREG: /* Read MII register */
			data->val_out = e100_get_mdio_reg(data->reg_num);
			break;
		case SIOCSMIIREG: /* Write MII register */
			e100_set_mdio_reg(data->reg_num, data->val_in);
			break;
		/* The ioctls below should be considered obsolete but are */
		/* still present for compatability with old scripts/apps  */	
		case SET_ETH_SPEED_10:                  /* 10 Mbps */
			e100_set_speed(10);
			break;
		case SET_ETH_SPEED_100:                /* 100 Mbps */
			e100_set_speed(100);
			break;
		case SET_ETH_SPEED_AUTO:              /* Auto negotiate speed */
			e100_set_speed(0);
			break;
		case SET_ETH_DUPLEX_HALF:              /* Half duplex. */
			e100_set_duplex(half);
			break;
		case SET_ETH_DUPLEX_FULL:              /* Full duplex. */
			e100_set_duplex(full);
			break;
		case SET_ETH_DUPLEX_AUTO:             /* Autonegotiate duplex*/
			e100_set_duplex(autoneg);
			break;
		default:
			return -EINVAL;
	}
	return 0;
}
 
static int
e100_ethtool_ioctl(struct net_device *dev, struct ifreq *ifr)
{
	struct ethtool_cmd ecmd;
 
	if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd)))
		return -EFAULT;
 
	switch (ecmd.cmd) {
		case ETHTOOL_GSET:
		{
			memset((void *) &ecmd, 0, sizeof (ecmd));
			ecmd.supported = 
			  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |
			  SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 
			  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
			ecmd.port = PORT_TP;
			ecmd.transceiver = XCVR_EXTERNAL;
			ecmd.phy_address = mdio_phy_addr;
			ecmd.speed = current_speed;
			ecmd.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
			ecmd.advertising = ADVERTISED_TP;
			if (current_duplex == autoneg && current_speed_selection == 0)
				ecmd.advertising |= ADVERTISED_Autoneg;
			else {
				ecmd.advertising |= 
				  ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
				  ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
				if (current_speed_selection == 10)
					ecmd.advertising &= ~(ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full);
				else if (current_speed_selection == 100)
					ecmd.advertising &= ~(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full);
				if (current_duplex == half)
					ecmd.advertising &= ~(ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Full);
				else if (current_duplex == full)
					ecmd.advertising &= ~(ADVERTISED_10baseT_Half | ADVERTISED_100baseT_Half);
			}
			ecmd.autoneg = AUTONEG_ENABLE;
			if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
				return -EFAULT;
		}
		break;
		case ETHTOOL_SSET:
		{
			if (!capable(CAP_NET_ADMIN)) {
				return -EPERM;
			}
			if (ecmd.autoneg == AUTONEG_ENABLE) {
				e100_set_duplex(autoneg);
				e100_set_speed(0);
			} else {
				e100_set_duplex(ecmd.duplex == DUPLEX_HALF ? half : full);
				e100_set_speed(ecmd.speed == SPEED_10 ? 10: 100);
			}
		}
		break;
		case ETHTOOL_GDRVINFO:
		{
			struct ethtool_drvinfo info;
			memset((void *) &info, 0, sizeof (info));
			strncpy(info.driver, "ETRAX 100LX", sizeof(info.driver) - 1);
			strncpy(info.version, "$Revision: 1.1.1.1 $", sizeof(info.version) - 1);
			strncpy(info.fw_version, "N/A", sizeof(info.fw_version) - 1);
			strncpy(info.bus_info, "N/A", sizeof(info.bus_info) - 1);
			info.regdump_len = 0;
			info.eedump_len = 0;
			info.testinfo_len = 0;
			if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
				return -EFAULT;
		}
		break;
		case ETHTOOL_NWAY_RST:
			if (current_duplex == autoneg && current_speed_selection == 0)
				e100_negotiate();
		break;
		default:
			return -EOPNOTSUPP;
		break;
	}
	return 0;
}
 
static void
update_rx_stats(struct net_device_stats *es)
{
	unsigned long r = *R_REC_COUNTERS;
	/* update stats relevant to reception errors */
	es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
	es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
	es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
	es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
}
 
static void
update_tx_stats(struct net_device_stats *es)
{
	unsigned long r = *R_TR_COUNTERS;
	/* update stats relevant to transmission errors */
	es->collisions +=
		IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
		IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
	es->tx_errors += IO_EXTRACT(R_TR_COUNTERS, deferred, r);
}
 
/*
 * Get the current statistics.
 * This may be called with the card open or closed.
 */
static struct net_device_stats *
e100_get_stats(struct net_device *dev)
{
	struct net_local *lp = (struct net_local *)dev->priv;
 
	update_rx_stats(&lp->stats);
	update_tx_stats(&lp->stats);
 
	return &lp->stats;
}
 
/*
 * Set or clear the multicast filter for this adaptor.
 * num_addrs == -1	Promiscuous mode, receive all packets
 * num_addrs == 0	Normal mode, clear multicast list
 * num_addrs > 0	Multicast mode, receive normal and MC packets,
 *			and do best-effort filtering.
 */
static void
set_multicast_list(struct net_device *dev)
{
	int num_addr = dev->mc_count;
	unsigned long int lo_bits;
	unsigned long int hi_bits;
	if (dev->flags & IFF_PROMISC)
	{
		/* promiscuous mode */
		lo_bits = 0xfffffffful;
		hi_bits = 0xfffffffful;
 
		/* Enable individual receive */
		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
	} else if (dev->flags & IFF_ALLMULTI) {
		/* enable all multicasts */
		lo_bits = 0xfffffffful;
		hi_bits = 0xfffffffful;
 
		/* Disable individual receive */
		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
	} else if (num_addr == 0) {
		/* Normal, clear the mc list */
		lo_bits = 0x00000000ul;
		hi_bits = 0x00000000ul;
 
		/* Disable individual receive */
		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
	} else {
		/* MC mode, receive normal and MC packets */
		char hash_ix;
		struct dev_mc_list *dmi = dev->mc_list;
		int i;
		char *baddr;
		lo_bits = 0x00000000ul;
		hi_bits = 0x00000000ul;
		for (i=0; i<num_addr; i++) {
			/* Calculate the hash index for the GA registers */
 
			hash_ix = 0;
			baddr = dmi->dmi_addr;
			hash_ix ^= (*baddr) & 0x3f;
			hash_ix ^= ((*baddr) >> 6) & 0x03;
			++baddr;
			hash_ix ^= ((*baddr) << 2) & 0x03c;
			hash_ix ^= ((*baddr) >> 4) & 0xf;
			++baddr;
			hash_ix ^= ((*baddr) << 4) & 0x30;
			hash_ix ^= ((*baddr) >> 2) & 0x3f;
			++baddr;
			hash_ix ^= (*baddr) & 0x3f;
			hash_ix ^= ((*baddr) >> 6) & 0x03;
			++baddr;
			hash_ix ^= ((*baddr) << 2) & 0x03c;
			hash_ix ^= ((*baddr) >> 4) & 0xf;
			++baddr;
			hash_ix ^= ((*baddr) << 4) & 0x30;
			hash_ix ^= ((*baddr) >> 2) & 0x3f;
 
			hash_ix &= 0x3f;
 
			if (hash_ix >= 32) {
				hi_bits |= (1 << (hash_ix-32));
			}
			else {
				lo_bits |= (1 << hash_ix);
			}
			dmi = dmi->next;
		}
		/* Disable individual receive */
		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
	}
	*R_NETWORK_GA_0 = lo_bits;
	*R_NETWORK_GA_1 = hi_bits;
}
 
void
e100_hardware_send_packet(char *buf, int length)
{
	D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
 
	if (!led_active && time_after(jiffies, led_next_time)) {
		/* light the network leds depending on the current speed. */
		e100_set_network_leds(NETWORK_ACTIVITY);
 
		/* Set the earliest time we may clear the LED */
		led_next_time = jiffies + NET_FLASH_TIME;
		led_active = 1;
		mod_timer(&clear_led_timer, jiffies + HZ/10);
	}
 
	/* configure the tx dma descriptor */
	myNextTxDesc->descr.sw_len = length;
	myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
	myNextTxDesc->descr.buf = virt_to_phys(buf);
 
        /* Move end of list */
        myLastTxDesc->descr.ctrl &= ~d_eol;
        myLastTxDesc = myNextTxDesc;
 
	/* Restart DMA channel */
	*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
}
 
static void
e100_clear_network_leds(unsigned long dummy)
{
	if (led_active && time_after(jiffies, led_next_time)) {
		e100_set_network_leds(NO_NETWORK_ACTIVITY);
 
		/* Set the earliest time we may set the LED */
		led_next_time = jiffies + NET_FLASH_PAUSE;
		led_active = 0;
	}
}
 
static void
e100_set_network_leds(int active)
{
#if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
	int light_leds = (active == NO_NETWORK_ACTIVITY);
#elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
	int light_leds = (active == NETWORK_ACTIVITY);
#else
#error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
#endif
 
	if (!current_speed) {
		/* Make LED red, link is down */
#if defined(CONFIG_ETRAX_NETWORK_RED_ON_NO_CONNECTION)
		LED_NETWORK_SET(LED_RED);
#else		
		LED_NETWORK_SET(LED_OFF);
#endif		
	}
	else if (light_leds) {
		if (current_speed == 10) {
			LED_NETWORK_SET(LED_ORANGE);
		} else {
			LED_NETWORK_SET(LED_GREEN);
		}
	}
	else {
		LED_NETWORK_SET(LED_OFF);
	}
}
 
static struct net_device dev_etrax_ethernet;  /* only got one */
 
static int
etrax_init_module(void)
{
	struct net_device *d = &dev_etrax_ethernet;
 
	d->init = etrax_ethernet_init;
 
	if (register_netdev(d) == 0)
		return 0;
	else
		return -ENODEV;
}
 
static int __init
e100_boot_setup(char* str)
{
	struct sockaddr sa = {0};
	int i;
 
	/* Parse the colon separated Ethernet station address */
	for (i = 0; i <  ETH_ALEN; i++) {
		unsigned int tmp;
		if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
			printk(KERN_WARNING "Malformed station address");
			return 0;
		}
		sa.sa_data[i] = (char)tmp;
	}	
 
	default_mac = sa;
	return 1;
}
 
__setup("etrax100_eth=", e100_boot_setup);
 
module_init(etrax_init_module);
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.