URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [ia32/] [sys_ia32.c] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/* * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c. * * Copyright (C) 2000 VA Linux Co * Copyright (C) 2000 Don Dugger <n0ano@valinux.com> * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com> * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 2000-2002 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * These routines maintain argument size conversion between 32bit and 64bit * environment. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/sysctl.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/signal.h> #include <linux/utime.h> #include <linux/resource.h> #include <linux/times.h> #include <linux/utsname.h> #include <linux/timex.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/sem.h> #include <linux/msg.h> #include <linux/mm.h> #include <linux/shm.h> #include <linux/slab.h> #include <linux/uio.h> #include <linux/nfs_fs.h> #include <linux/smb_fs.h> #include <linux/smb_mount.h> #include <linux/ncp_fs.h> #include <linux/quota.h> #include <linux/quotacompat.h> #include <linux/module.h> #include <linux/sunrpc/svc.h> #include <linux/nfsd/nfsd.h> #include <linux/nfsd/cache.h> #include <linux/nfsd/xdr.h> #include <linux/nfsd/syscall.h> #include <linux/poll.h> #include <linux/personality.h> #include <linux/stat.h> #include <linux/ipc.h> #include <asm/types.h> #include <asm/uaccess.h> #include <asm/semaphore.h> #include <net/scm.h> #include <net/sock.h> #include <asm/ia32.h> #define DEBUG 0 #if DEBUG # define DBG(fmt...) printk(KERN_DEBUG fmt) #else # define DBG(fmt...) #endif #define A(__x) ((unsigned long)(__x)) #define AA(__x) ((unsigned long)(__x)) #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1))) #define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de))) #define OFFSET4K(a) ((a) & 0xfff) #define PAGE_START(addr) ((addr) & PAGE_MASK) #define PAGE_OFF(addr) ((addr) & ~PAGE_MASK) #define MINSIGSTKSZ_IA32 2048 extern asmlinkage long sys_execve (char *, char **, char **, struct pt_regs *); extern asmlinkage long sys_mprotect (unsigned long, size_t, unsigned long); extern asmlinkage long sys_munmap (unsigned long, size_t); extern unsigned long arch_get_unmapped_area (struct file *, unsigned long, unsigned long, unsigned long, unsigned long); /* forward declaration: */ asmlinkage long sys32_mprotect (unsigned int, unsigned int, int); asmlinkage unsigned long sys_brk(unsigned long); /* * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore * while doing so. */ /* XXX make per-mm: */ static DECLARE_MUTEX(ia32_mmap_sem); static int nargs (unsigned int arg, char **ap) { unsigned int addr; int n, err; if (!arg) return 0; n = 0; do { err = get_user(addr, (unsigned int *)A(arg)); if (err) return err; if (ap) *ap++ = (char *) A(addr); arg += sizeof(unsigned int); n++; } while (addr); return n - 1; } asmlinkage long sys32_execve (char *filename, unsigned int argv, unsigned int envp, int dummy3, int dummy4, int dummy5, int dummy6, int dummy7, int stack) { struct pt_regs *regs = (struct pt_regs *)&stack; unsigned long old_map_base, old_task_size, tssd; char **av, **ae; int na, ne, len; long r; na = nargs(argv, NULL); if (na < 0) return na; ne = nargs(envp, NULL); if (ne < 0) return ne; len = (na + ne + 2) * sizeof(*av); av = kmalloc(len, GFP_KERNEL); if (!av) return -ENOMEM; ae = av + na + 1; av[na] = NULL; ae[ne] = NULL; r = nargs(argv, av); if (r < 0) goto out; r = nargs(envp, ae); if (r < 0) goto out; old_map_base = current->thread.map_base; old_task_size = current->thread.task_size; tssd = ia64_get_kr(IA64_KR_TSSD); /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */ current->thread.map_base = DEFAULT_MAP_BASE; current->thread.task_size = DEFAULT_TASK_SIZE; ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); set_fs(KERNEL_DS); r = sys_execve(filename, av, ae, regs); if (r < 0) { /* oops, execve failed, switch back to old values... */ ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE); ia64_set_kr(IA64_KR_TSSD, tssd); current->thread.map_base = old_map_base; current->thread.task_size = old_task_size; set_fs(USER_DS); /* establish new task-size as the address-limit */ } out: kfree(av); return r; } static inline int putstat (struct stat32 *ubuf, struct stat *kbuf) { int err; if (clear_user(ubuf, sizeof(*ubuf))) return 1; err = __put_user(kbuf->st_dev, &ubuf->st_dev); err |= __put_user(kbuf->st_ino, &ubuf->st_ino); err |= __put_user(kbuf->st_mode, &ubuf->st_mode); err |= __put_user(kbuf->st_nlink, &ubuf->st_nlink); err |= __put_user(kbuf->st_uid, &ubuf->st_uid); err |= __put_user(kbuf->st_gid, &ubuf->st_gid); err |= __put_user(kbuf->st_rdev, &ubuf->st_rdev); err |= __put_user(kbuf->st_size, &ubuf->st_size); err |= __put_user(kbuf->st_atime, &ubuf->st_atime); err |= __put_user(kbuf->st_mtime, &ubuf->st_mtime); err |= __put_user(kbuf->st_ctime, &ubuf->st_ctime); err |= __put_user(kbuf->st_blksize, &ubuf->st_blksize); err |= __put_user(kbuf->st_blocks, &ubuf->st_blocks); return err; } extern asmlinkage long sys_newstat (char * filename, struct stat * statbuf); asmlinkage long sys32_newstat (char *filename, struct stat32 *statbuf) { char *name; int ret; struct stat s; mm_segment_t old_fs = get_fs(); name = getname(filename); if (IS_ERR(name)) return PTR_ERR(name); set_fs(KERNEL_DS); ret = sys_newstat(name, &s); set_fs(old_fs); putname(name); if (putstat(statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newlstat(char * filename, struct stat * statbuf); asmlinkage long sys32_newlstat (char *filename, struct stat32 *statbuf) { char *name; mm_segment_t old_fs = get_fs(); struct stat s; int ret; name = getname(filename); if (IS_ERR(name)) return PTR_ERR(name); set_fs(KERNEL_DS); ret = sys_newlstat(name, &s); set_fs(old_fs); putname(name); if (putstat(statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf); asmlinkage long sys32_newfstat (unsigned int fd, struct stat32 *statbuf) { mm_segment_t old_fs = get_fs(); struct stat s; int ret; set_fs(KERNEL_DS); ret = sys_newfstat(fd, &s); set_fs(old_fs); if (putstat(statbuf, &s)) return -EFAULT; return ret; } #if PAGE_SHIFT > IA32_PAGE_SHIFT static int get_page_prot (struct vm_area_struct *vma, unsigned long addr) { int prot = 0; if (!vma || vma->vm_start > addr) return 0; if (vma->vm_flags & VM_READ) prot |= PROT_READ; if (vma->vm_flags & VM_WRITE) prot |= PROT_WRITE; if (vma->vm_flags & VM_EXEC) prot |= PROT_EXEC; return prot; } /* * Map a subpage by creating an anonymous page that contains the union of the old page and * the subpage. */ static unsigned long mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags, loff_t off) { void *page = NULL; struct inode *inode; unsigned long ret = 0; struct vm_area_struct *vma = find_vma(current->mm, start); int old_prot = get_page_prot(vma, start); DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n", file, start, end, prot, flags, off); /* Optimize the case where the old mmap and the new mmap are both anonymous */ if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) { if (clear_user((void *) start, end - start)) { ret = -EFAULT; goto out; } goto skip_mmap; } page = (void *) get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; if (old_prot) copy_from_user(page, (void *) PAGE_START(start), PAGE_SIZE); down_write(¤t->mm->mmap_sem); { ret = do_mmap(0, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE, flags | MAP_FIXED | MAP_ANONYMOUS, 0); } up_write(¤t->mm->mmap_sem); if (IS_ERR((void *) ret)) goto out; if (old_prot) { /* copy back the old page contents. */ if (PAGE_OFF(start)) copy_to_user((void *) PAGE_START(start), page, PAGE_OFF(start)); if (PAGE_OFF(end)) copy_to_user((void *) end, page + PAGE_OFF(end), PAGE_SIZE - PAGE_OFF(end)); } if (!(flags & MAP_ANONYMOUS)) { /* read the file contents */ inode = file->f_dentry->d_inode; if (!inode->i_fop || !file->f_op->read || ((*file->f_op->read)(file, (char *) start, end - start, &off) < 0)) { ret = -EINVAL; goto out; } } skip_mmap: if (!(prot & PROT_WRITE)) ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot); out: if (page) free_page((unsigned long) page); return ret; } static unsigned long emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags, loff_t off) { unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0; struct inode *inode; loff_t poff; end = start + len; pstart = PAGE_START(start); pend = PAGE_ALIGN(end); if (flags & MAP_FIXED) { if (start > pstart) { if (flags & MAP_SHARED) printk(KERN_INFO "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n", current->comm, current->pid, start); ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags, off); if (IS_ERR((void *) ret)) return ret; pstart += PAGE_SIZE; if (pstart >= pend) return start; /* done */ } if (end < pend) { if (flags & MAP_SHARED) printk(KERN_INFO "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n", current->comm, current->pid, end); ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags, (off + len) - PAGE_OFF(end)); if (IS_ERR((void *) ret)) return ret; pend -= PAGE_SIZE; if (pstart >= pend) return start; /* done */ } } else { /* * If a start address was specified, use it if the entire rounded out area * is available. */ if (start && !pstart) fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */ tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags); if (tmp != pstart) { pstart = tmp; start = pstart + PAGE_OFF(off); /* make start congruent with off */ end = start + len; pend = PAGE_ALIGN(end); } } poff = off + (pstart - start); /* note: (pstart - start) may be negative */ is_congruent = (flags & MAP_ANONYMOUS) || (PAGE_OFF(poff) == 0); if ((flags & MAP_SHARED) && !is_congruent) printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap " "(addr=0x%lx,off=0x%llx)\n", current->comm, current->pid, start, off); DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend, is_congruent ? "congruent" : "not congruent", poff); down_write(¤t->mm->mmap_sem); { if (!(flags & MAP_ANONYMOUS) && is_congruent) ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff); else ret = do_mmap(0, pstart, pend - pstart, prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE), flags | MAP_FIXED | MAP_ANONYMOUS, 0); } up_write(¤t->mm->mmap_sem); if (IS_ERR((void *) ret)) return ret; if (!is_congruent) { /* read the file contents */ inode = file->f_dentry->d_inode; if (!inode->i_fop || !file->f_op->read || ((*file->f_op->read)(file, (char *) pstart, pend - pstart, &poff) < 0)) { sys_munmap(pstart, pend - pstart); return -EINVAL; } if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0) return -EINVAL; } return start; } #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */ static inline unsigned int get_prot32 (unsigned int prot) { if (prot & PROT_WRITE) /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */ prot |= PROT_READ | PROT_WRITE | PROT_EXEC; else if (prot & (PROT_READ | PROT_EXEC)) /* on x86, there is no distinction between PROT_READ and PROT_EXEC */ prot |= (PROT_READ | PROT_EXEC); return prot; } unsigned long ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags, loff_t offset) { DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n", file, addr, len, prot, flags, offset); if (file && (!file->f_op || !file->f_op->mmap)) return -ENODEV; len = IA32_PAGE_ALIGN(len); if (len == 0) return addr; if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len) { if (flags & MAP_FIXED) return -ENOMEM; else return -EINVAL; } if (OFFSET4K(offset)) return -EINVAL; prot = get_prot32(prot); #if PAGE_SHIFT > IA32_PAGE_SHIFT down(&ia32_mmap_sem); { addr = emulate_mmap(file, addr, len, prot, flags, offset); } up(&ia32_mmap_sem); #else down_write(¤t->mm->mmap_sem); { addr = do_mmap(file, addr, len, prot, flags, offset); } up_write(¤t->mm->mmap_sem); #endif DBG("ia32_do_mmap: returning 0x%lx\n", addr); return addr; } /* * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these * system calls used a memory block for parameter passing.. */ struct mmap_arg_struct { unsigned int addr; unsigned int len; unsigned int prot; unsigned int flags; unsigned int fd; unsigned int offset; }; asmlinkage long sys32_mmap (struct mmap_arg_struct *arg) { struct mmap_arg_struct a; struct file *file = NULL; unsigned long addr; int flags; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; if (OFFSET4K(a.offset)) return -EINVAL; flags = a.flags; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(a.fd); if (!file) return -EBADF; } addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset); if (file) fput(file); return addr; } asmlinkage long sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags, unsigned int fd, unsigned int pgoff) { struct file *file = NULL; unsigned long retval; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(fd); if (!file) return -EBADF; } retval = ia32_do_mmap(file, addr, len, prot, flags, (unsigned long) pgoff << IA32_PAGE_SHIFT); if (file) fput(file); return retval; } asmlinkage long sys32_munmap (unsigned int start, unsigned int len) { unsigned int end = start + len; long ret; #if PAGE_SHIFT <= IA32_PAGE_SHIFT ret = sys_munmap(start, end - start); #else if (start >= end) return -EINVAL; start = PAGE_ALIGN(start); end = PAGE_START(end); if (start >= end) return 0; down(&ia32_mmap_sem); { ret = sys_munmap(start, end - start); } up(&ia32_mmap_sem); #endif return ret; } #if PAGE_SHIFT > IA32_PAGE_SHIFT /* * When mprotect()ing a partial page, we set the permission to the union of the old * settings and the new settings. In other words, it's only possible to make access to a * partial page less restrictive. */ static long mprotect_subpage (unsigned long address, int new_prot) { int old_prot; struct vm_area_struct *vma; if (new_prot == PROT_NONE) return 0; /* optimize case where nothing changes... */ vma = find_vma(current->mm, address); old_prot = get_page_prot(vma, address); return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot); } #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */ asmlinkage long sys32_mprotect (unsigned int start, unsigned int len, int prot) { unsigned long end = start + len; #if PAGE_SHIFT > IA32_PAGE_SHIFT long retval = 0; #endif prot = get_prot32(prot); #if PAGE_SHIFT <= IA32_PAGE_SHIFT return sys_mprotect(start, end - start, prot); #else if (OFFSET4K(start)) return -EINVAL; end = IA32_PAGE_ALIGN(end); if (end < start) return -EINVAL; down(&ia32_mmap_sem); { if (PAGE_OFF(start)) { /* start address is 4KB aligned but not page aligned. */ retval = mprotect_subpage(PAGE_START(start), prot); if (retval < 0) goto out; start = PAGE_ALIGN(start); if (start >= end) goto out; /* retval is already zero... */ } if (PAGE_OFF(end)) { /* end address is 4KB aligned but not page aligned. */ retval = mprotect_subpage(PAGE_START(end), prot); if (retval < 0) goto out; end = PAGE_START(end); } retval = sys_mprotect(start, end - start, prot); } out: up(&ia32_mmap_sem); return retval; #endif } asmlinkage long sys32_pipe (int *fd) { int retval; int fds[2]; retval = do_pipe(fds); if (retval) goto out; if (copy_to_user(fd, fds, sizeof(fds))) retval = -EFAULT; out: return retval; } static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { int err; if (!access_ok(VERIFY_WRITE, ubuf, sizeof(*ubuf))) return -EFAULT; err = __put_user(kbuf->f_type, &ubuf->f_type); err |= __put_user(kbuf->f_bsize, &ubuf->f_bsize); err |= __put_user(kbuf->f_blocks, &ubuf->f_blocks); err |= __put_user(kbuf->f_bfree, &ubuf->f_bfree); err |= __put_user(kbuf->f_bavail, &ubuf->f_bavail); err |= __put_user(kbuf->f_files, &ubuf->f_files); err |= __put_user(kbuf->f_ffree, &ubuf->f_ffree); err |= __put_user(kbuf->f_namelen, &ubuf->f_namelen); err |= __put_user(kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]); err |= __put_user(kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]); return err; } extern asmlinkage long sys_statfs(const char * path, struct statfs * buf); asmlinkage long sys32_statfs (const char *path, struct statfs32 *buf) { const char *name; int ret; struct statfs s; mm_segment_t old_fs = get_fs(); name = getname(path); if (IS_ERR(name)) return PTR_ERR(name); set_fs(KERNEL_DS); ret = sys_statfs(name, &s); set_fs(old_fs); putname(name); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage long sys32_fstatfs (unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs(old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; static inline long get_tv32 (struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); } static inline long put_tv32 (struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } static inline long get_it32 (struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); } static inline long put_it32 (struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); } extern int do_getitimer (int which, struct itimerval *value); asmlinkage long sys32_getitimer (int which, struct itimerval32 *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; return error; } extern int do_setitimer (int which, struct itimerval *, struct itimerval *); asmlinkage long sys32_setitimer (int which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; return 0; } asmlinkage unsigned long sys32_alarm (unsigned int seconds) { struct itimerval it_new, it_old; unsigned int oldalarm; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; do_setitimer(ITIMER_REAL, &it_new, &it_old); oldalarm = it_old.it_value.tv_sec; /* ehhh.. We can't return 0 if we have an alarm pending.. */ /* And we'd better return too much than too little anyway */ if (it_old.it_value.tv_usec) oldalarm++; return oldalarm; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ struct utimbuf_32 { int atime; int mtime; }; extern asmlinkage long sys_utimes(char * filename, struct timeval * utimes); extern asmlinkage long sys_gettimeofday (struct timeval *tv, struct timezone *tz); asmlinkage long sys32_utime (char *filename, struct utimbuf_32 *times32) { mm_segment_t old_fs = get_fs(); struct timeval tv[2], *tvp; long ret; if (times32) { if (get_user(tv[0].tv_sec, ×32->atime)) return -EFAULT; tv[0].tv_usec = 0; if (get_user(tv[1].tv_sec, ×32->mtime)) return -EFAULT; tv[1].tv_usec = 0; set_fs(KERNEL_DS); tvp = tv; } else tvp = NULL; ret = sys_utimes(filename, tvp); set_fs(old_fs); return ret; } extern struct timezone sys_tz; extern int do_sys_settimeofday (struct timeval *tv, struct timezone *tz); asmlinkage long sys32_gettimeofday (struct timeval32 *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage long sys32_settimeofday (struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } struct getdents32_callback { struct linux32_dirent * current_dir; struct linux32_dirent * previous; int count; int error; }; struct readdir32_callback { struct old_linux32_dirent * dirent; int count; }; static int filldir32 (void *__buf, const char *name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct linux32_dirent * dirent; struct getdents32_callback * buf = (struct getdents32_callback *) __buf; int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1, 4); buf->error = -EINVAL; /* only used if we fail.. */ if (reclen > buf->count) return -EINVAL; buf->error = -EFAULT; /* only used if we fail.. */ dirent = buf->previous; if (dirent) if (put_user(offset, &dirent->d_off)) return -EFAULT; dirent = buf->current_dir; buf->previous = dirent; if (put_user(ino, &dirent->d_ino) || put_user(reclen, &dirent->d_reclen) || copy_to_user(dirent->d_name, name, namlen) || put_user(0, dirent->d_name + namlen)) return -EFAULT; ((char *) dirent) += reclen; buf->current_dir = dirent; buf->count -= reclen; return 0; } asmlinkage long sys32_getdents (unsigned int fd, struct linux32_dirent *dirent, unsigned int count) { struct file * file; struct linux32_dirent * lastdirent; struct getdents32_callback buf; int error; error = -EBADF; file = fget(fd); if (!file) goto out; buf.current_dir = dirent; buf.previous = NULL; buf.count = count; buf.error = 0; error = vfs_readdir(file, filldir32, &buf); if (error < 0) goto out_putf; error = buf.error; lastdirent = buf.previous; if (lastdirent) { error = -EINVAL; if (put_user(file->f_pos, &lastdirent->d_off)) goto out_putf; error = count - buf.count; } out_putf: fput(file); out: return error; } static int fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct readdir32_callback * buf = (struct readdir32_callback *) __buf; struct old_linux32_dirent * dirent; if (buf->count) return -EINVAL; buf->count++; dirent = buf->dirent; if (put_user(ino, &dirent->d_ino) || put_user(offset, &dirent->d_offset) || put_user(namlen, &dirent->d_namlen) || copy_to_user(dirent->d_name, name, namlen) || put_user(0, dirent->d_name + namlen)) return -EFAULT; return 0; } asmlinkage long sys32_readdir (unsigned int fd, void *dirent, unsigned int count) { int error; struct file * file; struct readdir32_callback buf; error = -EBADF; file = fget(fd); if (!file) goto out; buf.count = 0; buf.dirent = dirent; error = vfs_readdir(file, fillonedir32, &buf); if (error >= 0) error = buf.count; fput(file); out: return error; } /* * We can actually return ERESTARTSYS instead of EINTR, but I'd * like to be certain this leads to no problems. So I return * EINTR just for safety. * * Update: ERESTARTSYS breaks at least the xview clock binary, so * I'm trying ERESTARTNOHAND which restart only when you want to. */ #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) #define ROUND_UP_TIME(x,y) (((x)+(y)-1)/(y)) asmlinkage long sys32_select (int n, fd_set *inp, fd_set *outp, fd_set *exp, struct timeval32 *tvp32) { fd_set_bits fds; char *bits; long timeout; int ret, size; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp32) { time_t sec, usec; ret = -EFAULT; if (get_user(sec, &tvp32->tv_sec) || get_user(usec, &tvp32->tv_usec)) goto out_nofds; ret = -EINVAL; if (sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = ROUND_UP_TIME(usec, 1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); if ((ret = get_fd_set(n, inp, fds.in)) || (ret = get_fd_set(n, outp, fds.out)) || (ret = get_fd_set(n, exp, fds.ex))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp32 && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } if (put_user(sec, &tvp32->tv_sec) || put_user(usec, &tvp32->tv_usec)) { ret = -EFAULT; goto out; } } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set(n, inp, fds.res_in); set_fd_set(n, outp, fds.res_out); set_fd_set(n, exp, fds.res_ex); out: kfree(bits); out_nofds: return ret; } struct sel_arg_struct { unsigned int n; unsigned int inp; unsigned int outp; unsigned int exp; unsigned int tvp; }; asmlinkage long sys32_old_select (struct sel_arg_struct *arg) { struct sel_arg_struct a; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; return sys32_select(a.n, (fd_set *) A(a.inp), (fd_set *) A(a.outp), (fd_set *) A(a.exp), (struct timeval32 *) A(a.tvp)); } extern asmlinkage long sys_nanosleep (struct timespec *rqtp, struct timespec *rmtp); asmlinkage long sys32_nanosleep (struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs(); if (get_user (t.tv_sec, &rqtp->tv_sec) || get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs(old_fs); if (rmtp && ret == -EINTR) { if (put_user(t.tv_sec, &rmtp->tv_sec) || put_user(t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; } struct iovec32 { unsigned int iov_base; int iov_len; }; asmlinkage ssize_t sys_readv (unsigned long,const struct iovec *,unsigned long); asmlinkage ssize_t sys_writev (unsigned long,const struct iovec *,unsigned long); static struct iovec * get_iovec32 (struct iovec32 *iov32, struct iovec *iov_buf, u32 count, int type) { int i; u32 buf, len; struct iovec *ivp, *iov; /* Get the "struct iovec" from user memory */ if (!count) return 0; if (verify_area(VERIFY_READ, iov32, sizeof(struct iovec32)*count)) return NULL; if (count > UIO_MAXIOV) return NULL; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return NULL; } else iov = iov_buf; ivp = iov; for (i = 0; i < count; i++) { if (__get_user(len, &iov32->iov_len) || __get_user(buf, &iov32->iov_base)) { if (iov != iov_buf) kfree(iov); return NULL; } if (verify_area(type, (void *)A(buf), len)) { if (iov != iov_buf) kfree(iov); return((struct iovec *)0); } ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t) len; iov32++; ivp++; } return iov; } asmlinkage long sys32_readv (int fd, struct iovec32 *vector, u32 count) { struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov; long ret; mm_segment_t old_fs = get_fs(); iov = get_iovec32(vector, iovstack, count, VERIFY_WRITE); if (!iov) return -EFAULT; set_fs(KERNEL_DS); ret = sys_readv(fd, iov, count); set_fs(old_fs); if (iov != iovstack) kfree(iov); return ret; } asmlinkage long sys32_writev (int fd, struct iovec32 *vector, u32 count) { struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov; long ret; mm_segment_t old_fs = get_fs(); iov = get_iovec32(vector, iovstack, count, VERIFY_READ); if (!iov) return -EFAULT; set_fs(KERNEL_DS); ret = sys_writev(fd, iov, count); set_fs(old_fs); if (iov != iovstack) kfree(iov); return ret; } #define RLIM_INFINITY32 0x7fffffff #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { unsigned int rlim_cur; unsigned int rlim_max; }; extern asmlinkage long sys_getrlimit (unsigned int resource, struct rlimit *rlim); asmlinkage long sys32_old_getrlimit (unsigned int resource, struct rlimit32 *rlim) { mm_segment_t old_fs = get_fs(); struct rlimit r; int ret; set_fs(KERNEL_DS); ret = sys_getrlimit(resource, &r); set_fs(old_fs); if (!ret) { ret = put_user(RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= put_user(RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } asmlinkage long sys32_getrlimit (unsigned int resource, struct rlimit32 *rlim) { mm_segment_t old_fs = get_fs(); struct rlimit r; int ret; set_fs(KERNEL_DS); ret = sys_getrlimit(resource, &r); set_fs(old_fs); if (!ret) { if (r.rlim_cur >= 0xffffffff) r.rlim_cur = 0xffffffff; if (r.rlim_max >= 0xffffffff) r.rlim_max = 0xffffffff; ret = put_user(r.rlim_cur, &rlim->rlim_cur); ret |= put_user(r.rlim_max, &rlim->rlim_max); } return ret; } extern asmlinkage long sys_setrlimit (unsigned int resource, struct rlimit *rlim); asmlinkage long sys32_setrlimit (unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs(); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user(r.rlim_cur, &rlim->rlim_cur) || get_user(r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs(KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs(old_fs); return ret; } /* * Declare the IA32 version of the msghdr */ struct msghdr32 { unsigned int msg_name; /* Socket name */ int msg_namelen; /* Length of name */ unsigned int msg_iov; /* Data blocks */ unsigned int msg_iovlen; /* Number of blocks */ unsigned int msg_control; /* Per protocol magic (eg BSD file descriptor passing) */ unsigned int msg_controllen; /* Length of cmsg list */ unsigned msg_flags; }; struct cmsghdr32 { __kernel_size_t32 cmsg_len; int cmsg_level; int cmsg_type; }; /* Bleech... */ #define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen)) #define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen)) #define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) ) #define CMSG32_DATA(cmsg) \ ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32)))) #define CMSG32_SPACE(len) \ (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len)) #define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len)) #define __CMSG32_FIRSTHDR(ctl,len) \ ((len) >= sizeof(struct cmsghdr32) ? (struct cmsghdr32 *)(ctl) : (struct cmsghdr32 *)NULL) #define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) static inline struct cmsghdr32 * __cmsg32_nxthdr (void *ctl, __kernel_size_t size, struct cmsghdr32 *cmsg, int cmsg_len) { struct cmsghdr32 * ptr; ptr = (struct cmsghdr32 *)(((unsigned char *) cmsg) + CMSG32_ALIGN(cmsg_len)); if ((unsigned long)((char*)(ptr+1) - (char *) ctl) > size) return NULL; return ptr; } static inline struct cmsghdr32 * cmsg32_nxthdr (struct msghdr *msg, struct cmsghdr32 *cmsg, int cmsg_len) { return __cmsg32_nxthdr(msg->msg_control, msg->msg_controllen, cmsg, cmsg_len); } static inline int get_msghdr32 (struct msghdr *mp, struct msghdr32 *mp32) { int ret; unsigned int i; if (!access_ok(VERIFY_READ, mp32, sizeof(*mp32))) return -EFAULT; ret = __get_user(i, &mp32->msg_name); mp->msg_name = (void *)A(i); ret |= __get_user(mp->msg_namelen, &mp32->msg_namelen); ret |= __get_user(i, &mp32->msg_iov); mp->msg_iov = (struct iovec *)A(i); ret |= __get_user(mp->msg_iovlen, &mp32->msg_iovlen); ret |= __get_user(i, &mp32->msg_control); mp->msg_control = (void *)A(i); ret |= __get_user(mp->msg_controllen, &mp32->msg_controllen); ret |= __get_user(mp->msg_flags, &mp32->msg_flags); return ret ? -EFAULT : 0; } /* * There is a lot of hair here because the alignment rules (and thus placement) of cmsg * headers and length are different for 32-bit apps. -DaveM */ static int get_cmsghdr32 (struct msghdr *kmsg, unsigned char *stackbuf, struct sock *sk, size_t *bufsize) { struct cmsghdr *kcmsg, *kcmsg_base; __kernel_size_t kcmlen, tmp; __kernel_size_t32 ucmlen; struct cmsghdr32 *ucmsg; long err; kcmlen = 0; kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf; ucmsg = CMSG32_FIRSTHDR(kmsg); while (ucmsg != NULL) { if (get_user(ucmlen, &ucmsg->cmsg_len)) return -EFAULT; /* Catch bogons. */ if (CMSG32_ALIGN(ucmlen) < CMSG32_ALIGN(sizeof(struct cmsghdr32))) return -EINVAL; if ((unsigned long)(((char *)ucmsg - (char *)kmsg->msg_control) + ucmlen) > kmsg->msg_controllen) return -EINVAL; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmlen += tmp; ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } if (kcmlen == 0) return -EINVAL; /* * The kcmlen holds the 64-bit version of the control length. It may not be * modified as we do not stick it into the kmsg until we have successfully copied * over all of the data from the user. */ if (kcmlen > *bufsize) { *bufsize = kcmlen; kcmsg_base = kcmsg = sock_kmalloc(sk, kcmlen, GFP_KERNEL); } if (kcmsg == NULL) return -ENOBUFS; /* Now copy them over neatly. */ memset(kcmsg, 0, kcmlen); ucmsg = CMSG32_FIRSTHDR(kmsg); while (ucmsg != NULL) { err = get_user(ucmlen, &ucmsg->cmsg_len); tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmsg->cmsg_len = tmp; err |= get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level); err |= get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type); /* Copy over the data. */ err |= copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg), (ucmlen - CMSG32_ALIGN(sizeof(*ucmsg)))); if (err) goto out_free_efault; /* Advance. */ kcmsg = (struct cmsghdr *)((char *)kcmsg + CMSG_ALIGN(tmp)); ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } /* Ok, looks like we made it. Hook it up and return success. */ kmsg->msg_control = kcmsg_base; kmsg->msg_controllen = kcmlen; return 0; out_free_efault: if (kcmsg_base != (struct cmsghdr *)stackbuf) sock_kfree_s(sk, kcmsg_base, kcmlen); return -EFAULT; } /* * Verify & re-shape IA32 iovec. The caller must ensure that the * iovec is big enough to hold the re-shaped message iovec. * * Save time not doing verify_area. copy_*_user will make this work * in any case. * * Don't need to check the total size for overflow (cf net/core/iovec.c), * 32-bit sizes can't overflow a 64-bit count. */ static inline int verify_iovec32 (struct msghdr *m, struct iovec *iov, char *address, int mode) { int size, err, ct; struct iovec32 *iov32; if (m->msg_namelen) { if (mode == VERIFY_READ) { err = move_addr_to_kernel(m->msg_name, m->msg_namelen, address); if (err < 0) goto out; } m->msg_name = address; } else m->msg_name = NULL; err = -EFAULT; size = m->msg_iovlen * sizeof(struct iovec32); if (copy_from_user(iov, m->msg_iov, size)) goto out; m->msg_iov = iov; err = 0; iov32 = (struct iovec32 *)iov; for (ct = m->msg_iovlen; ct-- > 0; ) { iov[ct].iov_len = (__kernel_size_t)iov32[ct].iov_len; iov[ct].iov_base = (void *) A(iov32[ct].iov_base); err += iov[ct].iov_len; } out: return err; } static void put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; struct cmsghdr32 cmhdr; int cmlen = CMSG32_LEN(len); if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) { kmsg->msg_flags |= MSG_CTRUNC; return; } if(kmsg->msg_controllen < cmlen) { kmsg->msg_flags |= MSG_CTRUNC; cmlen = kmsg->msg_controllen; } cmhdr.cmsg_level = level; cmhdr.cmsg_type = type; cmhdr.cmsg_len = cmlen; if(copy_to_user(cm, &cmhdr, sizeof cmhdr)) return; if(copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32))) return; cmlen = CMSG32_SPACE(len); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } static void scm_detach_fds32 (struct msghdr *kmsg, struct scm_cookie *scm) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int); int fdnum = scm->fp->count; struct file **fp = scm->fp->fp; int *cmfptr; int err = 0, i; if (fdnum < fdmax) fdmax = fdnum; for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) { int new_fd; err = get_unused_fd(); if (err < 0) break; new_fd = err; err = put_user(new_fd, cmfptr); if (err) { put_unused_fd(new_fd); break; } /* Bump the usage count and install the file. */ get_file(fp[i]); current->files->fd[new_fd] = fp[i]; } if (i > 0) { int cmlen = CMSG32_LEN(i * sizeof(int)); if (!err) err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG32_SPACE(i * sizeof(int)); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } } if (i < fdnum) kmsg->msg_flags |= MSG_CTRUNC; /* * All of the files that fit in the message have had their * usage counts incremented, so we just free the list. */ __scm_destroy(scm); } /* * In these cases we (currently) can just copy to data over verbatim because all CMSGs * created by the kernel have well defined types which have the same layout in both the * 32-bit and 64-bit API. One must add some special cased conversions here if we start * sending control messages with incompatible types. * * SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after * we do our work. The remaining cases are: * * SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean * IP_TTL int 32-bit clean * IP_TOS __u8 32-bit clean * IP_RECVOPTS variable length 32-bit clean * IP_RETOPTS variable length 32-bit clean * (these last two are clean because the types are defined * by the IPv4 protocol) * IP_RECVERR struct sock_extended_err + * struct sockaddr_in 32-bit clean * SOL_IPV6 IPV6_RECVERR struct sock_extended_err + * struct sockaddr_in6 32-bit clean * IPV6_PKTINFO struct in6_pktinfo 32-bit clean * IPV6_HOPLIMIT int 32-bit clean * IPV6_FLOWINFO u32 32-bit clean * IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean * IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean * IPV6_RTHDR ipv6 routing exthdr 32-bit clean * IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean */ static void cmsg32_recvmsg_fixup (struct msghdr *kmsg, unsigned long orig_cmsg_uptr) { unsigned char *workbuf, *wp; unsigned long bufsz, space_avail; struct cmsghdr *ucmsg; long err; bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr; space_avail = kmsg->msg_controllen + bufsz; wp = workbuf = kmalloc(bufsz, GFP_KERNEL); if (workbuf == NULL) goto fail; /* To make this more sane we assume the kernel sends back properly * formatted control messages. Because of how the kernel will truncate * the cmsg_len for MSG_TRUNC cases, we need not check that case either. */ ucmsg = (struct cmsghdr *) orig_cmsg_uptr; while (((unsigned long)ucmsg) < ((unsigned long)kmsg->msg_control)) { struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp; int clen64, clen32; /* * UCMSG is the 64-bit format CMSG entry in user-space. KCMSG32 is within * the kernel space temporary buffer we use to convert into a 32-bit style * CMSG. */ err = get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len); err |= get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level); err |= get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type); if (err) goto fail2; clen64 = kcmsg32->cmsg_len; copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg), clen64 - CMSG_ALIGN(sizeof(*ucmsg))); clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) + CMSG32_ALIGN(sizeof(struct cmsghdr32))); kcmsg32->cmsg_len = clen32; ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64)); wp = (((char *)kcmsg32) + CMSG32_ALIGN(clen32)); } /* Copy back fixed up data, and adjust pointers. */ bufsz = (wp - workbuf); if (copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz)) goto fail2; kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz); kmsg->msg_controllen = space_avail - bufsz; kfree(workbuf); return; fail2: kfree(workbuf); fail: /* * If we leave the 64-bit format CMSG chunks in there, the application could get * confused and crash. So to ensure greater recovery, we report no CMSGs. */ kmsg->msg_controllen += bufsz; kmsg->msg_control = (void *) orig_cmsg_uptr; } static inline void sockfd_put (struct socket *sock) { fput(sock->file); } /* XXX This really belongs in some header file... -DaveM */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ extern struct socket *sockfd_lookup (int fd, int *err); /* * BSD sendmsg interface */ int sys32_sendmsg (int fd, struct msghdr32 *msg, unsigned flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; struct msghdr msg_sys; int err, iov_size, total_len; size_t ctl_len; err = -EFAULT; if (get_msghdr32(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; /* do not move before msg_sys is valid */ err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec32); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* This will also move the address data into kernel space */ err = verify_iovec32(&msg_sys, iov, address, VERIFY_READ); if (err < 0) goto out_freeiov; total_len = err; err = -ENOBUFS; if (msg_sys.msg_controllen > INT_MAX) goto out_freeiov; if (msg_sys.msg_controllen) { ctl_len = sizeof(ctl); err = get_cmsghdr32(&msg_sys, ctl_buf, sock->sk, &ctl_len); if (err) goto out_freeiov; ctl_buf = msg_sys.msg_control; } msg_sys.msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &msg_sys, total_len); if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } /* * BSD recvmsg interface */ int sys32_recvmsg (int fd, struct msghdr32 *msg, unsigned int flags) { struct socket *sock; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack; struct msghdr msg_sys; unsigned long cmsg_ptr; int err, iov_size, total_len, len; struct scm_cookie scm; /* kernel mode address */ char addr[MAX_SOCK_ADDR]; /* user mode address pointers */ struct sockaddr *uaddr; int *uaddr_len; err = -EFAULT; if (get_msghdr32(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* * Save the user-mode address (verify_iovec will change the * kernel msghdr to use the kernel address space) */ uaddr = msg_sys.msg_name; uaddr_len = &msg->msg_namelen; err = verify_iovec32(&msg_sys, iov, addr, VERIFY_WRITE); if (err < 0) goto out_freeiov; total_len=err; cmsg_ptr = (unsigned long)msg_sys.msg_control; msg_sys.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; memset(&scm, 0, sizeof(scm)); lock_kernel(); { err = sock->ops->recvmsg(sock, &msg_sys, total_len, flags, &scm); if (err < 0) goto out_unlock_freeiov; len = err; if (!msg_sys.msg_control) { if (sock->passcred || scm.fp) msg_sys.msg_flags |= MSG_CTRUNC; if (scm.fp) __scm_destroy(&scm); } else { /* * If recvmsg processing itself placed some control messages into * user space, it's is using 64-bit CMSG processing, so we need to * fix it up before we tack on more stuff. */ if ((unsigned long) msg_sys.msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(&msg_sys, cmsg_ptr); /* Wheee... */ if (sock->passcred) put_cmsg32(&msg_sys, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm.creds), &scm.creds); if (scm.fp != NULL) scm_detach_fds32(&msg_sys, &scm); } } unlock_kernel(); if (uaddr != NULL) { err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); if (err < 0) goto out_freeiov; } err = __put_user(msg_sys.msg_flags, &msg->msg_flags); if (err) goto out_freeiov; err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, &msg->msg_controllen); if (err) goto out_freeiov; err = len; out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; out_unlock_freeiov: goto out_freeiov; } /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(u32)) static const unsigned char nas[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; #undef AL extern asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen); extern asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen); extern asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen); extern asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_send(int fd, void *buff, size_t len, unsigned flags); extern asmlinkage long sys_sendto(int fd, u32 buff, __kernel_size_t32 len, unsigned flags, u32 addr, int addr_len); extern asmlinkage long sys_recv(int fd, void *ubuf, size_t size, unsigned flags); extern asmlinkage long sys_recvfrom(int fd, u32 ubuf, __kernel_size_t32 size, unsigned flags, u32 addr, u32 addr_len); extern asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); extern asmlinkage long sys_getsockopt(int fd, int level, int optname, u32 optval, u32 optlen); extern asmlinkage long sys_socket(int family, int type, int protocol); extern asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2]); extern asmlinkage long sys_shutdown(int fd, int how); extern asmlinkage long sys_listen(int fd, int backlog); asmlinkage long sys32_socketcall (int call, u32 *args) { int ret; u32 a[6]; u32 a0,a1; if (call<SYS_SOCKET||call>SYS_RECVMSG) return -EINVAL; if (copy_from_user(a, args, nas[call])) return -EFAULT; a0=a[0]; a1=a[1]; switch(call) { case SYS_SOCKET: ret = sys_socket(a0, a1, a[2]); break; case SYS_BIND: ret = sys_bind(a0, (struct sockaddr *)A(a1), a[2]); break; case SYS_CONNECT: ret = sys_connect(a0, (struct sockaddr *)A(a1), a[2]); break; case SYS_LISTEN: ret = sys_listen(a0, a1); break; case SYS_ACCEPT: ret = sys_accept(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_GETSOCKNAME: ret = sys_getsockname(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_GETPEERNAME: ret = sys_getpeername(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_SOCKETPAIR: ret = sys_socketpair(a0, a1, a[2], (int *)A(a[3])); break; case SYS_SEND: ret = sys_send(a0, (void *)A(a1), a[2], a[3]); break; case SYS_SENDTO: ret = sys_sendto(a0, a1, a[2], a[3], a[4], a[5]); break; case SYS_RECV: ret = sys_recv(a0, (void *)A(a1), a[2], a[3]); break; case SYS_RECVFROM: ret = sys_recvfrom(a0, a1, a[2], a[3], a[4], a[5]); break; case SYS_SHUTDOWN: ret = sys_shutdown(a0,a1); break; case SYS_SETSOCKOPT: ret = sys_setsockopt(a0, a1, a[2], (char *)A(a[3]), a[4]); break; case SYS_GETSOCKOPT: ret = sys_getsockopt(a0, a1, a[2], a[3], a[4]); break; case SYS_SENDMSG: ret = sys32_sendmsg(a0, (struct msghdr32 *) A(a1), a[2]); break; case SYS_RECVMSG: ret = sys32_recvmsg(a0, (struct msghdr32 *) A(a1), a[2]); break; default: ret = EINVAL; break; } return ret; } /* * sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit emulation.. * * This is really horribly ugly. */ struct msgbuf32 { s32 mtype; char mtext[1]; }; struct ipc_perm32 { key_t key; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_uid_t32 cuid; __kernel_gid_t32 cgid; __kernel_mode_t32 mode; unsigned short seq; }; struct ipc64_perm32 { key_t key; __kernel_uid32_t32 uid; __kernel_gid32_t32 gid; __kernel_uid32_t32 cuid; __kernel_gid32_t32 cgid; __kernel_mode_t32 mode; unsigned short __pad1; unsigned short seq; unsigned short __pad2; unsigned int unused1; unsigned int unused2; }; struct semid_ds32 { struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */ __kernel_time_t32 sem_otime; /* last semop time */ __kernel_time_t32 sem_ctime; /* last change time */ u32 sem_base; /* ptr to first semaphore in array */ u32 sem_pending; /* pending operations to be processed */ u32 sem_pending_last; /* last pending operation */ u32 undo; /* undo requests on this array */ unsigned short sem_nsems; /* no. of semaphores in array */ }; struct semid64_ds32 { struct ipc64_perm32 sem_perm; __kernel_time_t32 sem_otime; unsigned int __unused1; __kernel_time_t32 sem_ctime; unsigned int __unused2; unsigned int sem_nsems; unsigned int __unused3; unsigned int __unused4; }; struct msqid_ds32 { struct ipc_perm32 msg_perm; u32 msg_first; u32 msg_last; __kernel_time_t32 msg_stime; __kernel_time_t32 msg_rtime; __kernel_time_t32 msg_ctime; u32 wwait; u32 rwait; unsigned short msg_cbytes; unsigned short msg_qnum; unsigned short msg_qbytes; __kernel_ipc_pid_t32 msg_lspid; __kernel_ipc_pid_t32 msg_lrpid; }; struct msqid64_ds32 { struct ipc64_perm32 msg_perm; __kernel_time_t32 msg_stime; unsigned int __unused1; __kernel_time_t32 msg_rtime; unsigned int __unused2; __kernel_time_t32 msg_ctime; unsigned int __unused3; unsigned int msg_cbytes; unsigned int msg_qnum; unsigned int msg_qbytes; __kernel_pid_t32 msg_lspid; __kernel_pid_t32 msg_lrpid; unsigned int __unused4; unsigned int __unused5; }; struct shmid_ds32 { struct ipc_perm32 shm_perm; int shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_ipc_pid_t32 shm_cpid; __kernel_ipc_pid_t32 shm_lpid; unsigned short shm_nattch; }; struct shmid64_ds32 { struct ipc64_perm32 shm_perm; __kernel_size_t32 shm_segsz; __kernel_time_t32 shm_atime; unsigned int __unused1; __kernel_time_t32 shm_dtime; unsigned int __unused2; __kernel_time_t32 shm_ctime; unsigned int __unused3; __kernel_pid_t32 shm_cpid; __kernel_pid_t32 shm_lpid; unsigned int shm_nattch; unsigned int __unused4; unsigned int __unused5; }; struct shminfo64_32 { unsigned int shmmax; unsigned int shmmin; unsigned int shmmni; unsigned int shmseg; unsigned int shmall; unsigned int __unused1; unsigned int __unused2; unsigned int __unused3; unsigned int __unused4; }; struct shm_info32 { int used_ids; u32 shm_tot, shm_rss, shm_swp; u32 swap_attempts, swap_successes; }; struct ipc_kludge { u32 msgp; s32 msgtyp; }; #define SEMOP 1 #define SEMGET 2 #define SEMCTL 3 #define MSGSND 11 #define MSGRCV 12 #define MSGGET 13 #define MSGCTL 14 #define SHMAT 21 #define SHMDT 22 #define SHMGET 23 #define SHMCTL 24 #define IPCOP_MASK(__x) (1UL << (__x)) static int ipc_parse_version32 (int *cmd) { if (*cmd & IPC_64) { *cmd ^= IPC_64; return IPC_64; } else { return IPC_OLD; } } static int semctl32 (int first, int second, int third, void *uptr) { union semun fourth; u32 pad; int err = 0, err2; struct semid64_ds s; mm_segment_t old_fs; int version = ipc_parse_version32(&third); if (!uptr) return -EINVAL; if (get_user(pad, (u32 *)uptr)) return -EFAULT; if (third == SETVAL) fourth.val = (int)pad; else fourth.__pad = (void *)A(pad); switch (third) { default: err = -EINVAL; break; case IPC_INFO: case IPC_RMID: case IPC_SET: case SEM_INFO: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETVAL: case SETALL: err = sys_semctl(first, second, third, fourth); break; case IPC_STAT: case SEM_STAT: fourth.__pad = &s; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_semctl(first, second, third, fourth); set_fs(old_fs); if (version == IPC_64) { struct semid64_ds32 *usp64 = (struct semid64_ds32 *) A(pad); if (!access_ok(VERIFY_WRITE, usp64, sizeof(*usp64))) { err = -EFAULT; break; } err2 = __put_user(s.sem_perm.key, &usp64->sem_perm.key); err2 |= __put_user(s.sem_perm.uid, &usp64->sem_perm.uid); err2 |= __put_user(s.sem_perm.gid, &usp64->sem_perm.gid); err2 |= __put_user(s.sem_perm.cuid, &usp64->sem_perm.cuid); err2 |= __put_user(s.sem_perm.cgid, &usp64->sem_perm.cgid); err2 |= __put_user(s.sem_perm.mode, &usp64->sem_perm.mode); err2 |= __put_user(s.sem_perm.seq, &usp64->sem_perm.seq); err2 |= __put_user(s.sem_otime, &usp64->sem_otime); err2 |= __put_user(s.sem_ctime, &usp64->sem_ctime); err2 |= __put_user(s.sem_nsems, &usp64->sem_nsems); } else { struct semid_ds32 *usp32 = (struct semid_ds32 *) A(pad); if (!access_ok(VERIFY_WRITE, usp32, sizeof(*usp32))) { err = -EFAULT; break; } err2 = __put_user(s.sem_perm.key, &usp32->sem_perm.key); err2 |= __put_user(s.sem_perm.uid, &usp32->sem_perm.uid); err2 |= __put_user(s.sem_perm.gid, &usp32->sem_perm.gid); err2 |= __put_user(s.sem_perm.cuid, &usp32->sem_perm.cuid); err2 |= __put_user(s.sem_perm.cgid, &usp32->sem_perm.cgid); err2 |= __put_user(s.sem_perm.mode, &usp32->sem_perm.mode); err2 |= __put_user(s.sem_perm.seq, &usp32->sem_perm.seq); err2 |= __put_user(s.sem_otime, &usp32->sem_otime); err2 |= __put_user(s.sem_ctime, &usp32->sem_ctime); err2 |= __put_user(s.sem_nsems, &usp32->sem_nsems); } if (err2) err = -EFAULT; break; } return err; } static int do_sys32_msgsnd (int first, int second, int third, void *uptr) { struct msgbuf *p = kmalloc(second + sizeof(struct msgbuf), GFP_USER); struct msgbuf32 *up = (struct msgbuf32 *)uptr; mm_segment_t old_fs; int err; if (!p) return -ENOMEM; err = get_user(p->mtype, &up->mtype); err |= copy_from_user(p->mtext, &up->mtext, second); if (err) goto out; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgsnd(first, p, second, third); set_fs(old_fs); out: kfree(p); return err; } static int do_sys32_msgrcv (int first, int second, int msgtyp, int third, int version, void *uptr) { struct msgbuf32 *up; struct msgbuf *p; mm_segment_t old_fs; int err; if (!version) { struct ipc_kludge *uipck = (struct ipc_kludge *)uptr; struct ipc_kludge ipck; err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (copy_from_user(&ipck, uipck, sizeof(struct ipc_kludge))) goto out; uptr = (void *)A(ipck.msgp); msgtyp = ipck.msgtyp; } err = -ENOMEM; p = kmalloc(second + sizeof(struct msgbuf), GFP_USER); if (!p) goto out; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgrcv(first, p, second, msgtyp, third); set_fs(old_fs); if (err < 0) goto free_then_out; up = (struct msgbuf32 *)uptr; if (put_user(p->mtype, &up->mtype) || copy_to_user(&up->mtext, p->mtext, err)) err = -EFAULT; free_then_out: kfree(p); out: return err; } static int msgctl32 (int first, int second, void *uptr) { int err = -EINVAL, err2; struct msqid_ds m; struct msqid64_ds m64; struct msqid_ds32 *up32 = (struct msqid_ds32 *)uptr; struct msqid64_ds32 *up64 = (struct msqid64_ds32 *)uptr; mm_segment_t old_fs; int version = ipc_parse_version32(&second); switch (second) { case IPC_INFO: case IPC_RMID: case MSG_INFO: err = sys_msgctl(first, second, (struct msqid_ds *)uptr); break; case IPC_SET: if (version == IPC_64) { err = get_user(m64.msg_perm.uid, &up64->msg_perm.uid); err |= get_user(m64.msg_perm.gid, &up64->msg_perm.gid); err |= get_user(m64.msg_perm.mode, &up64->msg_perm.mode); err |= get_user(m64.msg_qbytes, &up64->msg_qbytes); } else { err = get_user(m64.msg_perm.uid, &up32->msg_perm.uid); err |= get_user(m64.msg_perm.gid, &up32->msg_perm.gid); err |= get_user(m64.msg_perm.mode, &up32->msg_perm.mode); err |= get_user(m64.msg_qbytes, &up32->msg_qbytes); } if (err) break; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second, &m64); set_fs(old_fs); break; case IPC_STAT: case MSG_STAT: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second, (void *) &m64); set_fs(old_fs); if (version == IPC_64) { if (!access_ok(VERIFY_WRITE, up64, sizeof(*up64))) { err = -EFAULT; break; } err2 = __put_user(m64.msg_perm.key, &up64->msg_perm.key); err2 |= __put_user(m64.msg_perm.uid, &up64->msg_perm.uid); err2 |= __put_user(m64.msg_perm.gid, &up64->msg_perm.gid); err2 |= __put_user(m64.msg_perm.cuid, &up64->msg_perm.cuid); err2 |= __put_user(m64.msg_perm.cgid, &up64->msg_perm.cgid); err2 |= __put_user(m64.msg_perm.mode, &up64->msg_perm.mode); err2 |= __put_user(m64.msg_perm.seq, &up64->msg_perm.seq); err2 |= __put_user(m64.msg_stime, &up64->msg_stime); err2 |= __put_user(m64.msg_rtime, &up64->msg_rtime); err2 |= __put_user(m64.msg_ctime, &up64->msg_ctime); err2 |= __put_user(m64.msg_cbytes, &up64->msg_cbytes); err2 |= __put_user(m64.msg_qnum, &up64->msg_qnum); err2 |= __put_user(m64.msg_qbytes, &up64->msg_qbytes); err2 |= __put_user(m64.msg_lspid, &up64->msg_lspid); err2 |= __put_user(m64.msg_lrpid, &up64->msg_lrpid); if (err2) err = -EFAULT; } else { if (!access_ok(VERIFY_WRITE, up32, sizeof(*up32))) { err = -EFAULT; break; } err2 = __put_user(m64.msg_perm.key, &up32->msg_perm.key); err2 |= __put_user(m64.msg_perm.uid, &up32->msg_perm.uid); err2 |= __put_user(m64.msg_perm.gid, &up32->msg_perm.gid); err2 |= __put_user(m64.msg_perm.cuid, &up32->msg_perm.cuid); err2 |= __put_user(m64.msg_perm.cgid, &up32->msg_perm.cgid); err2 |= __put_user(m64.msg_perm.mode, &up32->msg_perm.mode); err2 |= __put_user(m64.msg_perm.seq, &up32->msg_perm.seq); err2 |= __put_user(m64.msg_stime, &up32->msg_stime); err2 |= __put_user(m64.msg_rtime, &up32->msg_rtime); err2 |= __put_user(m64.msg_ctime, &up32->msg_ctime); err2 |= __put_user(m64.msg_cbytes, &up32->msg_cbytes); err2 |= __put_user(m64.msg_qnum, &up32->msg_qnum); err2 |= __put_user(m64.msg_qbytes, &up32->msg_qbytes); err2 |= __put_user(m64.msg_lspid, &up32->msg_lspid); err2 |= __put_user(m64.msg_lrpid, &up32->msg_lrpid); if (err2) err = -EFAULT; } break; } return err; } static int shmat32 (int first, int second, int third, int version, void *uptr) { unsigned long raddr; u32 *uaddr = (u32 *)A((u32)third); int err; if (version == 1) return -EINVAL; /* iBCS2 emulator entry point: unsupported */ err = sys_shmat(first, uptr, second, &raddr); if (err) return err; return put_user(raddr, uaddr); } static int shmctl32 (int first, int second, void *uptr) { int err = -EFAULT, err2; struct shmid64_ds s64; struct shmid_ds32 *up32 = (struct shmid_ds32 *)uptr; struct shmid64_ds32 *up64 = (struct shmid64_ds32 *)uptr; mm_segment_t old_fs; struct shm_info32 *uip = (struct shm_info32 *)uptr; struct shm_info si; int version = ipc_parse_version32(&second); struct shminfo64 smi; struct shminfo *usi32 = (struct shminfo *) uptr; struct shminfo64_32 *usi64 = (struct shminfo64_32 *) uptr; switch (second) { case IPC_INFO: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (struct shmid_ds *)&smi); set_fs(old_fs); if (version == IPC_64) { if (!access_ok(VERIFY_WRITE, usi64, sizeof(*usi64))) { err = -EFAULT; break; } err2 = __put_user(smi.shmmax, &usi64->shmmax); err2 |= __put_user(smi.shmmin, &usi64->shmmin); err2 |= __put_user(smi.shmmni, &usi64->shmmni); err2 |= __put_user(smi.shmseg, &usi64->shmseg); err2 |= __put_user(smi.shmall, &usi64->shmall); } else { if (!access_ok(VERIFY_WRITE, usi32, sizeof(*usi32))) { err = -EFAULT; break; } err2 = __put_user(smi.shmmax, &usi32->shmmax); err2 |= __put_user(smi.shmmin, &usi32->shmmin); err2 |= __put_user(smi.shmmni, &usi32->shmmni); err2 |= __put_user(smi.shmseg, &usi32->shmseg); err2 |= __put_user(smi.shmall, &usi32->shmall); } if (err2) err = -EFAULT; break; case IPC_RMID: case SHM_LOCK: case SHM_UNLOCK: err = sys_shmctl(first, second, (struct shmid_ds *)uptr); break; case IPC_SET: if (version == IPC_64) { err = get_user(s64.shm_perm.uid, &up64->shm_perm.uid); err |= get_user(s64.shm_perm.gid, &up64->shm_perm.gid); err |= get_user(s64.shm_perm.mode, &up64->shm_perm.mode); } else { err = get_user(s64.shm_perm.uid, &up32->shm_perm.uid); err |= get_user(s64.shm_perm.gid, &up32->shm_perm.gid); err |= get_user(s64.shm_perm.mode, &up32->shm_perm.mode); } if (err) break; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, &s64); set_fs(old_fs); break; case IPC_STAT: case SHM_STAT: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (void *) &s64); set_fs(old_fs); if (err < 0) break; if (version == IPC_64) { if (!access_ok(VERIFY_WRITE, up64, sizeof(*up64))) { err = -EFAULT; break; } err2 = __put_user(s64.shm_perm.key, &up64->shm_perm.key); err2 |= __put_user(s64.shm_perm.uid, &up64->shm_perm.uid); err2 |= __put_user(s64.shm_perm.gid, &up64->shm_perm.gid); err2 |= __put_user(s64.shm_perm.cuid, &up64->shm_perm.cuid); err2 |= __put_user(s64.shm_perm.cgid, &up64->shm_perm.cgid); err2 |= __put_user(s64.shm_perm.mode, &up64->shm_perm.mode); err2 |= __put_user(s64.shm_perm.seq, &up64->shm_perm.seq); err2 |= __put_user(s64.shm_atime, &up64->shm_atime); err2 |= __put_user(s64.shm_dtime, &up64->shm_dtime); err2 |= __put_user(s64.shm_ctime, &up64->shm_ctime); err2 |= __put_user(s64.shm_segsz, &up64->shm_segsz); err2 |= __put_user(s64.shm_nattch, &up64->shm_nattch); err2 |= __put_user(s64.shm_cpid, &up64->shm_cpid); err2 |= __put_user(s64.shm_lpid, &up64->shm_lpid); } else { if (!access_ok(VERIFY_WRITE, up32, sizeof(*up32))) { err = -EFAULT; break; } err2 = __put_user(s64.shm_perm.key, &up32->shm_perm.key); err2 |= __put_user(s64.shm_perm.uid, &up32->shm_perm.uid); err2 |= __put_user(s64.shm_perm.gid, &up32->shm_perm.gid); err2 |= __put_user(s64.shm_perm.cuid, &up32->shm_perm.cuid); err2 |= __put_user(s64.shm_perm.cgid, &up32->shm_perm.cgid); err2 |= __put_user(s64.shm_perm.mode, &up32->shm_perm.mode); err2 |= __put_user(s64.shm_perm.seq, &up32->shm_perm.seq); err2 |= __put_user(s64.shm_atime, &up32->shm_atime); err2 |= __put_user(s64.shm_dtime, &up32->shm_dtime); err2 |= __put_user(s64.shm_ctime, &up32->shm_ctime); err2 |= __put_user(s64.shm_segsz, &up32->shm_segsz); err2 |= __put_user(s64.shm_nattch, &up32->shm_nattch); err2 |= __put_user(s64.shm_cpid, &up32->shm_cpid); err2 |= __put_user(s64.shm_lpid, &up32->shm_lpid); } if (err2) err = -EFAULT; break; case SHM_INFO: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (void *)&si); set_fs(old_fs); if (err < 0) break; if (!access_ok(VERIFY_WRITE, uip, sizeof(*uip))) { err = -EFAULT; break; } err2 = __put_user(si.used_ids, &uip->used_ids); err2 |= __put_user(si.shm_tot, &uip->shm_tot); err2 |= __put_user(si.shm_rss, &uip->shm_rss); err2 |= __put_user(si.shm_swp, &uip->shm_swp); err2 |= __put_user(si.swap_attempts, &uip->swap_attempts); err2 |= __put_user(si.swap_successes, &uip->swap_successes); if (err2) err = -EFAULT; break; } return err; } asmlinkage long sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ return sys_semop(first, (struct sembuf *)AA(ptr), second); case SEMGET: return sys_semget(first, second, third); case SEMCTL: return semctl32(first, second, third, (void *)AA(ptr)); case MSGSND: return do_sys32_msgsnd(first, second, third, (void *)AA(ptr)); case MSGRCV: return do_sys32_msgrcv(first, second, fifth, third, version, (void *)AA(ptr)); case MSGGET: return sys_msgget((key_t) first, second); case MSGCTL: return msgctl32(first, second, (void *)AA(ptr)); case SHMAT: return shmat32(first, second, third, version, (void *)AA(ptr)); break; case SHMDT: return sys_shmdt((char *)AA(ptr)); case SHMGET: return sys_shmget(first, second, third); case SHMCTL: return shmctl32(first, second, (void *)AA(ptr)); default: return -ENOSYS; } return -EINVAL; } /* * sys_time() can be implemented in user-level using * sys_gettimeofday(). IA64 did this but i386 Linux did not * so we have to implement this system call here. */ asmlinkage long sys32_time (int *tloc) { int i; /* SMP: This is fairly trivial. We grab CURRENT_TIME and stuff it to user space. No side effects */ i = CURRENT_TIME; if (tloc) { if (put_user(i, tloc)) i = -EFAULT; } return i; } struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int ru_maxrss; int ru_ixrss; int ru_idrss; int ru_isrss; int ru_minflt; int ru_majflt; int ru_nswap; int ru_inblock; int ru_oublock; int ru_msgsnd; int ru_msgrcv; int ru_nsignals; int ru_nvcsw; int ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; if (!access_ok(VERIFY_WRITE, ru, sizeof(*ru))) return -EFAULT; err = __put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } asmlinkage long sys32_wait4 (int pid, unsigned int *stat_addr, int options, struct rusage32 *ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r); set_fs(old_fs); if (put_rusage(ru, &r)) return -EFAULT; if (stat_addr && put_user(status, stat_addr)) return -EFAULT; return ret; } } asmlinkage long sys32_waitpid (int pid, unsigned int *stat_addr, int options) { return sys32_wait4(pid, stat_addr, options, NULL); } extern asmlinkage long sys_getrusage (int who, struct rusage *ru); asmlinkage long sys32_getrusage (int who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getrusage(who, &r); set_fs(old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } struct tms32 { __kernel_clock_t32 tms_utime; __kernel_clock_t32 tms_stime; __kernel_clock_t32 tms_cutime; __kernel_clock_t32 tms_cstime; }; extern asmlinkage long sys_times (struct tms * tbuf); asmlinkage long sys32_times (struct tms32 *tbuf) { mm_segment_t old_fs = get_fs(); struct tms t; long ret; int err; set_fs(KERNEL_DS); ret = sys_times(tbuf ? &t : NULL); set_fs(old_fs); if (tbuf) { err = put_user (IA32_TICK(t.tms_utime), &tbuf->tms_utime); err |= put_user (IA32_TICK(t.tms_stime), &tbuf->tms_stime); err |= put_user (IA32_TICK(t.tms_cutime), &tbuf->tms_cutime); err |= put_user (IA32_TICK(t.tms_cstime), &tbuf->tms_cstime); if (err) ret = -EFAULT; } return IA32_TICK(ret); } static unsigned int ia32_peek (struct pt_regs *regs, struct task_struct *child, unsigned long addr, unsigned int *val) { size_t copied; unsigned int ret; copied = access_process_vm(child, addr, val, sizeof(*val), 0); return (copied != sizeof(ret)) ? -EIO : 0; } static unsigned int ia32_poke (struct pt_regs *regs, struct task_struct *child, unsigned long addr, unsigned int val) { if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) return -EIO; return 0; } /* * The order in which registers are stored in the ptrace regs structure */ #define PT_EBX 0 #define PT_ECX 1 #define PT_EDX 2 #define PT_ESI 3 #define PT_EDI 4 #define PT_EBP 5 #define PT_EAX 6 #define PT_DS 7 #define PT_ES 8 #define PT_FS 9 #define PT_GS 10 #define PT_ORIG_EAX 11 #define PT_EIP 12 #define PT_CS 13 #define PT_EFL 14 #define PT_UESP 15 #define PT_SS 16 static unsigned int getreg (struct task_struct *child, int regno) { struct pt_regs *child_regs; child_regs = ia64_task_regs(child); switch (regno / sizeof(int)) { case PT_EBX: return child_regs->r11; case PT_ECX: return child_regs->r9; case PT_EDX: return child_regs->r10; case PT_ESI: return child_regs->r14; case PT_EDI: return child_regs->r15; case PT_EBP: return child_regs->r13; case PT_EAX: return child_regs->r8; case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */ case PT_EIP: return child_regs->cr_iip; case PT_UESP: return child_regs->r12; case PT_EFL: return child->thread.eflag; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: return __USER_DS; case PT_CS: return __USER_CS; default: printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno); break; } return 0; } static void putreg (struct task_struct *child, int regno, unsigned int value) { struct pt_regs *child_regs; child_regs = ia64_task_regs(child); switch (regno / sizeof(int)) { case PT_EBX: child_regs->r11 = value; break; case PT_ECX: child_regs->r9 = value; break; case PT_EDX: child_regs->r10 = value; break; case PT_ESI: child_regs->r14 = value; break; case PT_EDI: child_regs->r15 = value; break; case PT_EBP: child_regs->r13 = value; break; case PT_EAX: child_regs->r8 = value; break; case PT_ORIG_EAX: child_regs->r1 = value; break; case PT_EIP: child_regs->cr_iip = value; break; case PT_UESP: child_regs->r12 = value; break; case PT_EFL: child->thread.eflag = value; break; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: if (value != __USER_DS) printk(KERN_ERR "ia32.putreg: attempt to set invalid segment register %d = %x\n", regno, value); break; case PT_CS: if (value != __USER_CS) printk(KERN_ERR "ia32.putreg: attempt to to set invalid segment register %d = %x\n", regno, value); break; default: printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno); break; } } static void put_fpreg (int regno, struct _fpreg_ia32 *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { struct _fpreg_ia32 *f; char buf[32]; f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15); if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: ia64f2ia32f(f, &ptp->f8); break; case 1: ia64f2ia32f(f, &ptp->f9); break; case 2: ia64f2ia32f(f, &ptp->f10); break; case 3: ia64f2ia32f(f, &ptp->f11); break; case 4: case 5: case 6: case 7: ia64f2ia32f(f, &swp->f12 + (regno - 4)); break; } copy_to_user(reg, f, sizeof(*reg)); } static void get_fpreg (int regno, struct _fpreg_ia32 *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: copy_from_user(&ptp->f8, reg, sizeof(*reg)); break; case 1: copy_from_user(&ptp->f9, reg, sizeof(*reg)); break; case 2: copy_from_user(&ptp->f10, reg, sizeof(*reg)); break; case 3: copy_from_user(&ptp->f11, reg, sizeof(*reg)); break; case 4: case 5: case 6: case 7: copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg)); break; } return; } static int save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return -EFAULT; __put_user(tsk->thread.fcr & 0xffff, &save->cwd); __put_user(tsk->thread.fsr & 0xffff, &save->swd); __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd); __put_user(tsk->thread.fir, &save->fip); __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs); __put_user(tsk->thread.fdr, &save->foo); __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = ia64_task_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) put_fpreg(i, &save->st_space[i], ptp, swp, tos); return 0; } static int restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned int fsrlo, fsrhi, num32; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EFAULT); __get_user(num32, (unsigned int *)&save->cwd); tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f); __get_user(fsrlo, (unsigned int *)&save->swd); __get_user(fsrhi, (unsigned int *)&save->twd); num32 = (fsrhi << 16) | fsrlo; tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32; __get_user(num32, (unsigned int *)&save->fip); tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32; __get_user(num32, (unsigned int *)&save->foo); tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32; /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = ia64_task_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) get_fpreg(i, &save->st_space[i], ptp, swp, tos); return 0; } static int save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned long mxcsr=0; unsigned long num128[2]; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return -EFAULT; __put_user(tsk->thread.fcr & 0xffff, &save->cwd); __put_user(tsk->thread.fsr & 0xffff, &save->swd); __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd); __put_user(tsk->thread.fir, &save->fip); __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs); __put_user(tsk->thread.fdr, &save->foo); __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = ia64_task_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) put_fpreg(i, (struct _fpxreg_ia32 *)&save->st_space[4*i], ptp, swp, tos); mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f); __put_user(mxcsr & 0xffff, &save->mxcsr); for (i = 0; i < 8; i++) { memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long)); memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long)); copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32)); } return 0; } static int restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned int fsrlo, fsrhi, num32; int mxcsr; unsigned long num64; unsigned long num128[2]; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EFAULT); __get_user(num32, (unsigned int *)&save->cwd); tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f); __get_user(fsrlo, (unsigned int *)&save->swd); __get_user(fsrhi, (unsigned int *)&save->twd); num32 = (fsrhi << 16) | fsrlo; tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32; __get_user(num32, (unsigned int *)&save->fip); tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32; __get_user(num32, (unsigned int *)&save->foo); tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32; /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = ia64_task_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) get_fpreg(i, (struct _fpxreg_ia32 *)&save->st_space[4*i], ptp, swp, tos); __get_user(mxcsr, (unsigned int *)&save->mxcsr); num64 = mxcsr & 0xff10; tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000)) | (num64<<32); num64 = mxcsr & 0x3f; tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000)) | (num64<<32); for (i = 0; i < 8; i++) { copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32)); memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long)); memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long)); } return 0; } extern asmlinkage long sys_ptrace (long, pid_t, unsigned long, unsigned long, long, long, long, long, long); /* * Note that the IA32 version of `ptrace' calls the IA64 routine for * many of the requests. This will only work for requests that do * not need access to the calling processes `pt_regs' which is located * at the address of `stack'. Once we call the IA64 `sys_ptrace' then * the address of `stack' will not be the address of the `pt_regs'. */ asmlinkage long sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data, long arg4, long arg5, long arg6, long arg7, long stack) { struct pt_regs *regs = (struct pt_regs *) &stack; struct task_struct *child; unsigned int value, tmp; long i, ret; lock_kernel(); if (request == PTRACE_TRACEME) { ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack); goto out; } ret = -ESRCH; read_lock(&tasklist_lock); child = find_task_by_pid(pid); if (child) get_task_struct(child); read_unlock(&tasklist_lock); if (!child) goto out; ret = -EPERM; if (pid == 1) /* no messing around with init! */ goto out_tsk; if (request == PTRACE_ATTACH) { ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack); goto out_tsk; } ret = ptrace_check_attach(child, request == PTRACE_KILL); if (ret < 0) goto out_tsk; switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: /* read word at location addr */ ret = ia32_peek(regs, child, addr, &value); if (ret == 0) ret = put_user(value, (unsigned int *) A(data)); else ret = -EIO; goto out_tsk; case PTRACE_POKETEXT: case PTRACE_POKEDATA: /* write the word at location addr */ ret = ia32_poke(regs, child, addr, data); goto out_tsk; case PTRACE_PEEKUSR: /* read word at addr in USER area */ ret = -EIO; if ((addr & 3) || addr > 17*sizeof(int)) break; tmp = getreg(child, addr); if (!put_user(tmp, (unsigned int *) A(data))) ret = 0; break; case PTRACE_POKEUSR: /* write word at addr in USER area */ ret = -EIO; if ((addr & 3) || addr > 17*sizeof(int)) break; putreg(child, addr, data); ret = 0; break; case IA32_PTRACE_GETREGS: if (!access_ok(VERIFY_WRITE, (int *) A(data), 17*sizeof(int))) { ret = -EIO; break; } for (i = 0; i < 17*sizeof(int); i += sizeof(int) ) { put_user(getreg(child, i), (unsigned int *) A(data)); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_SETREGS: if (!access_ok(VERIFY_READ, (int *) A(data), 17*sizeof(int))) { ret = -EIO; break; } for (i = 0; i < 17*sizeof(int); i += sizeof(int) ) { get_user(tmp, (unsigned int *) A(data)); putreg(child, i, tmp); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_GETFPREGS: ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct *) A(data)); break; case IA32_PTRACE_GETFPXREGS: ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct *) A(data)); break; case IA32_PTRACE_SETFPREGS: ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct *) A(data)); break; case IA32_PTRACE_SETFPXREGS: ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct *) A(data)); break; case PTRACE_SYSCALL: /* continue, stop after next syscall */ case PTRACE_CONT: /* restart after signal. */ case PTRACE_KILL: case PTRACE_SINGLESTEP: /* execute chile for one instruction */ case PTRACE_DETACH: /* detach a process */ ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack); break; default: ret = -EIO; break; } out_tsk: free_task_struct(child); out: unlock_kernel(); return ret; } static inline int get_flock32(struct flock *kfl, struct flock32 *ufl) { int err; if (!access_ok(VERIFY_READ, ufl, sizeof(*ufl))) return -EFAULT; err = __get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock32(struct flock *kfl, struct flock32 *ufl) { int err; if (!access_ok(VERIFY_WRITE, ufl, sizeof(*ufl))) return -EFAULT; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl (unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl (unsigned int fd, unsigned int cmd, unsigned int arg) { mm_segment_t old_fs; struct flock f; long ret; switch (cmd) { case F_GETLK: case F_SETLK: case F_SETLKW: if (get_flock32(&f, (struct flock32 *) A(arg))) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long) &f); set_fs(old_fs); if (cmd == F_GETLK && put_flock32(&f, (struct flock32 *) A(arg))) return -EFAULT; return ret; default: /* * `sys_fcntl' lies about arg, for the F_SETOWN * sub-function arg can have a negative value. */ return sys_fcntl(fd, cmd, arg); } } asmlinkage long sys_ni_syscall(void); asmlinkage long sys32_ni_syscall (int dummy0, int dummy1, int dummy2, int dummy3, int dummy4, int dummy5, int dummy6, int dummy7, int stack) { struct pt_regs *regs = (struct pt_regs *)&stack; printk(KERN_WARNING "IA32 syscall #%d issued, maybe we should implement it\n", (int)regs->r1); return(sys_ni_syscall()); } /* * The IA64 maps 4 I/O ports for each 4K page */ #define IOLEN ((65536 / 4) * 4096) asmlinkage long sys32_iopl (int level) { extern unsigned long ia64_iobase; int fd; struct file * file; unsigned int old; unsigned long addr; mm_segment_t old_fs = get_fs (); if (level != 3) return(-EINVAL); /* Trying to gain more privileges? */ asm volatile ("mov %0=ar.eflag ;;" : "=r"(old)); if (level > ((old >> 12) & 3)) { if (!capable(CAP_SYS_RAWIO)) return -EPERM; } set_fs(KERNEL_DS); fd = sys_open("/dev/mem", O_SYNC | O_RDWR, 0); set_fs(old_fs); if (fd < 0) return fd; file = fget(fd); if (file == NULL) { sys_close(fd); return(-EFAULT); } down_write(¤t->mm->mmap_sem); addr = do_mmap_pgoff(file, IA32_IOBASE, IOLEN, PROT_READ|PROT_WRITE, MAP_SHARED, (ia64_iobase & ~PAGE_OFFSET) >> PAGE_SHIFT); up_write(¤t->mm->mmap_sem); if (addr >= 0) { old = (old & ~0x3000) | (level << 12); asm volatile ("mov ar.eflag=%0;;" :: "r"(old)); } fput(file); sys_close(fd); return 0; } asmlinkage long sys32_ioperm (unsigned int from, unsigned int num, int on) { /* * Since IA64 doesn't have permission bits we'd have to go to * a lot of trouble to simulate them in software. There's * no point, only trusted programs can make this call so we'll * just turn it into an iopl call and let the process have * access to all I/O ports. * * XXX proper ioperm() support should be emulated by * manipulating the page protections... */ return sys32_iopl(3); } typedef struct { unsigned int ss_sp; unsigned int ss_flags; unsigned int ss_size; } ia32_stack_t; asmlinkage long sys32_sigaltstack (ia32_stack_t *uss32, ia32_stack_t *uoss32, long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, long stack) { struct pt_regs *pt = (struct pt_regs *) &stack; stack_t uss, uoss; ia32_stack_t buf32; int ret; mm_segment_t old_fs = get_fs(); if (uss32) if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t))) return -EFAULT; uss.ss_sp = (void *) (long) buf32.ss_sp; uss.ss_flags = buf32.ss_flags; /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the check and set it to the user requested value later */ if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) { ret = -ENOMEM; goto out; } uss.ss_size = MINSIGSTKSZ; set_fs(KERNEL_DS); ret = do_sigaltstack(uss32 ? &uss : NULL, &uoss, pt->r12); current->sas_ss_size = buf32.ss_size; set_fs(old_fs); out: if (ret < 0) return(ret); if (uoss32) { buf32.ss_sp = (long) uoss.ss_sp; buf32.ss_flags = uoss.ss_flags; buf32.ss_size = uoss.ss_size; if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t))) return -EFAULT; } return ret; } asmlinkage int sys32_pause (void) { current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } asmlinkage long sys_msync (unsigned long start, size_t len, int flags); asmlinkage int sys32_msync (unsigned int start, unsigned int len, int flags) { unsigned int addr; if (OFFSET4K(start)) return -EINVAL; addr = PAGE_START(start); return sys_msync(addr, len + (start - addr), flags); } struct sysctl32 { unsigned int name; int nlen; unsigned int oldval; unsigned int oldlenp; unsigned int newval; unsigned int newlen; unsigned int __unused[4]; }; extern asmlinkage long sys_sysctl(struct __sysctl_args *args); asmlinkage long sys32_sysctl (struct sysctl32 *args) { #ifdef CONFIG_SYSCTL struct sysctl32 a32; mm_segment_t old_fs = get_fs (); void *oldvalp, *newvalp; size_t oldlen; int *namep; long ret; if (copy_from_user(&a32, args, sizeof(a32))) return -EFAULT; /* * We need to pre-validate these because we have to disable address checking * before calling do_sysctl() because of OLDLEN but we can't run the risk of the * user specifying bad addresses here. Well, since we're dealing with 32 bit * addresses, we KNOW that access_ok() will always succeed, so this is an * expensive NOP, but so what... */ namep = (int *) A(a32.name); oldvalp = (void *) A(a32.oldval); newvalp = (void *) A(a32.newval); if ((oldvalp && get_user(oldlen, (int *) A(a32.oldlenp))) || !access_ok(VERIFY_WRITE, namep, 0) || !access_ok(VERIFY_WRITE, oldvalp, 0) || !access_ok(VERIFY_WRITE, newvalp, 0)) return -EFAULT; set_fs(KERNEL_DS); lock_kernel(); ret = do_sysctl(namep, a32.nlen, oldvalp, &oldlen, newvalp, (size_t) a32.newlen); unlock_kernel(); set_fs(old_fs); if (oldvalp && put_user (oldlen, (int *) A(a32.oldlenp))) return -EFAULT; return ret; #else return -ENOSYS; #endif } asmlinkage long sys32_newuname (struct new_utsname *name) { extern asmlinkage long sys_newuname(struct new_utsname * name); int ret = sys_newuname(name); if (!ret) if (copy_to_user(name->machine, "i686\0\0\0", 8)) ret = -EFAULT; return ret; } extern asmlinkage long sys_getresuid (uid_t *ruid, uid_t *euid, uid_t *suid); asmlinkage long sys32_getresuid16 (u16 *ruid, u16 *euid, u16 *suid) { uid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getresuid(&a, &b, &c); set_fs(old_fs); if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid)) return -EFAULT; return ret; } extern asmlinkage long sys_getresgid (gid_t *rgid, gid_t *egid, gid_t *sgid); asmlinkage long sys32_getresgid16 (u16 *rgid, u16 *egid, u16 *sgid) { gid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getresgid(&a, &b, &c); set_fs(old_fs); if (ret) return ret; return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid); } asmlinkage long sys32_lseek (unsigned int fd, int offset, unsigned int whence) { extern off_t sys_lseek (unsigned int fd, off_t offset, unsigned int origin); /* Sign-extension of "offset" is important here... */ return sys_lseek(fd, offset, whence); } extern asmlinkage long sys_getgroups (int gidsetsize, gid_t *grouplist); asmlinkage long sys32_getgroups16 (int gidsetsize, short *grouplist) { mm_segment_t old_fs = get_fs(); gid_t gl[NGROUPS]; int ret, i; set_fs(KERNEL_DS); ret = sys_getgroups(gidsetsize, gl); set_fs(old_fs); if (gidsetsize && ret > 0 && ret <= NGROUPS) for (i = 0; i < ret; i++, grouplist++) if (put_user(gl[i], grouplist)) return -EFAULT; return ret; } extern asmlinkage long sys_setgroups (int gidsetsize, gid_t *grouplist); asmlinkage long sys32_setgroups16 (int gidsetsize, short *grouplist) { mm_segment_t old_fs = get_fs(); gid_t gl[NGROUPS]; int ret, i; if ((unsigned) gidsetsize > NGROUPS) return -EINVAL; for (i = 0; i < gidsetsize; i++, grouplist++) if (get_user(gl[i], grouplist)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_setgroups(gidsetsize, gl); set_fs(old_fs); return ret; } /* * Unfortunately, the x86 compiler aligns variables of type "long long" to a 4 byte boundary * only, which means that the x86 version of "struct flock64" doesn't match the ia64 version * of struct flock. */ static inline long ia32_put_flock (struct flock *l, unsigned long addr) { return (put_user(l->l_type, (short *) addr) | put_user(l->l_whence, (short *) (addr + 2)) | put_user(l->l_start, (long *) (addr + 4)) | put_user(l->l_len, (long *) (addr + 12)) | put_user(l->l_pid, (int *) (addr + 20))); } static inline long ia32_get_flock (struct flock *l, unsigned long addr) { unsigned int start_lo, start_hi, len_lo, len_hi; int err = (get_user(l->l_type, (short *) addr) | get_user(l->l_whence, (short *) (addr + 2)) | get_user(start_lo, (int *) (addr + 4)) | get_user(start_hi, (int *) (addr + 8)) | get_user(len_lo, (int *) (addr + 12)) | get_user(len_hi, (int *) (addr + 16)) | get_user(l->l_pid, (int *) (addr + 20))); l->l_start = ((unsigned long) start_hi << 32) | start_lo; l->l_len = ((unsigned long) len_hi << 32) | len_lo; return err; } asmlinkage long sys32_fcntl64 (unsigned int fd, unsigned int cmd, unsigned int arg) { mm_segment_t old_fs; struct flock f; long ret; switch (cmd) { case F_GETLK64: case F_SETLK64: case F_SETLKW64: if (ia32_get_flock(&f, arg)) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_fcntl(fd, (cmd == F_GETLK64) ? F_GETLK : ((cmd == F_SETLK64) ? F_SETLK : F_SETLKW), (unsigned long) &f); set_fs(old_fs); if (cmd == F_GETLK64 && ia32_put_flock(&f, arg)) return -EFAULT; break; default: ret = sys32_fcntl(fd, cmd, arg); break; } return ret; } asmlinkage long sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi) { extern asmlinkage long sys_truncate (const char *path, unsigned long length); return sys_truncate((const char *) A(path), ((unsigned long) len_hi << 32) | len_lo); } asmlinkage long sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi) { extern asmlinkage long sys_ftruncate (int fd, unsigned long length); return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo); } static int putstat64 (struct stat64 *ubuf, struct stat *kbuf) { int err; if (clear_user(ubuf, sizeof(*ubuf))) return 1; err = __put_user(kbuf->st_dev, &ubuf->st_dev); err |= __put_user(kbuf->st_ino, &ubuf->__st_ino); err |= __put_user(kbuf->st_ino, &ubuf->st_ino_lo); err |= __put_user(kbuf->st_ino >> 32, &ubuf->st_ino_hi); err |= __put_user(kbuf->st_mode, &ubuf->st_mode); err |= __put_user(kbuf->st_nlink, &ubuf->st_nlink); err |= __put_user(kbuf->st_uid, &ubuf->st_uid); err |= __put_user(kbuf->st_gid, &ubuf->st_gid); err |= __put_user(kbuf->st_rdev, &ubuf->st_rdev); err |= __put_user(kbuf->st_size, &ubuf->st_size_lo); err |= __put_user((kbuf->st_size >> 32), &ubuf->st_size_hi); err |= __put_user(kbuf->st_atime, &ubuf->st_atime); err |= __put_user(kbuf->st_mtime, &ubuf->st_mtime); err |= __put_user(kbuf->st_ctime, &ubuf->st_ctime); err |= __put_user(kbuf->st_blksize, &ubuf->st_blksize); err |= __put_user(kbuf->st_blocks, &ubuf->st_blocks); return err; } asmlinkage long sys32_stat64 (char *filename, struct stat64 *statbuf) { char *name; mm_segment_t old_fs = get_fs(); struct stat s; long ret; name = getname(filename); if (IS_ERR(name)) return PTR_ERR(name); set_fs(KERNEL_DS); ret = sys_newstat(name, &s); set_fs(old_fs); putname(name); if (putstat64(statbuf, &s)) return -EFAULT; return ret; } asmlinkage long sys32_lstat64 (char *filename, struct stat64 *statbuf) { char *name; mm_segment_t old_fs = get_fs(); struct stat s; long ret; name = getname(filename); if (IS_ERR(name)) return PTR_ERR(name); set_fs(KERNEL_DS); ret = sys_newlstat(name, &s); set_fs(old_fs); putname(name); if (putstat64(statbuf, &s)) return -EFAULT; return ret; } asmlinkage long sys32_fstat64 (unsigned int fd, struct stat64 *statbuf) { mm_segment_t old_fs = get_fs(); struct stat s; long ret; set_fs(KERNEL_DS); ret = sys_newfstat(fd, &s); set_fs(old_fs); if (putstat64(statbuf, &s)) return -EFAULT; return ret; } asmlinkage long sys32_sigpending (unsigned int *set) { return do_sigpending(set, sizeof(*set)); } struct sysinfo32 { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; u16 procs; u16 pad; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[8]; }; asmlinkage long sys32_sysinfo (struct sysinfo32 *info) { extern asmlinkage long sys_sysinfo (struct sysinfo *); struct sysinfo s; long ret, err; int bitcount = 0; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_sysinfo(&s); set_fs(old_fs); /* Check to see if any memory value is too large for 32-bit and * scale down if needed. */ if ((s.totalram >> 32) || (s.totalswap >> 32)) { while (s.mem_unit < PAGE_SIZE) { s.mem_unit <<= 1; bitcount++; } s.totalram >>= bitcount; s.freeram >>= bitcount; s.sharedram >>= bitcount; s.bufferram >>= bitcount; s.totalswap >>= bitcount; s.freeswap >>= bitcount; s.totalhigh >>= bitcount; s.freehigh >>= bitcount; } if (!access_ok(VERIFY_WRITE, info, sizeof(*info))) return -EFAULT; err = __put_user(s.uptime, &info->uptime); err |= __put_user(s.loads[0], &info->loads[0]); err |= __put_user(s.loads[1], &info->loads[1]); err |= __put_user(s.loads[2], &info->loads[2]); err |= __put_user(s.totalram, &info->totalram); err |= __put_user(s.freeram, &info->freeram); err |= __put_user(s.sharedram, &info->sharedram); err |= __put_user(s.bufferram, &info->bufferram); err |= __put_user(s.totalswap, &info->totalswap); err |= __put_user(s.freeswap, &info->freeswap); err |= __put_user(s.procs, &info->procs); err |= __put_user(s.totalhigh, &info->totalhigh); err |= __put_user(s.freehigh, &info->freehigh); err |= __put_user(s.mem_unit, &info->mem_unit); if (err) return -EFAULT; return ret; } /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). */ static inline int do_getname32 (const char *filename, char *page) { int retval; /* 32bit pointer will be always far below TASK_SIZE :)) */ retval = strncpy_from_user((char *)page, (char *)filename, PAGE_SIZE); if (retval > 0) { if (retval < PAGE_SIZE) return 0; return -ENAMETOOLONG; } else if (!retval) retval = -ENOENT; return retval; } static char * getname32 (const char *filename) { char *tmp, *result; result = ERR_PTR(-ENOMEM); tmp = (char *)__get_free_page(GFP_KERNEL); if (tmp) { int retval = do_getname32(filename, tmp); result = tmp; if (retval < 0) { putname(tmp); result = ERR_PTR(retval); } } return result; } struct user_dqblk32 { __u32 dqb_bhardlimit; __u32 dqb_bsoftlimit; __u32 dqb_curblocks; __u32 dqb_ihardlimit; __u32 dqb_isoftlimit; __u32 dqb_curinodes; __kernel_time_t32 dqb_btime; __kernel_time_t32 dqb_itime; }; asmlinkage long sys32_quotactl(int cmd, unsigned int special, int id, caddr_t addr) { extern asmlinkage long sys_quotactl (int, const char *, int, caddr_t); int cmds = cmd >> SUBCMDSHIFT; mm_segment_t old_fs; struct v1c_mem_dqblk d; char *spec; long err; switch (cmds) { case Q_V1_GETQUOTA: break; case Q_V1_SETQUOTA: case Q_V1_SETUSE: case Q_V1_SETQLIM: if (copy_from_user(&d, addr, sizeof(struct user_dqblk32))) return -EFAULT; d.dqb_itime = ((struct user_dqblk32 *)&d)->dqb_itime; d.dqb_btime = ((struct user_dqblk32 *)&d)->dqb_btime; break; default: return sys_quotactl(cmd, (void *)A(special), id, addr); } spec = getname32((void *) A(special)); err = PTR_ERR(spec); if (IS_ERR(spec)) return err; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_quotactl(cmd, (const char *)spec, id, (caddr_t)&d); set_fs(old_fs); putname(spec); if (cmds == Q_V1_GETQUOTA) { __kernel_time_t b = d.dqb_btime, i = d.dqb_itime; ((struct user_dqblk32 *)&d)->dqb_itime = i; ((struct user_dqblk32 *)&d)->dqb_btime = b; if (copy_to_user(addr, &d, sizeof(struct user_dqblk32))) return -EFAULT; } return err; } asmlinkage long sys32_sched_rr_get_interval (pid_t pid, struct timespec32 *interval) { extern asmlinkage long sys_sched_rr_get_interval (pid_t, struct timespec *); mm_segment_t old_fs = get_fs(); struct timespec t; long ret; set_fs(KERNEL_DS); ret = sys_sched_rr_get_interval(pid, &t); set_fs(old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; return ret; } asmlinkage long sys32_pread (unsigned int fd, void *buf, unsigned int count, u32 pos_lo, u32 pos_hi) { extern asmlinkage long sys_pread (unsigned int, char *, size_t, loff_t); return sys_pread(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo); } asmlinkage long sys32_pwrite (unsigned int fd, void *buf, unsigned int count, u32 pos_lo, u32 pos_hi) { extern asmlinkage long sys_pwrite (unsigned int, const char *, size_t, loff_t); return sys_pwrite(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo); } asmlinkage long sys32_sendfile (int out_fd, int in_fd, int *offset, unsigned int count) { extern asmlinkage long sys_sendfile (int, int, off_t *, size_t); mm_segment_t old_fs = get_fs(); long ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile(out_fd, in_fd, offset ? &of : NULL, count); set_fs(old_fs); if (!ret && offset && put_user(of, offset)) return -EFAULT; return ret; } asmlinkage long sys32_personality (unsigned int personality) { extern asmlinkage long sys_personality (unsigned long); long ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } asmlinkage unsigned long sys32_brk (unsigned int brk) { unsigned long ret, obrk; struct mm_struct *mm = current->mm; obrk = mm->brk; ret = sys_brk(brk); if (ret < obrk) clear_user((void *) ret, PAGE_ALIGN(ret) - ret); return ret; } /* * Exactly like fs/open.c:sys_open(), except that it doesn't set the O_LARGEFILE flag. */ asmlinkage long sys32_open (const char * filename, int flags, int mode) { char * tmp; int fd, error; tmp = getname(filename); fd = PTR_ERR(tmp); if (!IS_ERR(tmp)) { fd = get_unused_fd(); if (fd >= 0) { struct file *f = filp_open(tmp, flags, mode); error = PTR_ERR(f); if (IS_ERR(f)) goto out_error; fd_install(fd, f); } out: putname(tmp); } return fd; out_error: put_unused_fd(fd); fd = error; goto out; } #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */ struct ncp_mount_data32 { int version; unsigned int ncp_fd; __kernel_uid_t32 mounted_uid; int wdog_pid; unsigned char mounted_vol[NCP_VOLNAME_LEN + 1]; unsigned int time_out; unsigned int retry_count; unsigned int flags; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void * do_ncp_super_data_conv(void *raw_data) { struct ncp_mount_data *n = (struct ncp_mount_data *)raw_data; struct ncp_mount_data32 *n32 = (struct ncp_mount_data32 *)raw_data; n->dir_mode = n32->dir_mode; n->file_mode = n32->file_mode; n->gid = n32->gid; n->uid = n32->uid; memmove (n->mounted_vol, n32->mounted_vol, (sizeof (n32->mounted_vol) + 3 * sizeof (unsigned int))); n->wdog_pid = n32->wdog_pid; n->mounted_uid = n32->mounted_uid; return raw_data; } struct smb_mount_data32 { int version; __kernel_uid_t32 mounted_uid; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void * do_smb_super_data_conv(void *raw_data) { struct smb_mount_data *s = (struct smb_mount_data *)raw_data; struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data; s->version = s32->version; s->mounted_uid = s32->mounted_uid; s->uid = s32->uid; s->gid = s32->gid; s->file_mode = s32->file_mode; s->dir_mode = s32->dir_mode; return raw_data; } static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel) { int i; unsigned long page; struct vm_area_struct *vma; *kernel = 0; if(!user) return 0; vma = find_vma(current->mm, (unsigned long)user); if(!vma || (unsigned long)user < vma->vm_start) return -EFAULT; if(!(vma->vm_flags & VM_READ)) return -EFAULT; i = vma->vm_end - (unsigned long) user; if(PAGE_SIZE <= (unsigned long) i) i = PAGE_SIZE - 1; if(!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; if(copy_from_user((void *) page, user, i)) { free_page(page); return -EFAULT; } *kernel = page; return 0; } extern asmlinkage long sys_mount(char * dev_name, char * dir_name, char * type, unsigned long new_flags, void *data); #define SMBFS_NAME "smbfs" #define NCPFS_NAME "ncpfs" asmlinkage long sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data) { unsigned long type_page; int err, is_smb, is_ncp; if(!capable(CAP_SYS_ADMIN)) return -EPERM; is_smb = is_ncp = 0; err = copy_mount_stuff_to_kernel((const void *)type, &type_page); if(err) return err; if(type_page) { is_smb = !strcmp((char *)type_page, SMBFS_NAME); is_ncp = !strcmp((char *)type_page, NCPFS_NAME); } if(!is_smb && !is_ncp) { if(type_page) free_page(type_page); return sys_mount(dev_name, dir_name, type, new_flags, (void *)AA(data)); } else { unsigned long dev_page, dir_page, data_page; err = copy_mount_stuff_to_kernel((const void *)dev_name, &dev_page); if(err) goto out; err = copy_mount_stuff_to_kernel((const void *)dir_name, &dir_page); if(err) goto dev_out; err = copy_mount_stuff_to_kernel((const void *)AA(data), &data_page); if(err) goto dir_out; if(is_ncp) do_ncp_super_data_conv((void *)data_page); else if(is_smb) do_smb_super_data_conv((void *)data_page); else panic("The problem is here..."); err = do_mount((char *)dev_page, (char *)dir_page, (char *)type_page, new_flags, (void *)data_page); if(data_page) free_page(data_page); dir_out: if(dir_page) free_page(dir_page); dev_out: if(dev_page) free_page(dev_page); out: if(type_page) free_page(type_page); return err; } } extern asmlinkage long sys_setreuid(uid_t ruid, uid_t euid); asmlinkage long sys32_setreuid(__kernel_uid_t32 ruid, __kernel_uid_t32 euid) { uid_t sruid, seuid; sruid = (ruid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)euid); return sys_setreuid(sruid, seuid); } extern asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid); asmlinkage long sys32_setresuid(__kernel_uid_t32 ruid, __kernel_uid_t32 euid, __kernel_uid_t32 suid) { uid_t sruid, seuid, ssuid; sruid = (ruid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)euid); ssuid = (suid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)suid); return sys_setresuid(sruid, seuid, ssuid); } extern asmlinkage long sys_setregid(gid_t rgid, gid_t egid); asmlinkage long sys32_setregid(__kernel_gid_t32 rgid, __kernel_gid_t32 egid) { gid_t srgid, segid; srgid = (rgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)egid); return sys_setregid(srgid, segid); } extern asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid); asmlinkage long sys32_setresgid(__kernel_gid_t32 rgid, __kernel_gid_t32 egid, __kernel_gid_t32 sgid) { gid_t srgid, segid, ssgid; srgid = (rgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)egid); ssgid = (sgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)sgid); return sys_setresgid(srgid, segid, ssgid); } /* Stuff for NFS server syscalls... */ struct nfsctl_svc32 { u16 svc32_port; s32 svc32_nthreads; }; struct nfsctl_client32 { s8 cl32_ident[NFSCLNT_IDMAX+1]; s32 cl32_naddr; struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX]; s32 cl32_fhkeytype; s32 cl32_fhkeylen; u8 cl32_fhkey[NFSCLNT_KEYMAX]; }; struct nfsctl_export32 { s8 ex32_client[NFSCLNT_IDMAX+1]; s8 ex32_path[NFS_MAXPATHLEN+1]; __kernel_dev_t32 ex32_dev; __kernel_ino_t32 ex32_ino; s32 ex32_flags; __kernel_uid_t32 ex32_anon_uid; __kernel_gid_t32 ex32_anon_gid; }; struct nfsctl_uidmap32 { u32 ug32_ident; /* char * */ __kernel_uid_t32 ug32_uidbase; s32 ug32_uidlen; u32 ug32_udimap; /* uid_t * */ __kernel_uid_t32 ug32_gidbase; s32 ug32_gidlen; u32 ug32_gdimap; /* gid_t * */ }; struct nfsctl_fhparm32 { struct sockaddr gf32_addr; __kernel_dev_t32 gf32_dev; __kernel_ino_t32 gf32_ino; s32 gf32_version; }; struct nfsctl_arg32 { s32 ca32_version; /* safeguard */ union { struct nfsctl_svc32 u32_svc; struct nfsctl_client32 u32_client; struct nfsctl_export32 u32_export; struct nfsctl_uidmap32 u32_umap; struct nfsctl_fhparm32 u32_getfh; u32 u32_debug; } u; #define ca32_svc u.u32_svc #define ca32_client u.u32_client #define ca32_export u.u32_export #define ca32_umap u.u32_umap #define ca32_getfh u.u32_getfh #define ca32_authd u.u32_authd #define ca32_debug u.u32_debug }; union nfsctl_res32 { struct knfs_fh cr32_getfh; u32 cr32_debug; }; static int nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port); err |= __get_user(karg->ca_svc.svc_nthreads, &arg32->ca32_svc.svc32_nthreads); return err; } static int nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_client.cl_ident[0], &arg32->ca32_client.cl32_ident[0], NFSCLNT_IDMAX); err |= __get_user(karg->ca_client.cl_naddr, &arg32->ca32_client.cl32_naddr); err |= copy_from_user(&karg->ca_client.cl_addrlist[0], &arg32->ca32_client.cl32_addrlist[0], (sizeof(struct in_addr) * NFSCLNT_ADDRMAX)); err |= __get_user(karg->ca_client.cl_fhkeytype, &arg32->ca32_client.cl32_fhkeytype); err |= __get_user(karg->ca_client.cl_fhkeylen, &arg32->ca32_client.cl32_fhkeylen); err |= copy_from_user(&karg->ca_client.cl_fhkey[0], &arg32->ca32_client.cl32_fhkey[0], NFSCLNT_KEYMAX); return err; } static int nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_export.ex_client[0], &arg32->ca32_export.ex32_client[0], NFSCLNT_IDMAX); err |= copy_from_user(&karg->ca_export.ex_path[0], &arg32->ca32_export.ex32_path[0], NFS_MAXPATHLEN); err |= __get_user(karg->ca_export.ex_dev, &arg32->ca32_export.ex32_dev); err |= __get_user(karg->ca_export.ex_ino, &arg32->ca32_export.ex32_ino); err |= __get_user(karg->ca_export.ex_flags, &arg32->ca32_export.ex32_flags); err |= __get_user(karg->ca_export.ex_anon_uid, &arg32->ca32_export.ex32_anon_uid); err |= __get_user(karg->ca_export.ex_anon_gid, &arg32->ca32_export.ex32_anon_gid); return err; } static int nfs_uud32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { u32 uaddr; int i; int err; memset(karg, 0, sizeof(*karg)); if(__get_user(karg->ca_version, &arg32->ca32_version)) return -EFAULT; karg->ca_umap.ug_ident = (char *)get_free_page(GFP_USER); if(!karg->ca_umap.ug_ident) return -ENOMEM; err = __get_user(uaddr, &arg32->ca32_umap.ug32_ident); if(strncpy_from_user(karg->ca_umap.ug_ident, (char *)A(uaddr), PAGE_SIZE) <= 0) return -EFAULT; err |= __get_user(karg->ca_umap.ug_uidbase, &arg32->ca32_umap.ug32_uidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_uidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_udimap); if (err) return -EFAULT; karg->ca_umap.ug_udimap = kmalloc((sizeof(uid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_udimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_uidlen; i++) err |= __get_user(karg->ca_umap.ug_udimap[i], &(((__kernel_uid_t32 *)A(uaddr))[i])); err |= __get_user(karg->ca_umap.ug_gidbase, &arg32->ca32_umap.ug32_gidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_gidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_gdimap); if (err) return -EFAULT; karg->ca_umap.ug_gdimap = kmalloc((sizeof(gid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_gdimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_gidlen; i++) err |= __get_user(karg->ca_umap.ug_gdimap[i], &(((__kernel_gid_t32 *)A(uaddr))[i])); return err; } static int nfs_getfh32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfh.gf_addr, &arg32->ca32_getfh.gf32_addr, (sizeof(struct sockaddr))); err |= __get_user(karg->ca_getfh.gf_dev, &arg32->ca32_getfh.gf32_dev); err |= __get_user(karg->ca_getfh.gf_ino, &arg32->ca32_getfh.gf32_ino); err |= __get_user(karg->ca_getfh.gf_version, &arg32->ca32_getfh.gf32_version); return err; } static int nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32) { int err; err = copy_to_user(&res32->cr32_getfh, &kres->cr_getfh, sizeof(res32->cr32_getfh)); err |= __put_user(kres->cr_debug, &res32->cr32_debug); return err; } extern asmlinkage long sys_nfsservctl(int cmd, void *arg, void *resp); int asmlinkage sys32_nfsservctl(int cmd, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32) { struct nfsctl_arg *karg = NULL; union nfsctl_res *kres = NULL; mm_segment_t oldfs; int err; karg = kmalloc(sizeof(*karg), GFP_USER); if(!karg) return -ENOMEM; if(res32) { kres = kmalloc(sizeof(*kres), GFP_USER); if(!kres) { kfree(karg); return -ENOMEM; } } switch(cmd) { case NFSCTL_SVC: err = nfs_svc32_trans(karg, arg32); break; case NFSCTL_ADDCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_DELCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_EXPORT: err = nfs_exp32_trans(karg, arg32); break; /* This one is unimplemented, be we're ready for it. */ case NFSCTL_UGIDUPDATE: err = nfs_uud32_trans(karg, arg32); break; case NFSCTL_GETFH: err = nfs_getfh32_trans(karg, arg32); break; default: err = -EINVAL; break; } if(err) goto done; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_nfsservctl(cmd, karg, kres); set_fs(oldfs); if(!err && cmd == NFSCTL_GETFH) err = nfs_getfh32_res_trans(kres, res32); done: if(karg) { if(cmd == NFSCTL_UGIDUPDATE) { if(karg->ca_umap.ug_ident) kfree(karg->ca_umap.ug_ident); if(karg->ca_umap.ug_udimap) kfree(karg->ca_umap.ug_udimap); if(karg->ca_umap.ug_gdimap) kfree(karg->ca_umap.ug_gdimap); } kfree(karg); } if(kres) kfree(kres); return err; } /* Handle adjtimex compatability. */ struct timex32 { u32 modes; s32 offset, freq, maxerror, esterror; s32 status, constant, precision, tolerance; struct timeval32 time; s32 tick; s32 ppsfreq, jitter, shift, stabil; s32 jitcnt, calcnt, errcnt, stbcnt; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; }; extern int do_adjtimex(struct timex *); asmlinkage long sys32_adjtimex(struct timex32 *utp) { struct timex txc; int ret; memset(&txc, 0, sizeof(struct timex)); if(get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); if(put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } #endif /* NOTYET */
Go to most recent revision | Compare with Previous | Blame | View Log