OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [kernel/] [acpi.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 *  acpi.c - Architecture-Specific Low-Level ACPI Support
 *
 *  Copyright (C) 1999 VA Linux Systems
 *  Copyright (C) 1999,2000 Walt Drummond <drummond@valinux.com>
 *  Copyright (C) 2000, 2002-2003 Hewlett-Packard Co.
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *  Copyright (C) 2000 Intel Corp.
 *  Copyright (C) 2000,2001 J.I. Lee <jung-ik.lee@intel.com>
 *  Copyright (C) 2001 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
 *  Copyright (C) 2001 Jenna Hall <jenna.s.hall@intel.com>
 *  Copyright (C) 2001 Takayoshi Kochi <t-kouchi@cq.jp.nec.com>
 *  Copyright (C) 2002 Erich Focht <efocht@ess.nec.de>
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
 
#include <linux/config.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/irq.h>
#include <linux/acpi.h>
#include <linux/efi.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <asm/io.h>
#include <asm/iosapic.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/system.h>
#include <asm/numa.h>
 
 
#define PREFIX			"ACPI: "
 
asm (".weak iosapic_register_intr");
asm (".weak iosapic_override_isa_irq");
asm (".weak iosapic_register_platform_intr");
asm (".weak iosapic_init");
asm (".weak iosapic_system_init");
asm (".weak iosapic_version");
 
void (*pm_idle) (void);
void (*pm_power_off) (void);
 
unsigned char acpi_kbd_controller_present = 1;
 
const char *
acpi_get_sysname (void)
{
#ifdef CONFIG_IA64_GENERIC
	unsigned long rsdp_phys;
	struct acpi20_table_rsdp *rsdp;
	struct acpi_table_xsdt *xsdt;
	struct acpi_table_header *hdr;
 
	rsdp_phys = acpi_find_rsdp();
	if (!rsdp_phys) {
		printk(KERN_ERR "ACPI 2.0 RSDP not found, default to \"dig\"\n");
		return "dig";
	}
 
	rsdp = (struct acpi20_table_rsdp *) __va(rsdp_phys);
	if (strncmp(rsdp->signature, RSDP_SIG, sizeof(RSDP_SIG) - 1)) {
		printk(KERN_ERR "ACPI 2.0 RSDP signature incorrect, default to \"dig\"\n");
		return "dig";
	}
 
	xsdt = (struct acpi_table_xsdt *) __va(rsdp->xsdt_address);
	hdr = &xsdt->header;
	if (strncmp(hdr->signature, XSDT_SIG, sizeof(XSDT_SIG) - 1)) {
		printk(KERN_ERR "ACPI 2.0 XSDT signature incorrect, default to \"dig\"\n");
		return "dig";
	}
 
	if (!strcmp(hdr->oem_id, "HP")) {
		return "hp";
	}
	else if (!strcmp(hdr->oem_id, "SGI")) {
		return "sn2";
	}
 
	return "dig";
#else
# if defined (CONFIG_IA64_HP_SIM)
	return "hpsim";
# elif defined (CONFIG_IA64_HP_ZX1)
	return "hp";
# elif defined (CONFIG_IA64_SGI_SN2)
	return "sn2";
# elif defined (CONFIG_IA64_DIG)
	return "dig";
# else
#	error Unknown platform.  Fix acpi.c.
# endif
#endif
}
 
#ifdef CONFIG_ACPI
 
struct acpi_vendor_descriptor {
	u8				guid_id;
	efi_guid_t			guid;
};
 
struct acpi_vendor_info {
	struct acpi_vendor_descriptor	*descriptor;
	u8				*data;
	u32				length;
};
 
acpi_status
acpi_vendor_resource_match (struct acpi_resource *resource, void *context)
{
	struct acpi_vendor_info *info = (struct acpi_vendor_info *) context;
	struct acpi_resource_vendor *vendor;
	struct acpi_vendor_descriptor *descriptor;
	u32 length;
 
	if (resource->id != ACPI_RSTYPE_VENDOR)
		return AE_OK;
 
	vendor = (struct acpi_resource_vendor *) &resource->data;
	descriptor = (struct acpi_vendor_descriptor *) vendor->reserved;
	if (vendor->length <= sizeof(*info->descriptor) ||
	    descriptor->guid_id != info->descriptor->guid_id ||
	    efi_guidcmp(descriptor->guid, info->descriptor->guid))
		return AE_OK;
 
	length = vendor->length - sizeof(struct acpi_vendor_descriptor);
	info->data = acpi_os_allocate(length);
	if (!info->data)
		return AE_NO_MEMORY;
 
	memcpy(info->data, vendor->reserved + sizeof(struct acpi_vendor_descriptor), length);
	info->length = length;
	return AE_CTRL_TERMINATE;
}
 
acpi_status
acpi_find_vendor_resource (acpi_handle obj, struct acpi_vendor_descriptor *id,
		u8 **data, u32 *length)
{
	struct acpi_vendor_info info;
 
	info.descriptor = id;
	info.data = 0;
 
	acpi_walk_resources(obj, METHOD_NAME__CRS, acpi_vendor_resource_match, &info);
	if (!info.data)
		return AE_NOT_FOUND;
 
	*data = info.data;
	*length = info.length;
	return AE_OK;
}
 
struct acpi_vendor_descriptor hp_ccsr_descriptor = {
	.guid_id = 2,
	.guid    = EFI_GUID(0x69e9adf9, 0x924f, 0xab5f, 0xf6, 0x4a, 0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad)
};
 
acpi_status
acpi_hp_csr_space (acpi_handle obj, u64 *csr_base, u64 *csr_length)
{
	acpi_status status;
	u8 *data;
	u32 length;
 
	status = acpi_find_vendor_resource(obj, &hp_ccsr_descriptor, &data, &length);
 
	if (ACPI_FAILURE(status) || length != 16)
		return AE_NOT_FOUND;
 
	memcpy(csr_base, data, sizeof(*csr_base));
	memcpy(csr_length, data + 8, sizeof(*csr_length));
	acpi_os_free(data);
 
	return AE_OK;
}
 
#endif /* CONFIG_ACPI */
 
#ifdef CONFIG_ACPI_BOOT
 
#define ACPI_MAX_PLATFORM_INTERRUPTS	256
 
/* Array to record platform interrupt vectors for generic interrupt routing. */
int platform_intr_list[ACPI_MAX_PLATFORM_INTERRUPTS] = {
	[0 ... ACPI_MAX_PLATFORM_INTERRUPTS - 1] = -1
};
 
enum acpi_irq_model_id acpi_irq_model = ACPI_IRQ_MODEL_IOSAPIC;
 
/*
 * Interrupt routing API for device drivers.  Provides interrupt vector for
 * a generic platform event.  Currently only CPEI is implemented.
 */
int
acpi_request_vector (u32 int_type)
{
	int vector = -1;
 
	if (int_type < ACPI_MAX_PLATFORM_INTERRUPTS) {
		/* corrected platform error interrupt */
		vector = platform_intr_list[int_type];
	} else
		printk(KERN_ERR "acpi_request_vector(): invalid interrupt type\n");
	return vector;
}
 
char *
__acpi_map_table (unsigned long phys_addr, unsigned long size)
{
	return __va(phys_addr);
}
 
/* --------------------------------------------------------------------------
                            Boot-time Table Parsing
   -------------------------------------------------------------------------- */
 
static int			total_cpus __initdata;
static int			available_cpus __initdata;
struct acpi_table_madt *	acpi_madt __initdata;
static u8			has_8259;
 
 
static int __init
acpi_parse_lapic_addr_ovr (acpi_table_entry_header *header)
{
	struct acpi_table_lapic_addr_ovr *lapic;
 
	lapic = (struct acpi_table_lapic_addr_ovr *) header;
	if (!lapic)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	if (lapic->address) {
		iounmap((void *) ipi_base_addr);
		ipi_base_addr = (unsigned long) ioremap(lapic->address, 0);
	}
	return 0;
}
 
 
static int __init
acpi_parse_lsapic (acpi_table_entry_header *header)
{
	struct acpi_table_lsapic *lsapic;
 
	lsapic = (struct acpi_table_lsapic *) header;
	if (!lsapic)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	printk(KERN_INFO "CPU %d (0x%04x)", total_cpus, (lsapic->id << 8) | lsapic->eid);
 
	if (!lsapic->flags.enabled)
		printk(" disabled");
	else if (available_cpus >= NR_CPUS)
		printk(" ignored (increase NR_CPUS)");
	else {
		printk(" enabled");
#ifdef CONFIG_SMP
		smp_boot_data.cpu_phys_id[available_cpus] = (lsapic->id << 8) | lsapic->eid;
		if (hard_smp_processor_id()
		    == (unsigned int) smp_boot_data.cpu_phys_id[available_cpus])
			printk(" (BSP)");
#endif
		++available_cpus;
	}
 
	printk("\n");
 
	total_cpus++;
	return 0;
}
 
 
static int __init
acpi_parse_lapic_nmi (acpi_table_entry_header *header)
{
	struct acpi_table_lapic_nmi *lacpi_nmi;
 
	lacpi_nmi = (struct acpi_table_lapic_nmi*) header;
	if (!lacpi_nmi)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	/* TBD: Support lapic_nmi entries */
	return 0;
}
 
 
static int __init
acpi_parse_iosapic (acpi_table_entry_header *header)
{
	struct acpi_table_iosapic *iosapic;
 
	iosapic = (struct acpi_table_iosapic *) header;
	if (!iosapic)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	if (iosapic_init)
		iosapic_init(iosapic->address, iosapic->global_irq_base);
 
	return 0;
}
 
 
static int __init
acpi_parse_plat_int_src (acpi_table_entry_header *header)
{
	struct acpi_table_plat_int_src *plintsrc;
	int vector;
 
	plintsrc = (struct acpi_table_plat_int_src *) header;
	if (!plintsrc)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	if (!iosapic_register_platform_intr) {
		printk(KERN_WARNING PREFIX "No ACPI platform interrupt support\n");
		return -ENODEV;
	}
 
	/*
	 * Get vector assignment for this interrupt, set attributes,
	 * and program the IOSAPIC routing table.
	 */
	vector = iosapic_register_platform_intr(plintsrc->type,
						plintsrc->global_irq,
						plintsrc->iosapic_vector,
						plintsrc->eid,
						plintsrc->id,
						(plintsrc->flags.polarity == 1) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW,
						(plintsrc->flags.trigger == 1) ? IOSAPIC_EDGE : IOSAPIC_LEVEL);
 
	platform_intr_list[plintsrc->type] = vector;
	return 0;
}
 
 
static int __init
acpi_parse_int_src_ovr (acpi_table_entry_header *header)
{
	struct acpi_table_int_src_ovr *p;
 
	p = (struct acpi_table_int_src_ovr *) header;
	if (!p)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	/* Ignore if the platform doesn't support overrides */
	if (!iosapic_override_isa_irq)
		return 0;
 
	iosapic_override_isa_irq(p->bus_irq, p->global_irq,
				 (p->flags.polarity == 1) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW,
				 (p->flags.trigger == 1) ? IOSAPIC_EDGE : IOSAPIC_LEVEL);
	return 0;
}
 
 
static int __init
acpi_parse_nmi_src (acpi_table_entry_header *header)
{
	struct acpi_table_nmi_src *nmi_src;
 
	nmi_src = (struct acpi_table_nmi_src*) header;
	if (!nmi_src)
		return -EINVAL;
 
	acpi_table_print_madt_entry(header);
 
	/* TBD: Support nimsrc entries */
	return 0;
}
 
 
static int __init
acpi_parse_madt (unsigned long phys_addr, unsigned long size)
{
	if (!phys_addr || !size)
		return -EINVAL;
 
	acpi_madt = (struct acpi_table_madt *) __va(phys_addr);
 
	/* remember the value for reference after free_initmem() */
#ifdef CONFIG_ITANIUM
	has_8259 = 1; /* Firmware on old Itanium systems is broken */
#else
	has_8259 = acpi_madt->flags.pcat_compat;
#endif
	if (iosapic_system_init)
		iosapic_system_init(has_8259);
 
	/* Get base address of IPI Message Block */
 
	if (acpi_madt->lapic_address)
		ipi_base_addr = (unsigned long) ioremap(acpi_madt->lapic_address, 0);
 
	printk(KERN_INFO PREFIX "Local APIC address 0x%lx\n", ipi_base_addr);
	return 0;
}
 
 
#ifdef CONFIG_ACPI_NUMA
 
#define PXM_FLAG_LEN ((MAX_PXM_DOMAINS + 1)/32)
 
static int __initdata srat_num_cpus;			/* number of cpus */
static u32 __initdata pxm_flag[PXM_FLAG_LEN];
#define pxm_bit_set(bit)	(set_bit(bit,(void *)pxm_flag))
#define pxm_bit_test(bit)	(test_bit(bit,(void *)pxm_flag))
/* maps to convert between proximity domain and logical node ID */
int __initdata pxm_to_nid_map[MAX_PXM_DOMAINS];
int __initdata nid_to_pxm_map[NR_NODES];
struct acpi_table_slit __initdata *slit_table;
 
/*
 * ACPI 2.0 SLIT (System Locality Information Table)
 * http://devresource.hp.com/devresource/Docs/TechPapers/IA64/slit.pdf
 */
void __init
acpi_numa_slit_init (struct acpi_table_slit *slit)
{
	u32 len;
 
	len = sizeof(struct acpi_table_header) + 8
		+ slit->localities * slit->localities;
	if (slit->header.length != len) {
		printk("KERN_INFO ACPI 2.0 SLIT: size mismatch: %d expected, %d actual\n",
		      len, slit->header.length);
		memset(numa_slit, 10, sizeof(numa_slit));
		return;
	}
	slit_table = slit;
}
 
void __init
acpi_numa_processor_affinity_init (struct acpi_table_processor_affinity *pa)
{
	/* record this node in proximity bitmap */
	pxm_bit_set(pa->proximity_domain);
 
	node_cpuid[srat_num_cpus].phys_id = (pa->apic_id << 8) | (pa->lsapic_eid);
	/* nid should be overridden as logical node id later */
	node_cpuid[srat_num_cpus].nid = pa->proximity_domain;
	srat_num_cpus++;
}
 
void __init
acpi_numa_memory_affinity_init (struct acpi_table_memory_affinity *ma)
{
	unsigned long paddr, size, hole_size, min_hole_size;
	u8 pxm;
	struct node_memblk_s *p, *q, *pend;
 
	pxm = ma->proximity_domain;
 
	/* fill node memory chunk structure */
	paddr = ma->base_addr_hi;
	paddr = (paddr << 32) | ma->base_addr_lo;
	size = ma->length_hi;
	size = (size << 32) | ma->length_lo;
 
	if (num_memblks >= NR_MEMBLKS) {
		printk(KERN_ERR "Too many mem chunks in SRAT. Ignoring %ld MBytes at %lx\n",
			size/(1024*1024), paddr);
		return;
	}
 
	/* Ignore disabled entries */
	if (!ma->flags.enabled)
		return;
 
	/*
	 * When the chunk is not the first one in the node, check distance
	 * from the other chunks. When the hole is too huge ignore the chunk.
	 * This restriction should be removed when multiple chunks per node
	 * is supported.
	 */
	pend = &node_memblk[num_memblks];
	min_hole_size = 0;
	for (p = &node_memblk[0]; p < pend; p++) {
		if (p->nid != pxm)
			continue;
		if (p->start_paddr < paddr)
			hole_size = paddr - (p->start_paddr + p->size);
		else
			hole_size = p->start_paddr - (paddr + size);
 
		if (!min_hole_size || hole_size < min_hole_size)
			min_hole_size = hole_size;
	}
 
#if 0	/* test */
	if (min_hole_size) {
		if (min_hole_size > size) {
			printk(KERN_ERR "Too huge memory hole. Ignoring %ld MBytes at %lx\n",
				size/(1024*1024), paddr);
			return;
		}
	}
#endif
 
	/* record this node in proximity bitmap */
	pxm_bit_set(pxm);
 
	/* Insertion sort based on base address */
	pend = &node_memblk[num_memblks];
	for (p = &node_memblk[0]; p < pend; p++) {
		if (paddr < p->start_paddr)
			break;
	}
	if (p < pend) {
		for (q = pend; q >= p; q--)
			*(q + 1) = *q;
	}
	p->start_paddr = paddr;
	p->size = size;
	p->nid = pxm;
	num_memblks++;
}
 
void __init
acpi_numa_arch_fixup(void)
{
	int i, j, node_from, node_to;
 
	if (srat_num_cpus == 0) {
		node_cpuid[0].phys_id = hard_smp_processor_id();
		return;
	}
 
	/* calculate total number of nodes in system from PXM bitmap */
	numnodes = 0;		/* init total nodes in system */
 
	memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map));
	memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map));
	for (i = 0; i < MAX_PXM_DOMAINS; i++) {
		if (pxm_bit_test(i)) {
			pxm_to_nid_map[i] = numnodes;
			nid_to_pxm_map[numnodes++] = i;
		}
	}
 
	/* set logical node id in memory chunk structure */
	for (i = 0; i < num_memblks; i++)
		node_memblk[i].nid = pxm_to_nid_map[node_memblk[i].nid];
 
	/* assign memory bank numbers for each chunk on each node */
	for (i = 0; i < numnodes; i++) {
		int bank;
 
		bank = 0;
		for (j = 0; j < num_memblks; j++)
			if (node_memblk[j].nid == i)
				node_memblk[j].bank = bank++;
	}
 
	/* set logical node id in cpu structure */
	for (i = 0; i < srat_num_cpus; i++)
		node_cpuid[i].nid = pxm_to_nid_map[node_cpuid[i].nid];
 
	printk(KERN_INFO "Number of logical nodes in system = %d\n", numnodes);
	printk(KERN_INFO "Number of memory chunks in system = %d\n", num_memblks);
 
	if (!slit_table) return;
	memset(numa_slit, -1, sizeof(numa_slit));
	for (i=0; i<slit_table->localities; i++) {
		if (!pxm_bit_test(i))
			continue;
		node_from = pxm_to_nid_map[i];
		for (j=0; j<slit_table->localities; j++) {
			if (!pxm_bit_test(j))
				continue;
			node_to = pxm_to_nid_map[j];
			node_distance(node_from, node_to) = 
				slit_table->entry[i*slit_table->localities + j];
		}
	}
 
#ifdef SLIT_DEBUG
	printk(KERN_DEBUG "ACPI 2.0 SLIT locality table:\n");
	for (i = 0; i < numnodes; i++) {
		for (j = 0; j < numnodes; j++)
			printk(KERN_DEBUG "%03d ", node_distance(i,j));
		printk("\n");
	}
#endif
}
#endif /* CONFIG_ACPI_NUMA */
 
static int __init
acpi_parse_fadt (unsigned long phys_addr, unsigned long size)
{
	struct acpi_table_header *fadt_header;
	struct fadt_descriptor_rev2 *fadt;
	u32 sci_irq;
 
	if (!phys_addr || !size)
		return -EINVAL;
 
	fadt_header = (struct acpi_table_header *) __va(phys_addr);
	if (fadt_header->revision != 3)
		return -ENODEV;		/* Only deal with ACPI 2.0 FADT */
 
	fadt = (struct fadt_descriptor_rev2 *) fadt_header;
 
	if (!(fadt->iapc_boot_arch & BAF_8042_KEYBOARD_CONTROLLER))
		acpi_kbd_controller_present = 0;
 
	sci_irq = fadt->sci_int;
 
	if (has_8259 && sci_irq < 16)
		return 0;	/* legacy, no setup required */
 
	if (!iosapic_register_intr)
		return -ENODEV;
 
	iosapic_register_intr(sci_irq, IOSAPIC_POL_LOW, IOSAPIC_LEVEL);
	return 0;
}
 
 
unsigned long __init
acpi_find_rsdp (void)
{
	unsigned long rsdp_phys = 0;
 
	if (efi.acpi20)
		rsdp_phys = __pa(efi.acpi20);
	else if (efi.acpi)
		printk(KERN_WARNING PREFIX "v1.0/r0.71 tables no longer supported\n");
	return rsdp_phys;
}
 
 
int __init
acpi_boot_init (void)
{
 
	/*
	 * MADT
	 * ----
	 * Parse the Multiple APIC Description Table (MADT), if exists.
	 * Note that this table provides platform SMP configuration
	 * information -- the successor to MPS tables.
	 */
 
	if (acpi_table_parse(ACPI_APIC, acpi_parse_madt) < 1) {
		printk(KERN_ERR PREFIX "Can't find MADT\n");
		goto skip_madt;
	}
 
	/* Local APIC */
 
	if (acpi_table_parse_madt(ACPI_MADT_LAPIC_ADDR_OVR, acpi_parse_lapic_addr_ovr) < 0)
		printk(KERN_ERR PREFIX "Error parsing LAPIC address override entry\n");
 
	if (acpi_table_parse_madt(ACPI_MADT_LSAPIC, acpi_parse_lsapic) < 1)
		printk(KERN_ERR PREFIX "Error parsing MADT - no LAPIC entries\n");
 
	if (acpi_table_parse_madt(ACPI_MADT_LAPIC_NMI, acpi_parse_lapic_nmi) < 0)
		printk(KERN_ERR PREFIX "Error parsing LAPIC NMI entry\n");
 
	/* I/O APIC */
 
	if (acpi_table_parse_madt(ACPI_MADT_IOSAPIC, acpi_parse_iosapic) < 1)
		printk(KERN_ERR PREFIX "Error parsing MADT - no IOSAPIC entries\n");
 
	/* System-Level Interrupt Routing */
 
	if (acpi_table_parse_madt(ACPI_MADT_PLAT_INT_SRC, acpi_parse_plat_int_src) < 0)
		printk(KERN_ERR PREFIX "Error parsing platform interrupt source entry\n");
 
	if (acpi_table_parse_madt(ACPI_MADT_INT_SRC_OVR, acpi_parse_int_src_ovr) < 0)
		printk(KERN_ERR PREFIX "Error parsing interrupt source overrides entry\n");
 
	if (acpi_table_parse_madt(ACPI_MADT_NMI_SRC, acpi_parse_nmi_src) < 0)
		printk(KERN_ERR PREFIX "Error parsing NMI SRC entry\n");
  skip_madt:
 
	/*
	 * FADT says whether a legacy keyboard controller is present.
	 * The FADT also contains an SCI_INT line, by which the system
	 * gets interrupts such as power and sleep buttons.  If it's not
	 * on a Legacy interrupt, it needs to be setup.
	 */
	if (acpi_table_parse(ACPI_FADT, acpi_parse_fadt) < 1)
		printk(KERN_ERR PREFIX "Can't find FADT\n");
 
#ifdef CONFIG_SMP
	if (available_cpus == 0) {
		printk(KERN_INFO "ACPI: Found 0 CPUS; assuming 1\n");
		printk(KERN_INFO "CPU 0 (0x%04x)", hard_smp_processor_id());
		smp_boot_data.cpu_phys_id[available_cpus] = hard_smp_processor_id();
		available_cpus = 1; /* We've got at least one of these, no? */
	}
	smp_boot_data.cpu_count = available_cpus;
 
	smp_build_cpu_map();
# ifdef CONFIG_NUMA
	/* If the platform did not have an SRAT table, initialize the
	 * node_cpuid table from the smp_boot_data array. All cpus
	 * will be on node 0.
	 */
	if (srat_num_cpus == 0) {
		int cpu, i=1;
		for (cpu=0; cpu<smp_boot_data.cpu_count; cpu++)
			if (smp_boot_data.cpu_phys_id[cpu] != hard_smp_processor_id())
				node_cpuid[i++].phys_id = smp_boot_data.cpu_phys_id[cpu];
	}
	build_cpu_to_node_map();
# endif
 
#endif
	/* Make boot-up look pretty */
	printk(KERN_INFO "%d CPUs available, %d CPUs total\n", available_cpus, total_cpus);
	return 0;
}
 
/*
 * PCI Interrupt Routing
 */
 
#ifdef CONFIG_PCI
int __init
acpi_get_prt (struct pci_vector_struct **vectors, int *count)
{
	struct pci_vector_struct *vector;
	struct list_head *node;
	struct acpi_prt_entry *entry;
	int i = 0;
 
	if (!vectors || !count)
		return -EINVAL;
 
	*vectors = NULL;
	*count = 0;
 
	if (acpi_prt.count < 0) {
		printk(KERN_ERR PREFIX "No PCI interrupt routing entries\n");
		return -ENODEV;
	}
 
	/* Allocate vectors */
 
	*vectors = kmalloc(sizeof(struct pci_vector_struct) * acpi_prt.count, GFP_KERNEL);
	if (!(*vectors))
		return -ENOMEM;
 
	/* Convert PRT entries to IOSAPIC PCI vectors */
 
	vector = *vectors;
 
	list_for_each(node, &acpi_prt.entries) {
		entry = (struct acpi_prt_entry *)node;
		vector[i].segment = entry->id.segment;
		vector[i].bus    = entry->id.bus;
		vector[i].pci_id = ((u32) entry->id.device << 16) | 0xffff;
		vector[i].pin    = entry->pin;
		vector[i].irq    = entry->link.index;
		i++;
	}
	*count = acpi_prt.count;
	return 0;
}
#endif /* CONFIG_PCI */
 
/* Assume IA64 always use I/O SAPIC */
 
int __init
acpi_get_interrupt_model (int *type)
{
        if (!type)
                return -EINVAL;
 
	*type = ACPI_IRQ_MODEL_IOSAPIC;
        return 0;
}
 
int
acpi_irq_to_vector (u32 irq)
{
	if (has_8259 && irq < 16)
		return isa_irq_to_vector(irq);
 
	return gsi_to_vector(irq);
}
 
int
acpi_register_irq (u32 gsi, u32 polarity, u32 trigger)
{
	int vector = 0;
 
	if (has_8259 && gsi < 16)
		return isa_irq_to_vector(gsi);
 
	if (!iosapic_register_intr)
		return 0;
 
	/* Turn it on */
	vector = iosapic_register_intr(gsi,
		       	(polarity == ACPI_ACTIVE_HIGH) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW,
			(trigger == ACPI_EDGE_SENSITIVE) ? IOSAPIC_EDGE : IOSAPIC_LEVEL);
	return vector;
}
 
#endif /* CONFIG_ACPI_BOOT */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.