URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [kernel/] [irq.c] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/* * linux/arch/ia64/kernel/irq.c * * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar * * This file contains the code used by various IRQ handling routines: * asking for different IRQ's should be done through these routines * instead of just grabbing them. Thus setups with different IRQ numbers * shouldn't result in any weird surprises, and installing new handlers * should be easier. */ /* * (mostly architecture independent, will move to kernel/irq.c in 2.5.) * * IRQs are in fact implemented a bit like signal handlers for the kernel. * Naturally it's not a 1:1 relation, but there are similarities. */ #include <linux/config.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/timex.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/smp_lock.h> #include <linux/init.h> #include <linux/kernel_stat.h> #include <linux/irq.h> #include <linux/proc_fs.h> #include <asm/atomic.h> #include <asm/io.h> #include <asm/smp.h> #include <asm/system.h> #include <asm/bitops.h> #include <asm/uaccess.h> #include <asm/pgalloc.h> #include <asm/delay.h> #include <asm/irq.h> /* * Linux has a controller-independent x86 interrupt architecture. * every controller has a 'controller-template', that is used * by the main code to do the right thing. Each driver-visible * interrupt source is transparently wired to the apropriate * controller. Thus drivers need not be aware of the * interrupt-controller. * * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC, * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC. * (IO-APICs assumed to be messaging to Pentium local-APICs) * * the code is designed to be easily extended with new/different * interrupt controllers, without having to do assembly magic. */ /* * Controller mappings for all interrupt sources: */ irq_desc_t _irq_desc[NR_IRQS] __cacheline_aligned = { [0 ... NR_IRQS-1] = { IRQ_DISABLED, &no_irq_type, NULL, 0, SPIN_LOCK_UNLOCKED}}; #ifdef CONFIG_IA64_GENERIC struct irq_desc * __ia64_irq_desc (unsigned int irq) { return _irq_desc + irq; } ia64_vector __ia64_irq_to_vector (unsigned int irq) { return (ia64_vector) irq; } unsigned int __ia64_local_vector_to_irq (ia64_vector vec) { return (unsigned int) vec; } #endif static void register_irq_proc (unsigned int irq); /* * Special irq handlers. */ void no_action(int cpl, void *dev_id, struct pt_regs *regs) { } /* * Generic no controller code */ static void enable_none(unsigned int irq) { } static unsigned int startup_none(unsigned int irq) { return 0; } static void disable_none(unsigned int irq) { } static void ack_none(unsigned int irq) { /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves, it doesnt deserve * a generic callback i think. */ #if CONFIG_X86 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq); #ifdef CONFIG_X86_LOCAL_APIC /* * Currently unexpected vectors happen only on SMP and APIC. * We _must_ ack these because every local APIC has only N * irq slots per priority level, and a 'hanging, unacked' IRQ * holds up an irq slot - in excessive cases (when multiple * unexpected vectors occur) that might lock up the APIC * completely. */ ack_APIC_irq(); #endif #endif #if CONFIG_IA64 printk(KERN_ERR "Unexpected irq vector 0x%x on CPU %u!\n", irq, smp_processor_id()); #endif } /* startup is the same as "enable", shutdown is same as "disable" */ #define shutdown_none disable_none #define end_none enable_none struct hw_interrupt_type no_irq_type = { "none", startup_none, shutdown_none, enable_none, disable_none, ack_none, end_none }; atomic_t irq_err_count; #if defined(CONFIG_X86) && defined(CONFIG_X86_IO_APIC) && defined(APIC_MISMATCH_DEBUG) atomic_t irq_mis_count; #endif /* * Generic, controller-independent functions: */ int get_irq_list(char *buf) { int i, j; struct irqaction * action; irq_desc_t *idesc; char *p = buf; p += sprintf(p, " "); for (j=0; j<smp_num_cpus; j++) p += sprintf(p, "CPU%d ",j); *p++ = '\n'; for (i = 0 ; i < NR_IRQS ; i++) { idesc = irq_desc(i); action = idesc->action; if (!action) continue; p += sprintf(p, "%3d: ",i); #ifndef CONFIG_SMP p += sprintf(p, "%10u ", kstat_irqs(i)); #else for (j = 0; j < smp_num_cpus; j++) p += sprintf(p, "%10u ", kstat.irqs[cpu_logical_map(j)][i]); #endif p += sprintf(p, " %14s", idesc->handler->typename); p += sprintf(p, " %s", action->name); for (action=action->next; action; action = action->next) p += sprintf(p, ", %s", action->name); *p++ = '\n'; } p += sprintf(p, "NMI: "); for (j = 0; j < smp_num_cpus; j++) p += sprintf(p, "%10u ", nmi_count(cpu_logical_map(j))); p += sprintf(p, "\n"); #if defined(CONFIG_SMP) && defined(CONFIG_X86) p += sprintf(p, "LOC: "); for (j = 0; j < smp_num_cpus; j++) p += sprintf(p, "%10u ", apic_timer_irqs[cpu_logical_map(j)]); p += sprintf(p, "\n"); #endif p += sprintf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); #if defined(CONFIG_X86) && defined(CONFIG_X86_IO_APIC) && defined(APIC_MISMATCH_DEBUG) p += sprintf(p, "MIS: %10u\n", atomic_read(&irq_mis_count)); #endif return p - buf; } /* * Global interrupt locks for SMP. Allow interrupts to come in on any * CPU, yet make cli/sti act globally to protect critical regions.. */ #ifdef CONFIG_SMP unsigned int global_irq_holder = NO_PROC_ID; unsigned volatile long global_irq_lock; /* pedantic: long for set_bit --RR */ extern void show_stack(unsigned long* esp); static void show(char * str) { int i; int cpu = smp_processor_id(); printk("\n%s, CPU %d:\n", str, cpu); printk("irq: %d [",irqs_running()); for(i=0;i < smp_num_cpus;i++) printk(" %d",irq_count(i)); printk(" ]\nbh: %d [",spin_is_locked(&global_bh_lock) ? 1 : 0); for(i=0;i < smp_num_cpus;i++) printk(" %d",bh_count(i)); printk(" ]\nStack dumps:"); #if defined(CONFIG_IA64) /* * We can't unwind the stack of another CPU without access to * the registers of that CPU. And sending an IPI when we're * in a potentially wedged state doesn't sound like a smart * idea. */ #elif defined(CONFIG_X86) for(i=0;i< smp_num_cpus;i++) { unsigned long esp; if(i==cpu) continue; printk("\nCPU %d:",i); esp = init_tss[i].esp0; if(esp==NULL) { /* tss->esp0 is set to NULL in cpu_init(), * it's initialized when the cpu returns to user * space. -- manfreds */ printk(" <unknown> "); continue; } esp &= ~(THREAD_SIZE-1); esp += sizeof(struct task_struct); show_stack((void*)esp); } #else You lose... #endif printk("\nCPU %d:",cpu); show_stack(NULL); printk("\n"); } #define MAXCOUNT 100000000 /* * I had a lockup scenario where a tight loop doing * spin_unlock()/spin_lock() on CPU#1 was racing with * spin_lock() on CPU#0. CPU#0 should have noticed spin_unlock(), but * apparently the spin_unlock() information did not make it * through to CPU#0 ... nasty, is this by design, do we have to limit * 'memory update oscillation frequency' artificially like here? * * Such 'high frequency update' races can be avoided by careful design, but * some of our major constructs like spinlocks use similar techniques, * it would be nice to clarify this issue. Set this define to 0 if you * want to check whether your system freezes. I suspect the delay done * by SYNC_OTHER_CORES() is in correlation with 'snooping latency', but * i thought that such things are guaranteed by design, since we use * the 'LOCK' prefix. */ #define SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND 0 #if SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND # define SYNC_OTHER_CORES(x) udelay(x+1) #else /* * We have to allow irqs to arrive between __sti and __cli */ # ifdef CONFIG_IA64 # define SYNC_OTHER_CORES(x) __asm__ __volatile__ ("nop 0") # else # define SYNC_OTHER_CORES(x) __asm__ __volatile__ ("nop") # endif #endif static inline void wait_on_irq(void) { int count = MAXCOUNT; for (;;) { /* * Wait until all interrupts are gone. Wait * for bottom half handlers unless we're * already executing in one.. */ if (!irqs_running()) if (really_local_bh_count() || !spin_is_locked(&global_bh_lock)) break; /* Duh, we have to loop. Release the lock to avoid deadlocks */ smp_mb__before_clear_bit(); /* need barrier before releasing lock... */ clear_bit(0,&global_irq_lock); for (;;) { if (!--count) { show("wait_on_irq"); count = ~0; } __sti(); SYNC_OTHER_CORES(smp_processor_id()); __cli(); if (irqs_running()) continue; if (global_irq_lock) continue; if (!really_local_bh_count() && spin_is_locked(&global_bh_lock)) continue; if (!test_and_set_bit(0,&global_irq_lock)) break; } } } /* * This is called when we want to synchronize with * interrupts. We may for example tell a device to * stop sending interrupts: but to make sure there * are no interrupts that are executing on another * CPU we need to call this function. */ void synchronize_irq(void) { if (irqs_running()) { /* Stupid approach */ cli(); sti(); } } static inline void get_irqlock(void) { if (test_and_set_bit(0,&global_irq_lock)) { /* do we already hold the lock? */ if (smp_processor_id() == global_irq_holder) return; /* Uhhuh.. Somebody else got it. Wait.. */ do { do { #ifdef CONFIG_X86 rep_nop(); #endif } while (test_bit(0,&global_irq_lock)); } while (test_and_set_bit(0,&global_irq_lock)); } /* * We also to make sure that nobody else is running * in an interrupt context. */ wait_on_irq(); /* * Ok, finally.. */ global_irq_holder = smp_processor_id(); } #define EFLAGS_IF_SHIFT 9 /* * A global "cli()" while in an interrupt context * turns into just a local cli(). Interrupts * should use spinlocks for the (very unlikely) * case that they ever want to protect against * each other. * * If we already have local interrupts disabled, * this will not turn a local disable into a * global one (problems with spinlocks: this makes * save_flags+cli+sti usable inside a spinlock). */ void __global_cli(void) { unsigned int flags; #ifdef CONFIG_IA64 __save_flags(flags); if (flags & IA64_PSR_I) { __cli(); if (!really_local_irq_count()) get_irqlock(); } #else __save_flags(flags); if (flags & (1 << EFLAGS_IF_SHIFT)) { __cli(); if (!really_local_irq_count()) get_irqlock(); } #endif } void __global_sti(void) { if (!really_local_irq_count()) release_irqlock(smp_processor_id()); __sti(); } /* * SMP flags value to restore to: * 0 - global cli * 1 - global sti * 2 - local cli * 3 - local sti */ unsigned long __global_save_flags(void) { int retval; int local_enabled; unsigned long flags; int cpu = smp_processor_id(); __save_flags(flags); #ifdef CONFIG_IA64 local_enabled = (flags & IA64_PSR_I) != 0; #else local_enabled = (flags >> EFLAGS_IF_SHIFT) & 1; #endif /* default to local */ retval = 2 + local_enabled; /* check for global flags if we're not in an interrupt */ if (!really_local_irq_count()) { if (local_enabled) retval = 1; if (global_irq_holder == cpu) retval = 0; } return retval; } void __global_restore_flags(unsigned long flags) { switch (flags) { case 0: __global_cli(); break; case 1: __global_sti(); break; case 2: __cli(); break; case 3: __sti(); break; default: printk("global_restore_flags: %08lx (%08lx)\n", flags, (&flags)[-1]); } } #endif /* * This should really return information about whether * we should do bottom half handling etc. Right now we * end up _always_ checking the bottom half, which is a * waste of time and is not what some drivers would * prefer. */ int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action) { int status; local_irq_enter(irq); status = 1; /* Force the "do bottom halves" bit */ if (!(action->flags & SA_INTERRUPT)) __sti(); do { status |= action->flags; action->handler(irq, action->dev_id, regs); action = action->next; } while (action); if (status & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); __cli(); local_irq_exit(irq); return status; } /** * disable_irq_nosync - disable an irq without waiting * @irq: Interrupt to disable * * Disable the selected interrupt line. Disables and Enables are * nested. * Unlike disable_irq(), this function does not ensure existing * instances of the IRQ handler have completed before returning. * * This function may be called from IRQ context. */ inline void disable_irq_nosync(unsigned int irq) { irq_desc_t *desc = irq_desc(irq); unsigned long flags; spin_lock_irqsave(&desc->lock, flags); if (!desc->depth++) { desc->status |= IRQ_DISABLED; desc->handler->disable(irq); } spin_unlock_irqrestore(&desc->lock, flags); } /** * disable_irq - disable an irq and wait for completion * @irq: Interrupt to disable * * Disable the selected interrupt line. Enables and Disables are * nested. * This function waits for any pending IRQ handlers for this interrupt * to complete before returning. If you use this function while * holding a resource the IRQ handler may need you will deadlock. * * This function may be called - with care - from IRQ context. */ void disable_irq(unsigned int irq) { disable_irq_nosync(irq); #ifdef CONFIG_SMP if (!really_local_irq_count()) { do { barrier(); } while (irq_desc(irq)->status & IRQ_INPROGRESS); } #endif } /** * enable_irq - enable handling of an irq * @irq: Interrupt to enable * * Undoes the effect of one call to disable_irq(). If this * matches the last disable, processing of interrupts on this * IRQ line is re-enabled. * * This function may be called from IRQ context. */ void enable_irq(unsigned int irq) { irq_desc_t *desc = irq_desc(irq); unsigned long flags; spin_lock_irqsave(&desc->lock, flags); switch (desc->depth) { case 1: { unsigned int status = desc->status & ~IRQ_DISABLED; desc->status = status; if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { desc->status = status | IRQ_REPLAY; hw_resend_irq(desc->handler,irq); } desc->handler->enable(irq); /* fall-through */ } default: desc->depth--; break; case 0: printk(KERN_ERR "enable_irq(%u) unbalanced from %p\n", irq, (void *) __builtin_return_address(0)); } spin_unlock_irqrestore(&desc->lock, flags); } /* * do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). */ unsigned int do_IRQ(unsigned long irq, struct pt_regs *regs) { /* * We ack quickly, we don't want the irq controller * thinking we're snobs just because some other CPU has * disabled global interrupts (we have already done the * INT_ACK cycles, it's too late to try to pretend to the * controller that we aren't taking the interrupt). * * 0 return value means that this irq is already being * handled by some other CPU. (or is disabled) */ int cpu = smp_processor_id(); irq_desc_t *desc = irq_desc(irq); struct irqaction * action; unsigned int status; kstat.irqs[cpu][irq]++; if (desc->status & IRQ_PER_CPU) { /* no locking required for CPU-local interrupts: */ desc->handler->ack(irq); handle_IRQ_event(irq, regs, desc->action); desc->handler->end(irq); } else { spin_lock(&desc->lock); desc->handler->ack(irq); /* * REPLAY is when Linux resends an IRQ that was dropped earlier * WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. * Since we set PENDING, if another processor is handling * a different instance of this same irq, the other processor * will take care of it. */ if (!action) goto out; /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in do_IRQ * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { spin_unlock(&desc->lock); handle_IRQ_event(irq, regs, action); spin_lock(&desc->lock); if (!(desc->status & IRQ_PENDING)) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->handler->end(irq); spin_unlock(&desc->lock); } return 1; } /** * request_irq - allocate an interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs * @irqflags: Interrupt type flags * @devname: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. From the point this * call is made your handler function may be invoked. Since * your handler function must clear any interrupt the board * raises, you must take care both to initialise your hardware * and to set up the interrupt handler in the right order. * * Dev_id must be globally unique. Normally the address of the * device data structure is used as the cookie. Since the handler * receives this value it makes sense to use it. * * If your interrupt is shared you must pass a non NULL dev_id * as this is required when freeing the interrupt. * * Flags: * * SA_SHIRQ Interrupt is shared * * SA_INTERRUPT Disable local interrupts while processing * * SA_SAMPLE_RANDOM The interrupt can be used for entropy * */ int request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *), unsigned long irqflags, const char * devname, void *dev_id) { int retval; struct irqaction * action; #if 1 /* * Sanity-check: shared interrupts should REALLY pass in * a real dev-ID, otherwise we'll have trouble later trying * to figure out which interrupt is which (messes up the * interrupt freeing logic etc). */ if (irqflags & SA_SHIRQ) { if (!dev_id) printk(KERN_ERR "Bad boy: %s called us without a dev_id!\n", devname); } #endif if (irq >= NR_IRQS) return -EINVAL; if (!handler) return -EINVAL; action = (struct irqaction *) kmalloc(sizeof(struct irqaction), GFP_KERNEL); if (!action) return -ENOMEM; action->handler = handler; action->flags = irqflags; action->mask = 0; action->name = devname; action->next = NULL; action->dev_id = dev_id; retval = setup_irq(irq, action); if (retval) kfree(action); return retval; } /** * free_irq - free an interrupt * @irq: Interrupt line to free * @dev_id: Device identity to free * * Remove an interrupt handler. The handler is removed and if the * interrupt line is no longer in use by any driver it is disabled. * On a shared IRQ the caller must ensure the interrupt is disabled * on the card it drives before calling this function. The function * does not return until any executing interrupts for this IRQ * have completed. * * This function may be called from interrupt context. * * Bugs: Attempting to free an irq in a handler for the same irq hangs * the machine. */ void free_irq(unsigned int irq, void *dev_id) { irq_desc_t *desc; struct irqaction **p; unsigned long flags; if (irq >= NR_IRQS) return; desc = irq_desc(irq); spin_lock_irqsave(&desc->lock,flags); p = &desc->action; for (;;) { struct irqaction * action = *p; if (action) { struct irqaction **pp = p; p = &action->next; if (action->dev_id != dev_id) continue; /* Found it - now remove it from the list of entries */ *pp = action->next; if (!desc->action) { desc->status |= IRQ_DISABLED; desc->handler->shutdown(irq); } spin_unlock_irqrestore(&desc->lock,flags); #ifdef CONFIG_SMP /* Wait to make sure it's not being used on another CPU */ while (desc->status & IRQ_INPROGRESS) barrier(); #endif kfree(action); return; } printk(KERN_ERR "Trying to free free IRQ%d\n",irq); spin_unlock_irqrestore(&desc->lock,flags); return; } } /* * IRQ autodetection code.. * * This depends on the fact that any interrupt that * comes in on to an unassigned handler will get stuck * with "IRQ_WAITING" cleared and the interrupt * disabled. */ static DECLARE_MUTEX(probe_sem); /** * probe_irq_on - begin an interrupt autodetect * * Commence probing for an interrupt. The interrupts are scanned * and a mask of potential interrupt lines is returned. * */ unsigned long probe_irq_on(void) { unsigned int i; irq_desc_t *desc; unsigned long val; unsigned long delay; down(&probe_sem); /* * something may have generated an irq long ago and we want to * flush such a longstanding irq before considering it as spurious. */ for (i = NR_IRQS-1; i > 0; i--) { desc = irq_desc(i); spin_lock_irq(&desc->lock); if (!desc->action) desc->handler->startup(i); spin_unlock_irq(&desc->lock); } /* Wait for longstanding interrupts to trigger. */ for (delay = jiffies + HZ/50; time_after(delay, jiffies); ) /* about 20ms delay */ synchronize_irq(); /* * enable any unassigned irqs * (we must startup again here because if a longstanding irq * happened in the previous stage, it may have masked itself) */ for (i = NR_IRQS-1; i > 0; i--) { desc = irq_desc(i); spin_lock_irq(&desc->lock); if (!desc->action) { desc->status |= IRQ_AUTODETECT | IRQ_WAITING; if (desc->handler->startup(i)) desc->status |= IRQ_PENDING; } spin_unlock_irq(&desc->lock); } /* * Wait for spurious interrupts to trigger */ for (delay = jiffies + HZ/10; time_after(delay, jiffies); ) /* about 100ms delay */ synchronize_irq(); /* * Now filter out any obviously spurious interrupts */ val = 0; for (i = 0; i < NR_IRQS; i++) { irq_desc_t *desc = irq_desc(i); unsigned int status; spin_lock_irq(&desc->lock); status = desc->status; if (status & IRQ_AUTODETECT) { /* It triggered already - consider it spurious. */ if (!(status & IRQ_WAITING)) { desc->status = status & ~IRQ_AUTODETECT; desc->handler->shutdown(i); } else if (i < 32) val |= 1 << i; } spin_unlock_irq(&desc->lock); } return val; } /** * probe_irq_mask - scan a bitmap of interrupt lines * @val: mask of interrupts to consider * * Scan the ISA bus interrupt lines and return a bitmap of * active interrupts. The interrupt probe logic state is then * returned to its previous value. * * Note: we need to scan all the irq's even though we will * only return ISA irq numbers - just so that we reset them * all to a known state. */ unsigned int probe_irq_mask(unsigned long val) { int i; unsigned int mask; mask = 0; for (i = 0; i < 16; i++) { irq_desc_t *desc = irq_desc(i); unsigned int status; spin_lock_irq(&desc->lock); status = desc->status; if (status & IRQ_AUTODETECT) { if (!(status & IRQ_WAITING)) mask |= 1 << i; desc->status = status & ~IRQ_AUTODETECT; desc->handler->shutdown(i); } spin_unlock_irq(&desc->lock); } up(&probe_sem); return mask & val; } /** * probe_irq_off - end an interrupt autodetect * @val: mask of potential interrupts (unused) * * Scans the unused interrupt lines and returns the line which * appears to have triggered the interrupt. If no interrupt was * found then zero is returned. If more than one interrupt is * found then minus the first candidate is returned to indicate * their is doubt. * * The interrupt probe logic state is returned to its previous * value. * * BUGS: When used in a module (which arguably shouldnt happen) * nothing prevents two IRQ probe callers from overlapping. The * results of this are non-optimal. */ int probe_irq_off(unsigned long val) { int i, irq_found, nr_irqs; nr_irqs = 0; irq_found = 0; for (i = 0; i < NR_IRQS; i++) { irq_desc_t *desc = irq_desc(i); unsigned int status; spin_lock_irq(&desc->lock); status = desc->status; if (status & IRQ_AUTODETECT) { if (!(status & IRQ_WAITING)) { if (!nr_irqs) irq_found = i; nr_irqs++; } desc->status = status & ~IRQ_AUTODETECT; desc->handler->shutdown(i); } spin_unlock_irq(&desc->lock); } up(&probe_sem); if (nr_irqs > 1) irq_found = -irq_found; return irq_found; } int setup_irq(unsigned int irq, struct irqaction * new) { int shared = 0; unsigned long flags; struct irqaction *old, **p; irq_desc_t *desc = irq_desc(irq); /* * Some drivers like serial.c use request_irq() heavily, * so we have to be careful not to interfere with a * running system. */ if (new->flags & SA_SAMPLE_RANDOM) { /* * This function might sleep, we want to call it first, * outside of the atomic block. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } if (new->flags & SA_PERCPU_IRQ) { desc->status |= IRQ_PER_CPU; desc->handler = &irq_type_ia64_lsapic; } /* * The following block of code has to be executed atomically */ spin_lock_irqsave(&desc->lock,flags); p = &desc->action; if ((old = *p) != NULL) { /* Can't share interrupts unless both agree to */ if (!(old->flags & new->flags & SA_SHIRQ)) { spin_unlock_irqrestore(&desc->lock,flags); return -EBUSY; } /* add new interrupt at end of irq queue */ do { p = &old->next; old = *p; } while (old); shared = 1; } *p = new; if (!shared) { desc->depth = 0; desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS); desc->handler->startup(irq); } spin_unlock_irqrestore(&desc->lock,flags); register_irq_proc(irq); return 0; } static struct proc_dir_entry * root_irq_dir; static struct proc_dir_entry * irq_dir [NR_IRQS]; #define HEX_DIGITS 8 static unsigned int parse_hex_value (const char *buffer, unsigned long count, unsigned long *ret) { unsigned char hexnum [HEX_DIGITS]; unsigned long value; int i; if (!count) return -EINVAL; if (count > HEX_DIGITS) count = HEX_DIGITS; if (copy_from_user(hexnum, buffer, count)) return -EFAULT; /* * Parse the first 8 characters as a hex string, any non-hex char * is end-of-string. '00e1', 'e1', '00E1', 'E1' are all the same. */ value = 0; for (i = 0; i < count; i++) { unsigned int c = hexnum[i]; switch (c) { case '0' ... '9': c -= '0'; break; case 'a' ... 'f': c -= 'a'-10; break; case 'A' ... 'F': c -= 'A'-10; break; default: goto out; } value = (value << 4) | c; } out: *ret = value; return 0; } #if CONFIG_SMP static struct proc_dir_entry * smp_affinity_entry [NR_IRQS]; static unsigned long irq_affinity [NR_IRQS] = { [0 ... NR_IRQS-1] = ~0UL }; static char irq_redir [NR_IRQS]; // = { [0 ... NR_IRQS-1] = 1 }; void set_irq_affinity_info(int irq, int hwid, int redir) { unsigned long mask = 1UL<<cpu_logical_id(hwid); if (irq >= 0 && irq < NR_IRQS) { irq_affinity[irq] = mask; irq_redir[irq] = (char) (redir & 0xff); } } static int irq_affinity_read_proc (char *page, char **start, off_t off, int count, int *eof, void *data) { if (count < HEX_DIGITS+3) return -EINVAL; return sprintf (page, "%s%08lx\n", irq_redir[(long)data] ? "r " : "", irq_affinity[(long)data]); } static int irq_affinity_write_proc (struct file *file, const char *buffer, unsigned long count, void *data) { int irq = (long) data, full_count = count, err; unsigned long new_value; const char *buf = buffer; int redir; if (!irq_desc(irq)->handler->set_affinity) return -EIO; if (buf[0] == 'r' || buf[0] == 'R') { ++buf; while (*buf == ' ') ++buf; redir = 1; } else redir = 0; err = parse_hex_value(buf, count, &new_value); /* * Do not allow disabling IRQs completely - it's a too easy * way to make the system unusable accidentally :-) At least * one online CPU still has to be targeted. */ if (!(new_value & cpu_online_map)) return -EINVAL; irq_desc(irq)->handler->set_affinity(irq | (redir? IA64_IRQ_REDIRECTED :0), new_value); return full_count; } #endif /* CONFIG_SMP */ static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, int count, int *eof, void *data) { unsigned long *mask = (unsigned long *) data; if (count < HEX_DIGITS+1) return -EINVAL; return sprintf (page, "%08lx\n", *mask); } static int prof_cpu_mask_write_proc (struct file *file, const char *buffer, unsigned long count, void *data) { unsigned long *mask = (unsigned long *) data, full_count = count, err; unsigned long new_value; err = parse_hex_value(buffer, count, &new_value); if (err) return err; *mask = new_value; return full_count; } #define MAX_NAMELEN 10 static void register_irq_proc (unsigned int irq) { char name [MAX_NAMELEN]; if (!root_irq_dir || (irq_desc(irq)->handler == &no_irq_type) || irq_dir[irq]) return; memset(name, 0, MAX_NAMELEN); sprintf(name, "%d", irq); /* create /proc/irq/1234 */ irq_dir[irq] = proc_mkdir(name, root_irq_dir); #if CONFIG_SMP { struct proc_dir_entry *entry; /* create /proc/irq/1234/smp_affinity */ entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]); if (entry) { entry->nlink = 1; entry->data = (void *)(long)irq; entry->read_proc = irq_affinity_read_proc; entry->write_proc = irq_affinity_write_proc; } smp_affinity_entry[irq] = entry; } #endif } unsigned long prof_cpu_mask = -1; void init_irq_proc (void) { struct proc_dir_entry *entry; int i; /* create /proc/irq */ root_irq_dir = proc_mkdir("irq", 0); /* create /proc/irq/prof_cpu_mask */ entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); if (!entry) return; entry->nlink = 1; entry->data = (void *)&prof_cpu_mask; entry->read_proc = prof_cpu_mask_read_proc; entry->write_proc = prof_cpu_mask_write_proc; /* * Create entries for all existing IRQs. */ for (i = 0; i < NR_IRQS; i++) { if (irq_desc(i)->handler == &no_irq_type) continue; register_irq_proc(i); } }
Go to most recent revision | Compare with Previous | Blame | View Log