URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [kernel/] [ivt.S] - Rev 1765
Compare with Previous | Blame | View Log
/*
* arch/ia64/kernel/ivt.S
*
* Copyright (C) 2002-2003 Intel Co
* Suresh Siddha <suresh.b.siddha@intel.com>
* Kenneth Chen <kenneth.w.chen@intel.com>
* Fenghua Yu <fenghua.yu@intel.com>
* Copyright (C) 1998-2001 Hewlett-Packard Co
* Stephane Eranian <eranian@hpl.hp.com>
* David Mosberger <davidm@hpl.hp.com>
*
* 00/08/23 Asit Mallick <asit.k.mallick@intel.com> TLB handling for SMP
* 00/12/20 David Mosberger-Tang <davidm@hpl.hp.com> DTLB/ITLB handler now uses virtual PT.
*/
/*
* This file defines the interruption vector table used by the CPU.
* It does not include one entry per possible cause of interruption.
*
* The first 20 entries of the table contain 64 bundles each while the
* remaining 48 entries contain only 16 bundles each.
*
* The 64 bundles are used to allow inlining the whole handler for critical
* interruptions like TLB misses.
*
* For each entry, the comment is as follows:
*
* // 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51)
* entry offset ----/ / / / /
* entry number ---------/ / / /
* size of the entry -------------/ / /
* vector name -------------------------------------/ /
* interruptions triggering this vector ----------------------/
*
* The table is 32KB in size and must be aligned on 32KB boundary.
* (The CPU ignores the 15 lower bits of the address)
*
* Table is based upon EAS2.6 (Oct 1999)
*/
#include <linux/config.h>
#include <asm/asmmacro.h>
#include <asm/break.h>
#include <asm/kregs.h>
#include <asm/offsets.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/unistd.h>
#if 1
# define PSR_DEFAULT_BITS psr.ac
#else
# define PSR_DEFAULT_BITS 0
#endif
#if 0
/*
* This lets you track the last eight faults that occurred on the CPU. Make sure ar.k2 isn't
* needed for something else before enabling this...
*/
# define DBG_FAULT(i) mov r16=ar.k2;; shl r16=r16,8;; add r16=(i),r16;;mov ar.k2=r16
#else
# define DBG_FAULT(i)
#endif
#define MINSTATE_VIRT /* needed by minstate.h */
#include "minstate.h"
#define FAULT(n) \
mov r31=pr; \
mov r19=n;; /* prepare to save predicates */ \
br.sptk.many dispatch_to_fault_handler
/*
* As we don't (hopefully) use the space available, we need to fill it with
* nops. the parameter may be used for debugging and is representing the entry
* number
*/
#define BREAK_BUNDLE(a) break.m (a); \
break.i (a); \
break.i (a)
/*
* 4 breaks bundles all together
*/
#define BREAK_BUNDLE4(a); BREAK_BUNDLE(a); BREAK_BUNDLE(a); BREAK_BUNDLE(a); BREAK_BUNDLE(a)
/*
* 8 bundles all together (too lazy to use only 4 at a time !)
*/
#define BREAK_BUNDLE8(a); BREAK_BUNDLE4(a); BREAK_BUNDLE4(a)
.section .text.ivt,"ax"
.align 32768 // align on 32KB boundary
.global ia64_ivt
ia64_ivt:
/////////////////////////////////////////////////////////////////////////////////////////
// 0x0000 Entry 0 (size 64 bundles) VHPT Translation (8,20,47)
ENTRY(vhpt_miss)
DBG_FAULT(0)
/*
* The VHPT vector is invoked when the TLB entry for the virtual page table
* is missing. This happens only as a result of a previous
* (the "original") TLB miss, which may either be caused by an instruction
* fetch or a data access (or non-access).
*
* What we do here is normal TLB miss handing for the _original_ miss, followed
* by inserting the TLB entry for the virtual page table page that the VHPT
* walker was attempting to access. The latter gets inserted as long
* as both L1 and L2 have valid mappings for the faulting address.
* The TLB entry for the original miss gets inserted only if
* the L3 entry indicates that the page is present.
*
* do_page_fault gets invoked in the following cases:
* - the faulting virtual address uses unimplemented address bits
* - the faulting virtual address has no L1, L2, or L3 mapping
*/
mov r16=cr.ifa // get address that caused the TLB miss
#ifdef CONFIG_HUGETLB_PAGE
movl r18=PAGE_SHIFT
mov r25=cr.itir
#endif
;;
rsm psr.dt // use physical addressing for data
mov r31=pr // save the predicate registers
mov r19=IA64_KR(PT_BASE) // get page table base address
shl r21=r16,3 // shift bit 60 into sign bit
shr.u r17=r16,61 // get the region number into r17
;;
shr r22=r21,3
#ifdef CONFIG_HUGETLB_PAGE
extr.u r26=r25,2,6
;;
cmp.eq p8,p0=HPAGE_SHIFT,r26
;;
(p8) dep r25=r18,r25,2,6
(p8) shr r22=r22,HPAGE_SHIFT-PAGE_SHIFT
#endif
;;
cmp.eq p6,p7=5,r17 // is IFA pointing into to region 5?
shr.u r18=r22,PGDIR_SHIFT // get bits 33-63 of the faulting address
;;
(p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place
srlz.d // ensure "rsm psr.dt" has taken effect
(p6) movl r19=__pa(swapper_pg_dir) // region 5 is rooted at swapper_pg_dir
(p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT
(p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3
;;
(p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=PTA + IFA(33,42)*8
(p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=PTA + (((IFA(61,63) << 7) | IFA(33,39))*8)
cmp.eq p7,p6=0,r21 // unused address bits all zeroes?
shr.u r18=r22,PMD_SHIFT // shift L2 index into position
;;
ld8 r17=[r17] // fetch the L1 entry (may be 0)
;;
(p7) cmp.eq p6,p7=r17,r0 // was L1 entry NULL?
dep r17=r18,r17,3,(PAGE_SHIFT-3) // compute address of L2 page table entry
;;
(p7) ld8 r20=[r17] // fetch the L2 entry (may be 0)
shr.u r19=r22,PAGE_SHIFT // shift L3 index into position
;;
(p7) cmp.eq.or.andcm p6,p7=r20,r0 // was L2 entry NULL?
dep r21=r19,r20,3,(PAGE_SHIFT-3) // compute address of L3 page table entry
;;
(p7) ld8 r18=[r21] // read the L3 PTE
mov r19=cr.isr // cr.isr bit 0 tells us if this is an insn miss
;;
(p7) tbit.z p6,p7=r18,_PAGE_P_BIT // page present bit cleared?
mov r22=cr.iha // get the VHPT address that caused the TLB miss
;; // avoid RAW on p7
(p7) tbit.nz.unc p10,p11=r19,32 // is it an instruction TLB miss?
dep r23=0,r20,0,PAGE_SHIFT // clear low bits to get page address
;;
(p10) itc.i r18 // insert the instruction TLB entry
(p11) itc.d r18 // insert the data TLB entry
(p6) br.cond.spnt.many page_fault // handle bad address/page not present (page fault)
mov cr.ifa=r22
#ifdef CONFIG_HUGETLB_PAGE
(p8) mov cr.itir=r25 // change to default page-size for VHPT
#endif
/*
* Now compute and insert the TLB entry for the virtual page table. We never
* execute in a page table page so there is no need to set the exception deferral
* bit.
*/
adds r24=__DIRTY_BITS_NO_ED|_PAGE_PL_0|_PAGE_AR_RW,r23
;;
(p7) itc.d r24
;;
#ifdef CONFIG_SMP
/*
* Re-check L2 and L3 pagetable. If they changed, we may have received a ptc.g
* between reading the pagetable and the "itc". If so, flush the entry we
* inserted and retry.
*/
ld8 r25=[r21] // read L3 PTE again
ld8 r26=[r17] // read L2 entry again
;;
cmp.ne p6,p7=r26,r20 // did L2 entry change
mov r27=PAGE_SHIFT<<2
;;
(p6) ptc.l r22,r27 // purge PTE page translation
(p7) cmp.ne.or.andcm p6,p7=r25,r18 // did L3 PTE change
;;
(p6) ptc.l r16,r27 // purge translation
#endif
mov pr=r31,-1 // restore predicate registers
rfi
END(vhpt_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x0400 Entry 1 (size 64 bundles) ITLB (21)
ENTRY(itlb_miss)
DBG_FAULT(1)
/*
* The ITLB handler accesses the L3 PTE via the virtually mapped linear
* page table. If a nested TLB miss occurs, we switch into physical
* mode, walk the page table, and then re-execute the L3 PTE read
* and go on normally after that.
*/
mov r16=cr.ifa // get virtual address
mov r29=b0 // save b0
mov r31=pr // save predicates
itlb_fault:
mov r17=cr.iha // get virtual address of L3 PTE
movl r30=1f // load nested fault continuation point
;;
1: ld8 r18=[r17] // read L3 PTE
;;
mov b0=r29
tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared?
(p6) br.cond.spnt page_fault
;;
itc.i r18
;;
#ifdef CONFIG_SMP
ld8 r19=[r17] // read L3 PTE again and see if same
mov r20=PAGE_SHIFT<<2 // setup page size for purge
;;
cmp.ne p7,p0=r18,r19
;;
(p7) ptc.l r16,r20
#endif
mov pr=r31,-1
rfi
END(itlb_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x0800 Entry 2 (size 64 bundles) DTLB (9,48)
ENTRY(dtlb_miss)
DBG_FAULT(2)
/*
* The DTLB handler accesses the L3 PTE via the virtually mapped linear
* page table. If a nested TLB miss occurs, we switch into physical
* mode, walk the page table, and then re-execute the L3 PTE read
* and go on normally after that.
*/
mov r16=cr.ifa // get virtual address
mov r29=b0 // save b0
mov r31=pr // save predicates
dtlb_fault:
mov r17=cr.iha // get virtual address of L3 PTE
movl r30=1f // load nested fault continuation point
;;
1: ld8 r18=[r17] // read L3 PTE
;;
mov b0=r29
tbit.z p6,p0=r18,_PAGE_P_BIT // page present bit cleared?
(p6) br.cond.spnt page_fault
;;
itc.d r18
;;
#ifdef CONFIG_SMP
ld8 r19=[r17] // read L3 PTE again and see if same
mov r20=PAGE_SHIFT<<2 // setup page size for purge
;;
cmp.ne p7,p0=r18,r19
;;
(p7) ptc.l r16,r20
#endif
mov pr=r31,-1
rfi
END(dtlb_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x0c00 Entry 3 (size 64 bundles) Alt ITLB (19)
ENTRY(alt_itlb_miss)
DBG_FAULT(3)
mov r16=cr.ifa // get address that caused the TLB miss
movl r17=PAGE_KERNEL
mov r21=cr.ipsr
movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff)
mov r31=pr
;;
#ifdef CONFIG_DISABLE_VHPT
shr.u r22=r16,61 // get the region number into r21
;;
cmp.gt p8,p0=6,r22 // user mode
;;
(p8) thash r17=r16
;;
(p8) mov cr.iha=r17
(p8) mov r29=b0 // save b0
(p8) br.cond.dptk itlb_fault
#endif
extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl
and r19=r19,r16 // clear ed, reserved bits, and PTE control bits
shr.u r18=r16,57 // move address bit 61 to bit 4
;;
andcm r18=0x10,r18 // bit 4=~address-bit(61)
cmp.ne p8,p0=r0,r23 // psr.cpl != 0?
or r19=r17,r19 // insert PTE control bits into r19
;;
or r19=r19,r18 // set bit 4 (uncached) if the access was to region 6
(p8) br.cond.spnt page_fault
;;
itc.i r19 // insert the TLB entry
mov pr=r31,-1
rfi
END(alt_itlb_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x1000 Entry 4 (size 64 bundles) Alt DTLB (7,46)
ENTRY(alt_dtlb_miss)
DBG_FAULT(4)
mov r16=cr.ifa // get address that caused the TLB miss
movl r17=PAGE_KERNEL
mov r20=cr.isr
movl r19=(((1 << IA64_MAX_PHYS_BITS) - 1) & ~0xfff)
mov r21=cr.ipsr
mov r31=pr
;;
#ifdef CONFIG_DISABLE_VHPT
shr.u r22=r16,61 // get the region number into r21
;;
cmp.gt p8,p0=6,r22 // access to region 0-5
;;
(p8) thash r17=r16
;;
(p8) mov cr.iha=r17
(p8) mov r29=b0 // save b0
(p8) br.cond.dptk dtlb_fault
#endif
extr.u r23=r21,IA64_PSR_CPL0_BIT,2 // extract psr.cpl
and r22=IA64_ISR_CODE_MASK,r20 // get the isr.code field
tbit.nz p6,p7=r20,IA64_ISR_SP_BIT // is speculation bit on?
shr.u r18=r16,57 // move address bit 61 to bit 4
and r19=r19,r16 // clear ed, reserved bits, and PTE control bits
tbit.nz p9,p0=r20,IA64_ISR_NA_BIT // is non-access bit on?
;;
andcm r18=0x10,r18 // bit 4=~address-bit(61)
cmp.ne p8,p0=r0,r23
(p9) cmp.eq.or.andcm p6,p7=IA64_ISR_CODE_LFETCH,r22 // check isr.code field
(p8) br.cond.spnt page_fault
dep r21=-1,r21,IA64_PSR_ED_BIT,1
or r19=r19,r17 // insert PTE control bits into r19
;;
or r19=r19,r18 // set bit 4 (uncached) if the access was to region 6
(p6) mov cr.ipsr=r21
;;
(p7) itc.d r19 // insert the TLB entry
mov pr=r31,-1
rfi
END(alt_dtlb_miss)
//-----------------------------------------------------------------------------------
// call do_page_fault (predicates are in r31, psr.dt may be off, r16 is faulting address)
ENTRY(page_fault)
ssm psr.dt
;;
srlz.i
;;
SAVE_MIN_WITH_COVER
alloc r15=ar.pfs,0,0,3,0
mov out0=cr.ifa
mov out1=cr.isr
adds r3=8,r2 // set up second base pointer
;;
ssm psr.ic | PSR_DEFAULT_BITS
;;
srlz.i // guarantee that interruption collectin is on
;;
(p15) ssm psr.i // restore psr.i
movl r14=ia64_leave_kernel
;;
SAVE_REST
mov rp=r14
;;
adds out2=16,r12 // out2 = pointer to pt_regs
br.call.sptk.many b6=ia64_do_page_fault // ignore return address
END(page_fault)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x1400 Entry 5 (size 64 bundles) Data nested TLB (6,45)
ENTRY(nested_dtlb_miss)
/*
* In the absence of kernel bugs, we get here when the virtually mapped linear
* page table is accessed non-speculatively (e.g., in the Dirty-bit, Instruction
* Access-bit, or Data Access-bit faults). If the DTLB entry for the virtual page
* table is missing, a nested TLB miss fault is triggered and control is
* transferred to this point. When this happens, we lookup the pte for the
* faulting address by walking the page table in physical mode and return to the
* continuation point passed in register r30 (or call page_fault if the address is
* not mapped).
*
* Input: r16: faulting address
* r29: saved b0
* r30: continuation address
* r31: saved pr
*
* Output: r17: physical address of L3 PTE of faulting address
* r29: saved b0
* r30: continuation address
* r31: saved pr
*
* Clobbered: b0, r18, r19, r21, psr.dt (cleared)
*/
rsm psr.dt // switch to using physical data addressing
mov r19=IA64_KR(PT_BASE) // get the page table base address
shl r21=r16,3 // shift bit 60 into sign bit
;;
shr.u r17=r16,61 // get the region number into r17
;;
cmp.eq p6,p7=5,r17 // is faulting address in region 5?
shr.u r18=r16,PGDIR_SHIFT // get bits 33-63 of faulting address
;;
(p7) dep r17=r17,r19,(PAGE_SHIFT-3),3 // put region number bits in place
srlz.d
(p6) movl r19=__pa(swapper_pg_dir) // region 5 is rooted at swapper_pg_dir
(p6) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT
(p7) shr.u r21=r21,PGDIR_SHIFT+PAGE_SHIFT-3
;;
(p6) dep r17=r18,r19,3,(PAGE_SHIFT-3) // r17=PTA + IFA(33,42)*8
(p7) dep r17=r18,r17,3,(PAGE_SHIFT-6) // r17=PTA + (((IFA(61,63) << 7) | IFA(33,39))*8)
cmp.eq p7,p6=0,r21 // unused address bits all zeroes?
shr.u r18=r16,PMD_SHIFT // shift L2 index into position
;;
ld8 r17=[r17] // fetch the L1 entry (may be 0)
;;
(p7) cmp.eq p6,p7=r17,r0 // was L1 entry NULL?
dep r17=r18,r17,3,(PAGE_SHIFT-3) // compute address of L2 page table entry
;;
(p7) ld8 r17=[r17] // fetch the L2 entry (may be 0)
shr.u r19=r16,PAGE_SHIFT // shift L3 index into position
;;
(p7) cmp.eq.or.andcm p6,p7=r17,r0 // was L2 entry NULL?
dep r17=r19,r17,3,(PAGE_SHIFT-3) // compute address of L3 page table entry
(p6) br.cond.spnt page_fault
mov b0=r30
br.sptk.many b0 // return to continuation point
END(nested_dtlb_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x1800 Entry 6 (size 64 bundles) Instruction Key Miss (24)
ENTRY(ikey_miss)
DBG_FAULT(6)
FAULT(6)
END(ikey_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x1c00 Entry 7 (size 64 bundles) Data Key Miss (12,51)
ENTRY(dkey_miss)
DBG_FAULT(7)
FAULT(7)
END(dkey_miss)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x2000 Entry 8 (size 64 bundles) Dirty-bit (54)
ENTRY(dirty_bit)
DBG_FAULT(8)
/*
* What we do here is to simply turn on the dirty bit in the PTE. We need to
* update both the page-table and the TLB entry. To efficiently access the PTE,
* we address it through the virtual page table. Most likely, the TLB entry for
* the relevant virtual page table page is still present in the TLB so we can
* normally do this without additional TLB misses. In case the necessary virtual
* page table TLB entry isn't present, we take a nested TLB miss hit where we look
* up the physical address of the L3 PTE and then continue at label 1 below.
*/
mov r16=cr.ifa // get the address that caused the fault
movl r30=1f // load continuation point in case of nested fault
;;
thash r17=r16 // compute virtual address of L3 PTE
mov r29=b0 // save b0 in case of nested fault
mov r31=pr // save pr
#ifdef CONFIG_SMP
mov r28=ar.ccv // save ar.ccv
;;
1: ld8 r18=[r17]
;; // avoid RAW on r18
mov ar.ccv=r18 // set compare value for cmpxchg
or r25=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits
;;
cmpxchg8.acq r26=[r17],r25,ar.ccv
mov r24=PAGE_SHIFT<<2
;;
cmp.eq p6,p7=r26,r18
;;
(p6) itc.d r25 // install updated PTE
;;
ld8 r18=[r17] // read PTE again
;;
cmp.eq p6,p7=r18,r25 // is it same as the newly installed
;;
(p7) ptc.l r16,r24
mov b0=r29 // restore b0
mov ar.ccv=r28
#else
;;
1: ld8 r18=[r17]
;; // avoid RAW on r18
or r18=_PAGE_D|_PAGE_A,r18 // set the dirty and accessed bits
mov b0=r29 // restore b0
;;
st8 [r17]=r18 // store back updated PTE
itc.d r18 // install updated PTE
#endif
mov pr=r31,-1 // restore pr
rfi
END(idirty_bit)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x2400 Entry 9 (size 64 bundles) Instruction Access-bit (27)
ENTRY(iaccess_bit)
DBG_FAULT(9)
// Like Entry 8, except for instruction access
mov r16=cr.ifa // get the address that caused the fault
movl r30=1f // load continuation point in case of nested fault
mov r31=pr // save predicates
#ifdef CONFIG_ITANIUM
/*
* Erratum 10 (IFA may contain incorrect address) has "NoFix" status.
*/
mov r17=cr.ipsr
;;
mov r18=cr.iip
tbit.z p6,p0=r17,IA64_PSR_IS_BIT // IA64 instruction set?
;;
(p6) mov r16=r18 // if so, use cr.iip instead of cr.ifa
#endif /* CONFIG_ITANIUM */
;;
thash r17=r16 // compute virtual address of L3 PTE
mov r29=b0 // save b0 in case of nested fault)
#ifdef CONFIG_SMP
mov r28=ar.ccv // save ar.ccv
;;
1: ld8 r18=[r17]
;;
mov ar.ccv=r18 // set compare value for cmpxchg
or r25=_PAGE_A,r18 // set the accessed bit
;;
cmpxchg8.acq r26=[r17],r25,ar.ccv
mov r24=PAGE_SHIFT<<2
;;
cmp.eq p6,p7=r26,r18
;;
(p6) itc.i r25 // install updated PTE
;;
ld8 r18=[r17] // read PTE again
;;
cmp.eq p6,p7=r18,r25 // is it same as the newly installed
;;
(p7) ptc.l r16,r24
mov b0=r29 // restore b0
mov ar.ccv=r28
#else /* !CONFIG_SMP */
;;
1: ld8 r18=[r17]
;;
or r18=_PAGE_A,r18 // set the accessed bit
mov b0=r29 // restore b0
;;
st8 [r17]=r18 // store back updated PTE
itc.i r18 // install updated PTE
#endif /* !CONFIG_SMP */
mov pr=r31,-1
rfi
END(iaccess_bit)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x2800 Entry 10 (size 64 bundles) Data Access-bit (15,55)
ENTRY(daccess_bit)
DBG_FAULT(10)
// Like Entry 8, except for data access
mov r16=cr.ifa // get the address that caused the fault
movl r30=1f // load continuation point in case of nested fault
;;
thash r17=r16 // compute virtual address of L3 PTE
mov r31=pr
mov r29=b0 // save b0 in case of nested fault)
#ifdef CONFIG_SMP
mov r28=ar.ccv // save ar.ccv
;;
1: ld8 r18=[r17]
;; // avoid RAW on r18
mov ar.ccv=r18 // set compare value for cmpxchg
or r25=_PAGE_A,r18 // set the dirty bit
;;
cmpxchg8.acq r26=[r17],r25,ar.ccv
mov r24=PAGE_SHIFT<<2
;;
cmp.eq p6,p7=r26,r18
;;
(p6) itc.d r25 // install updated PTE
;;
ld8 r18=[r17] // read PTE again
;;
cmp.eq p6,p7=r18,r25 // is it same as the newly installed
;;
(p7) ptc.l r16,r24
mov ar.ccv=r28
#else
;;
1: ld8 r18=[r17]
;; // avoid RAW on r18
or r18=_PAGE_A,r18 // set the accessed bit
;;
st8 [r17]=r18 // store back updated PTE
itc.d r18 // install updated PTE
#endif
mov b0=r29 // restore b0
mov pr=r31,-1
rfi
END(daccess_bit)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x2c00 Entry 11 (size 64 bundles) Break instruction (33)
ENTRY(break_fault)
/* System call entry/exit only saves/restores part of pt_regs, i.e. no scratch registers
* are saved/restored except r15 which contains syscall number and needs to be saved in the
* entry. This optimization is based on the assumption that applications only call glibc
* system call interface which doesn't use scratch registers after break into kernel.
* Registers saved/restored during system call entry/exit are listed as follows:
*
* Registers to be saved & restored:
* CR registers: cr_ipsr, cr_iip, cr_ifs
* AR registers: ar_unat, ar_pfs, ar_rsc, ar_rnat, ar_bspstore, ar_fpsr
* others: pr, b0, loadrs, r1, r12, r13, r15
* Registers to be restored only:
* r8~r11: output value from the system call.
*
* During system call exit, scratch registers (including r15) are modified/cleared to
* prevent leaking bits from kernel to user level.
*/
DBG_FAULT(11)
mov r16=cr.iim
mov r17=__IA64_BREAK_SYSCALL
mov r31=pr // prepare to save predicates
;;
cmp.eq p0,p7=r16,r17 // is this a system call? (p7 <- false, if so)
(p7) br.cond.spnt non_syscall
mov r21=ar.fpsr;
mov r29=cr.ipsr;
mov r20=r1;
mov r25=ar.unat;
mov r27=ar.rsc;
mov r26=ar.pfs;
mov r28=cr.iip;
mov r1=IA64_KR(CURRENT); /* r1 = current (physical) */
;;
invala;
extr.u r16=r29,32,2; /* extract psr.cpl */
;;
cmp.eq pKern,pUser=r0,r16; /* are we in kernel mode already? (psr.cpl==0) */
/* switch from user to kernel RBS: */
;;
mov r30=r0
MINSTATE_START_SAVE_MIN_VIRT
br.call.sptk.many b7=ia64_syscall_setup
;;
mov r3=255
adds r15=-1024,r15 // r15 contains the syscall number---subtract 1024
adds r2=IA64_TASK_PTRACE_OFFSET,r13 // r2 = ¤t->ptrace
;;
cmp.geu p6,p7=r3,r15 // (syscall > 0 && syscall <= 1024+255) ?
movl r16=sys_call_table
;;
(p6) shladd r16=r15,3,r16
movl r15=ia64_ret_from_syscall
(p7) adds r16=(__NR_ni_syscall-1024)*8,r16 // force __NR_ni_syscall
;;
ld8 r16=[r16] // load address of syscall entry point
mov rp=r15 // set the real return addr
;;
ld8 r2=[r2] // r2 = current->ptrace
mov b6=r16
// arrange things so we skip over break instruction when returning:
adds r16=PT(CR_IPSR)+16,sp // get pointer to cr_ipsr
adds r17=PT(CR_IIP)+16,sp // get pointer to cr_iip
;;
ld8 r18=[r16] // fetch cr_ipsr
tbit.z p8,p0=r2,PT_TRACESYS_BIT // (current->ptrace & PF_TRACESYS) == 0?
;;
ld8 r19=[r17] // fetch cr_iip
extr.u r20=r18,41,2 // extract ei field
;;
cmp.eq p6,p7=2,r20 // isr.ei==2?
adds r19=16,r19 // compute address of next bundle
;;
(p6) mov r20=0 // clear ei to 0
(p7) adds r20=1,r20 // increment ei to next slot
;;
(p6) st8 [r17]=r19 // store new cr.iip if cr.isr.ei wrapped around
dep r18=r20,r18,41,2 // insert new ei into cr.isr
;;
st8 [r16]=r18 // store new value for cr.isr
(p8) br.call.sptk.many b6=b6 // ignore this return addr
br.cond.sptk ia64_trace_syscall
// NOT REACHED
END(break_fault)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x3000 Entry 12 (size 64 bundles) External Interrupt (4)
ENTRY(interrupt)
DBG_FAULT(12)
mov r31=pr // prepare to save predicates
;;
SAVE_MIN_WITH_COVER // uses r31; defines r2 and r3
ssm psr.ic | PSR_DEFAULT_BITS
;;
adds r3=8,r2 // set up second base pointer for SAVE_REST
srlz.i // ensure everybody knows psr.ic is back on
;;
SAVE_REST
;;
alloc r14=ar.pfs,0,0,2,0 // must be first in an insn group
mov out0=cr.ivr // pass cr.ivr as first arg
add out1=16,sp // pass pointer to pt_regs as second arg
;;
srlz.d // make sure we see the effect of cr.ivr
movl r14=ia64_leave_kernel
;;
mov rp=r14
br.call.sptk.many b6=ia64_handle_irq
END(interrupt)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x3400 Entry 13 (size 64 bundles) Reserved
DBG_FAULT(13)
FAULT(13)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x3800 Entry 14 (size 64 bundles) Reserved
DBG_FAULT(14)
FAULT(14)
/*
* There is no particular reason for this code to be here, other than that
* there happens to be space here that would go unused otherwise. If this
* fault ever gets "unreserved", simply moved the following code to a more
* suitable spot...
*
* ia64_syscall_setup() is a separate subroutine so that it can
* allocate stacked registers so it can safely demine any
* potential NaT values from the input registers.
*
* On entry:
* - executing on bank 0 or bank 1 register set (doesn't matter)
* - r1: stack pointer
* - r2: current task pointer
* - r3: preserved
* - r12: original contents (sp to be saved)
* - r13: original contents (tp to be saved)
* - r15: original contents (syscall # to be saved)
* - r18: saved bsp (after switching to kernel stack)
* - r20: saved r1 (gp)
* - r21: saved ar.fpsr
* - r22: kernel's register backing store base (krbs_base)
* - r23: saved ar.bspstore
* - r24: saved ar.rnat
* - r25: saved ar.unat
* - r26: saved ar.pfs
* - r27: saved ar.rsc
* - r28: saved cr.iip
* - r29: saved cr.ipsr
* - r31: saved pr
* - b0: original contents (to be saved)
* On exit:
* - executing on bank 1 registers
* - psr.ic enabled, interrupts restored
* - r1: kernel's gp
* - r3: preserved (same as on entry)
* - r12: points to kernel stack
* - r13: points to current task
* - p15: TRUE if interrupts need to be re-enabled
* - ar.fpsr: set to kernel settings
*/
ENTRY(ia64_syscall_setup)
alloc r19=ar.pfs,8,0,0,0
tnat.nz p8,p0=in0
add r16=PT(CR_IPSR),r1 /* initialize first base pointer */
;;
st8 [r16]=r29,16; /* save cr.ipsr */
adds r17=PT(CR_IIP),r1; /* initialize second base pointer */
;;
(p8) mov in0=-1
tnat.nz p9,p0=in1
st8 [r17]=r28,16; /* save cr.iip */
mov r28=b0;
(pKern) mov r18=r0; /* make sure r18 isn't NaT */
;;
(p9) mov in1=-1
tnat.nz p10,p0=in2
st8 [r16]=r30,16; /* save cr.ifs */
st8 [r17]=r25,16; /* save ar.unat */
(pUser) sub r18=r18,r22; /* r18=RSE.ndirty*8 */
;;
st8 [r16]=r26,16; /* save ar.pfs */
st8 [r17]=r27,16; /* save ar.rsc */
tbit.nz p15,p0=r29,IA64_PSR_I_BIT
;; /* avoid RAW on r16 & r17 */
(p10) mov in2=-1
nop.f 0
tnat.nz p11,p0=in3
(pKern) adds r16=16,r16; /* skip over ar_rnat field */
(pKern) adds r17=16,r17; /* skip over ar_bspstore field */
shl r18=r18,16; /* compute ar.rsc to be used for "loadrs" */
;;
(p11) mov in3=-1
tnat.nz p12,p0=in4
(pUser) st8 [r16]=r24,16; /* save ar.rnat */
(pUser) st8 [r17]=r23,16; /* save ar.bspstore */
;;
(p12) mov in4=-1
tnat.nz p13,p0=in5
st8 [r16]=r31,16; /* save predicates */
st8 [r17]=r28,16; /* save b0 */
dep r14=-1,r0,61,3;
;;
st8 [r16]=r18,16; /* save ar.rsc value for "loadrs" */
st8.spill [r17]=r20,16; /* save original r1 */
adds r2=IA64_PT_REGS_R16_OFFSET,r1;
;;
(p13) mov in5=-1
tnat.nz p14,p0=in6
.mem.offset 0,0; st8.spill [r16]=r12,16;
.mem.offset 8,0; st8.spill [r17]=r13,16;
cmp.eq pNonSys,pSys=r0,r0 /* initialize pSys=0, pNonSys=1 */
;;
(p14) mov in6=-1
tnat.nz p8,p0=in7
.mem.offset 0,0; st8 [r16]=r21,16; /* ar.fpsr */
.mem.offset 8,0; st8.spill [r17]=r15,16;
adds r12=-16,r1; /* switch to kernel memory stack (with 16 bytes of scratch) */
;;
mov r13=IA64_KR(CURRENT); /* establish `current' */
movl r1=__gp; /* establish kernel global pointer */
;;
MINSTATE_END_SAVE_MIN_VIRT
tnat.nz p9,p0=r15
(p8) mov in7=-1
ssm psr.ic | PSR_DEFAULT_BITS
movl r17=FPSR_DEFAULT
adds r8=(IA64_PT_REGS_R8_OFFSET-IA64_PT_REGS_R16_OFFSET),r2
;;
srlz.i // guarantee that interruption collection is on
cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0
(p9) mov r15=-1
(p15) ssm psr.i // restore psr.i
mov.m ar.fpsr=r17
stf8 [r8]=f1 // ensure pt_regs.r8 != 0 (see handle_syscall_error)
br.ret.sptk.many b7
END(ia64_syscall_setup)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x3c00 Entry 15 (size 64 bundles) Reserved
DBG_FAULT(15)
FAULT(15)
/*
* Squatting in this space ...
*
* This special case dispatcher for illegal operation faults allows preserved
* registers to be modified through a callback function (asm only) that is handed
* back from the fault handler in r8. Up to three arguments can be passed to the
* callback function by returning an aggregate with the callback as its first
* element, followed by the arguments.
*/
ENTRY(dispatch_illegal_op_fault)
SAVE_MIN_WITH_COVER
ssm psr.ic | PSR_DEFAULT_BITS
;;
srlz.i // guarantee that interruption collection is on
;;
(p15) ssm psr.i // restore psr.i
adds r3=8,r2 // set up second base pointer for SAVE_REST
;;
alloc r14=ar.pfs,0,0,1,0 // must be first in insn group
mov out0=ar.ec
;;
SAVE_REST
;;
br.call.sptk.many rp=ia64_illegal_op_fault
.ret0: ;;
alloc r14=ar.pfs,0,0,3,0 // must be first in insn group
mov out0=r9
mov out1=r10
mov out2=r11
movl r15=ia64_leave_kernel
;;
mov rp=r15
mov b6=r8
;;
cmp.ne p6,p0=0,r8
(p6) br.call.dpnt.many b6=b6 // call returns to ia64_leave_kernel
br.sptk.many ia64_leave_kernel
END(dispatch_illegal_op_fault)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x4000 Entry 16 (size 64 bundles) Reserved
DBG_FAULT(16)
FAULT(16)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x4400 Entry 17 (size 64 bundles) Reserved
DBG_FAULT(17)
FAULT(17)
ENTRY(non_syscall)
SAVE_MIN_WITH_COVER
// There is no particular reason for this code to be here, other than that
// there happens to be space here that would go unused otherwise. If this
// fault ever gets "unreserved", simply moved the following code to a more
// suitable spot...
alloc r14=ar.pfs,0,0,2,0
mov out0=cr.iim
add out1=16,sp
adds r3=8,r2 // set up second base pointer for SAVE_REST
ssm psr.ic | PSR_DEFAULT_BITS
;;
srlz.i // guarantee that interruption collection is on
;;
(p15) ssm psr.i // restore psr.i
movl r15=ia64_leave_kernel
;;
SAVE_REST
mov rp=r15
;;
br.call.sptk.many b6=ia64_bad_break // avoid WAW on CFM and ignore return addr
END(non_syscall)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x4800 Entry 18 (size 64 bundles) Reserved
DBG_FAULT(18)
FAULT(18)
/*
* There is no particular reason for this code to be here, other than that
* there happens to be space here that would go unused otherwise. If this
* fault ever gets "unreserved", simply moved the following code to a more
* suitable spot...
*/
ENTRY(dispatch_unaligned_handler)
SAVE_MIN_WITH_COVER
;;
alloc r14=ar.pfs,0,0,2,0 // now it's safe (must be first in insn group!)
mov out0=cr.ifa
adds out1=16,sp
ssm psr.ic | PSR_DEFAULT_BITS
;;
srlz.i // guarantee that interruption collection is on
;;
(p15) ssm psr.i // restore psr.i
adds r3=8,r2 // set up second base pointer
;;
SAVE_REST
movl r14=ia64_leave_kernel
;;
mov rp=r14
br.sptk.many ia64_prepare_handle_unaligned
END(dispatch_unaligned_handler)
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x4c00 Entry 19 (size 64 bundles) Reserved
DBG_FAULT(19)
FAULT(19)
/*
* There is no particular reason for this code to be here, other than that
* there happens to be space here that would go unused otherwise. If this
* fault ever gets "unreserved", simply moved the following code to a more
* suitable spot...
*/
ENTRY(dispatch_to_fault_handler)
/*
* Input:
* psr.ic: off
* r19: fault vector number (e.g., 24 for General Exception)
* r31: contains saved predicates (pr)
*/
SAVE_MIN_WITH_COVER_R19
alloc r14=ar.pfs,0,0,5,0
mov out0=r15
mov out1=cr.isr
mov out2=cr.ifa
mov out3=cr.iim
mov out4=cr.itir
;;
ssm psr.ic | PSR_DEFAULT_BITS
;;
srlz.i // guarantee that interruption collection is on
;;
(p15) ssm psr.i // restore psr.i
adds r3=8,r2 // set up second base pointer for SAVE_REST
;;
SAVE_REST
movl r14=ia64_leave_kernel
;;
mov rp=r14
br.call.sptk.many b6=ia64_fault
END(dispatch_to_fault_handler)
//
// --- End of long entries, Beginning of short entries
//
.align 1024
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5000 Entry 20 (size 16 bundles) Page Not Present (10,22,49)
ENTRY(page_not_present)
DBG_FAULT(20)
mov r16=cr.ifa
rsm psr.dt
/*
* The Linux page fault handler doesn't expect non-present pages to be in
* the TLB. Flush the existing entry now, so we meet that expectation.
*/
mov r17=PAGE_SHIFT<<2
;;
ptc.l r16,r17
;;
mov r31=pr
srlz.d
br.sptk.many page_fault
END(page_not_present)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5100 Entry 21 (size 16 bundles) Key Permission (13,25,52)
ENTRY(key_permission)
DBG_FAULT(21)
mov r16=cr.ifa
rsm psr.dt
mov r31=pr
;;
srlz.d
br.sptk.many page_fault
END(key_permission)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5200 Entry 22 (size 16 bundles) Instruction Access Rights (26)
ENTRY(iaccess_rights)
DBG_FAULT(22)
mov r16=cr.ifa
rsm psr.dt
mov r31=pr
;;
srlz.d
br.sptk.many page_fault
END(iaccess_rights)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5300 Entry 23 (size 16 bundles) Data Access Rights (14,53)
ENTRY(daccess_rights)
DBG_FAULT(23)
mov r16=cr.ifa
rsm psr.dt
mov r31=pr
;;
srlz.d
br.sptk.many page_fault
END(daccess_rights)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5400 Entry 24 (size 16 bundles) General Exception (5,32,34,36,38,39)
ENTRY(general_exception)
DBG_FAULT(24)
mov r16=cr.isr
mov r31=pr
;;
cmp4.eq p6,p0=0,r16
(p6) br.sptk.many dispatch_illegal_op_fault
;;
mov r19=24 // fault number
br.sptk.many dispatch_to_fault_handler
END(general_exception)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5500 Entry 25 (size 16 bundles) Disabled FP-Register (35)
ENTRY(disabled_fp_reg)
DBG_FAULT(25)
rsm psr.dfh // ensure we can access fph
;;
srlz.d
mov r31=pr
mov r19=25
br.sptk.many dispatch_to_fault_handler
END(disabled_fp_reg)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5600 Entry 26 (size 16 bundles) Nat Consumption (11,23,37,50)
ENTRY(nat_consumption)
DBG_FAULT(26)
FAULT(26)
END(nat_consumption)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5700 Entry 27 (size 16 bundles) Speculation (40)
ENTRY(speculation_vector)
DBG_FAULT(27)
/*
* A [f]chk.[as] instruction needs to take the branch to the recovery code but
* this part of the architecture is not implemented in hardware on some CPUs, such
* as Itanium. Thus, in general we need to emulate the behavior. IIM contains
* the relative target (not yet sign extended). So after sign extending it we
* simply add it to IIP. We also need to reset the EI field of the IPSR to zero,
* i.e., the slot to restart into.
*
* cr.imm contains zero_ext(imm21)
*/
mov r18=cr.iim
;;
mov r17=cr.iip
shl r18=r18,43 // put sign bit in position (43=64-21)
;;
mov r16=cr.ipsr
shr r18=r18,39 // sign extend (39=43-4)
;;
add r17=r17,r18 // now add the offset
;;
mov cr.iip=r17
dep r16=0,r16,41,2 // clear EI
;;
mov cr.ipsr=r16
;;
rfi // and go back
END(speculation_vector)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5800 Entry 28 (size 16 bundles) Reserved
DBG_FAULT(28)
FAULT(28)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5900 Entry 29 (size 16 bundles) Debug (16,28,56)
ENTRY(debug_vector)
DBG_FAULT(29)
FAULT(29)
END(debug_vector)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5a00 Entry 30 (size 16 bundles) Unaligned Reference (57)
ENTRY(unaligned_access)
DBG_FAULT(30)
mov r16=cr.ipsr
mov r31=pr // prepare to save predicates
;;
br.sptk.many dispatch_unaligned_handler
END(unaligned_access)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5b00 Entry 31 (size 16 bundles) Unsupported Data Reference (57)
DBG_FAULT(31)
FAULT(31)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5c00 Entry 32 (size 16 bundles) Floating-Point Fault (64)
DBG_FAULT(32)
FAULT(32)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5d00 Entry 33 (size 16 bundles) Floating Point Trap (66)
DBG_FAULT(33)
FAULT(33)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5e00 Entry 34 (size 16 bundles) Lower Privilege Tranfer Trap (66)
DBG_FAULT(34)
FAULT(34)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x5f00 Entry 35 (size 16 bundles) Taken Branch Trap (68)
DBG_FAULT(35)
FAULT(35)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6000 Entry 36 (size 16 bundles) Single Step Trap (69)
DBG_FAULT(36)
FAULT(36)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6100 Entry 37 (size 16 bundles) Reserved
DBG_FAULT(37)
FAULT(37)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6200 Entry 38 (size 16 bundles) Reserved
DBG_FAULT(38)
FAULT(38)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6300 Entry 39 (size 16 bundles) Reserved
DBG_FAULT(39)
FAULT(39)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6400 Entry 40 (size 16 bundles) Reserved
DBG_FAULT(40)
FAULT(40)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6500 Entry 41 (size 16 bundles) Reserved
DBG_FAULT(41)
FAULT(41)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6600 Entry 42 (size 16 bundles) Reserved
DBG_FAULT(42)
FAULT(42)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6700 Entry 43 (size 16 bundles) Reserved
DBG_FAULT(43)
FAULT(43)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6800 Entry 44 (size 16 bundles) Reserved
DBG_FAULT(44)
FAULT(44)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6900 Entry 45 (size 16 bundles) IA-32 Exeception (17,18,29,41,42,43,44,58,60,61,62,72,73,75,76,77)
ENTRY(ia32_exception)
DBG_FAULT(45)
FAULT(45)
END(ia32_exception)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6a00 Entry 46 (size 16 bundles) IA-32 Intercept (30,31,59,70,71)
ENTRY(ia32_intercept)
DBG_FAULT(46)
#ifdef CONFIG_IA32_SUPPORT
mov r31=pr
mov r16=cr.isr
;;
extr.u r17=r16,16,8 // get ISR.code
mov r18=ar.eflag
mov r19=cr.iim // old eflag value
;;
cmp.ne p6,p0=2,r17
(p6) br.cond.spnt 1f // not a system flag fault
xor r16=r18,r19
;;
extr.u r17=r16,18,1 // get the eflags.ac bit
;;
cmp.eq p6,p0=0,r17
(p6) br.cond.spnt 1f // eflags.ac bit didn't change
;;
mov pr=r31,-1 // restore predicate registers
rfi
1:
#endif // CONFIG_IA32_SUPPORT
FAULT(46)
END(ia32_intercept)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6b00 Entry 47 (size 16 bundles) IA-32 Interrupt (74)
ENTRY(ia32_interrupt)
DBG_FAULT(47)
#ifdef CONFIG_IA32_SUPPORT
mov r31=pr
br.sptk.many dispatch_to_ia32_handler
#else
FAULT(47)
#endif
END(ia32_interrupt)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6c00 Entry 48 (size 16 bundles) Reserved
DBG_FAULT(48)
FAULT(48)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6d00 Entry 49 (size 16 bundles) Reserved
DBG_FAULT(49)
FAULT(49)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6e00 Entry 50 (size 16 bundles) Reserved
DBG_FAULT(50)
FAULT(50)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x6f00 Entry 51 (size 16 bundles) Reserved
DBG_FAULT(51)
FAULT(51)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7000 Entry 52 (size 16 bundles) Reserved
DBG_FAULT(52)
FAULT(52)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7100 Entry 53 (size 16 bundles) Reserved
DBG_FAULT(53)
FAULT(53)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7200 Entry 54 (size 16 bundles) Reserved
DBG_FAULT(54)
FAULT(54)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7300 Entry 55 (size 16 bundles) Reserved
DBG_FAULT(55)
FAULT(55)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7400 Entry 56 (size 16 bundles) Reserved
DBG_FAULT(56)
FAULT(56)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7500 Entry 57 (size 16 bundles) Reserved
DBG_FAULT(57)
FAULT(57)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7600 Entry 58 (size 16 bundles) Reserved
DBG_FAULT(58)
FAULT(58)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7700 Entry 59 (size 16 bundles) Reserved
DBG_FAULT(59)
FAULT(59)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7800 Entry 60 (size 16 bundles) Reserved
DBG_FAULT(60)
FAULT(60)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7900 Entry 61 (size 16 bundles) Reserved
DBG_FAULT(61)
FAULT(61)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7a00 Entry 62 (size 16 bundles) Reserved
DBG_FAULT(62)
FAULT(62)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7b00 Entry 63 (size 16 bundles) Reserved
DBG_FAULT(63)
FAULT(63)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7c00 Entry 64 (size 16 bundles) Reserved
DBG_FAULT(64)
FAULT(64)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7d00 Entry 65 (size 16 bundles) Reserved
DBG_FAULT(65)
FAULT(65)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7e00 Entry 66 (size 16 bundles) Reserved
DBG_FAULT(66)
FAULT(66)
.align 256
/////////////////////////////////////////////////////////////////////////////////////////
// 0x7f00 Entry 67 (size 16 bundles) Reserved
DBG_FAULT(67)
FAULT(67)
#ifdef CONFIG_IA32_SUPPORT
/*
* There is no particular reason for this code to be here, other than that
* there happens to be space here that would go unused otherwise. If this
* fault ever gets "unreserved", simply moved the following code to a more
* suitable spot...
*/
// IA32 interrupt entry point
ENTRY(dispatch_to_ia32_handler)
SAVE_MIN
;;
mov r14=cr.isr
ssm psr.ic | PSR_DEFAULT_BITS
;;
srlz.i // guarantee that interruption collection is on
;;
(p15) ssm psr.i
adds r3=8,r2 // Base pointer for SAVE_REST
;;
SAVE_REST
;;
mov r15=0x80
shr r14=r14,16 // Get interrupt number
;;
cmp.ne p6,p0=r14,r15
(p6) br.call.dpnt.many b6=non_ia32_syscall
adds r14=IA64_PT_REGS_R8_OFFSET + 16,sp // 16 byte hole per SW conventions
adds r15=IA64_PT_REGS_R1_OFFSET + 16,sp
;;
cmp.eq pSys,pNonSys=r0,r0 // set pSys=1, pNonSys=0
ld8 r8=[r14] // get r8
;;
st8 [r15]=r8 // save original EAX in r1 (IA32 procs don't use the GP)
;;
alloc r15=ar.pfs,0,0,6,0 // must first in an insn group
;;
ld4 r8=[r14],8 // r8 == eax (syscall number)
mov r15=230 // number of entries in ia32 system call table
;;
cmp.ltu.unc p6,p7=r8,r15
ld4 out1=[r14],8 // r9 == ecx
;;
ld4 out2=[r14],8 // r10 == edx
;;
ld4 out0=[r14] // r11 == ebx
adds r14=(IA64_PT_REGS_R13_OFFSET) + 16,sp
;;
ld4 out5=[r14],PT(R14)-PT(R13) // r13 == ebp
;;
ld4 out3=[r14],PT(R15)-PT(R14) // r14 == esi
adds r2=IA64_TASK_PTRACE_OFFSET,r13 // r2 = ¤t->ptrace
;;
ld4 out4=[r14] // r15 == edi
movl r16=ia32_syscall_table
;;
(p6) shladd r16=r8,3,r16 // force ni_syscall if not valid syscall number
ld8 r2=[r2] // r2 = current->ptrace
;;
ld8 r16=[r16]
tbit.z p8,p0=r2,PT_TRACESYS_BIT // (current->ptrace & PT_TRACESYS) == 0?
;;
mov b6=r16
movl r15=ia32_ret_from_syscall
;;
mov rp=r15
(p8) br.call.sptk.many b6=b6
br.cond.sptk ia32_trace_syscall
non_ia32_syscall:
alloc r15=ar.pfs,0,0,2,0
mov out0=r14 // interrupt #
add out1=16,sp // pointer to pt_regs
;; // avoid WAW on CFM
br.call.sptk.many rp=ia32_bad_interrupt
.ret1: movl r15=ia64_leave_kernel
;;
mov rp=r15
br.ret.sptk.many rp
END(dispatch_to_ia32_handler)
#endif /* CONFIG_IA32_SUPPORT */