OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [kernel/] [pci.c] - Rev 1275

Go to most recent revision | Compare with Previous | Blame | View Log

/*
 * pci.c - Low-Level PCI Access in IA-64
 *
 * Derived from bios32.c of i386 tree.
 * Copyright (C) 2002, 2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *	Bjorn Helgaas <bjorn_helgaas@hp.com>
 *
 * Note: Above list of copyright holders is incomplete...
 */
#include <linux/config.h>
 
#include <linux/acpi.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
 
#include <asm/machvec.h>
#include <asm/mca.h>
#include <asm/page.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/io.h>
 
#include <asm/sal.h>
 
 
#ifdef CONFIG_SMP
# include <asm/smp.h>
#endif
#include <asm/irq.h>
 
 
#undef DEBUG
#define DEBUG
 
#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
 
struct pci_fixup pcibios_fixups[1];
 
struct pci_ops *pci_root_ops;
 
int (*pci_config_read)(int seg, int bus, int dev, int fn, int reg, int len, u32 *value);
int (*pci_config_write)(int seg, int bus, int dev, int fn, int reg, int len, u32 value);
 
 
/*
 * Low-level SAL-based PCI configuration access functions. Note that SAL
 * calls are already serialized (via sal_lock), so we don't need another
 * synchronization mechanism here.
 */
 
#define PCI_SAL_ADDRESS(seg, bus, dev, fn, reg) \
	((u64)(seg << 24) | (u64)(bus << 16) | \
	 (u64)(dev << 11) | (u64)(fn << 8) | (u64)(reg))
 
static int
pci_sal_read (int seg, int bus, int dev, int fn, int reg, int len, u32 *value)
{
	int result = 0;
	u64 data = 0;
 
	if (!value || (seg > 255) || (bus > 255) || (dev > 31) || (fn > 7) || (reg > 255))
		return -EINVAL;
 
	result = ia64_sal_pci_config_read(PCI_SAL_ADDRESS(seg, bus, dev, fn, reg), len, &data);
 
	*value = (u32) data;
 
	return result;
}
 
static int
pci_sal_write (int seg, int bus, int dev, int fn, int reg, int len, u32 value)
{
	if ((seg > 255) || (bus > 255) || (dev > 31) || (fn > 7) || (reg > 255))
		return -EINVAL;
 
	return ia64_sal_pci_config_write(PCI_SAL_ADDRESS(seg, bus, dev, fn, reg), len, value);
}
 
 
static int
pci_sal_read_config_byte (struct pci_dev *dev, int where, u8 *value)
{
	int result = 0;
	u32 data = 0;
 
	if (!value)
		return -EINVAL;
 
	result = pci_sal_read(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn),
			      PCI_FUNC(dev->devfn), where, 1, &data);
 
	*value = (u8) data;
 
	return result;
}
 
static int
pci_sal_read_config_word (struct pci_dev *dev, int where, u16 *value)
{
	int result = 0;
	u32 data = 0;
 
	if (!value)
		return -EINVAL;
 
	result = pci_sal_read(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn),
			      PCI_FUNC(dev->devfn), where, 2, &data);
 
	*value = (u16) data;
 
	return result;
}
 
static int
pci_sal_read_config_dword (struct pci_dev *dev, int where, u32 *value)
{
	if (!value)
		return -EINVAL;
 
	return pci_sal_read(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn),
			    PCI_FUNC(dev->devfn), where, 4, value);
}
 
static int
pci_sal_write_config_byte (struct pci_dev *dev, int where, u8 value)
{
	return pci_sal_write(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn),
			     PCI_FUNC(dev->devfn), where, 1, value);
}
 
static int
pci_sal_write_config_word (struct pci_dev *dev, int where, u16 value)
{
	return pci_sal_write(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn),
			     PCI_FUNC(dev->devfn), where, 2, value);
}
 
static int
pci_sal_write_config_dword (struct pci_dev *dev, int where, u32 value)
{
	return pci_sal_write(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn),
			     PCI_FUNC(dev->devfn), where, 4, value);
}
 
struct pci_ops pci_sal_ops = {
	pci_sal_read_config_byte,
	pci_sal_read_config_word,
	pci_sal_read_config_dword,
	pci_sal_write_config_byte,
	pci_sal_write_config_word,
	pci_sal_write_config_dword
};
 
 
/*
 * Initialization. Uses the SAL interface
 */
 
static struct pci_controller *
alloc_pci_controller (int seg)
{
	struct pci_controller *controller;
 
	controller = kmalloc(sizeof(*controller), GFP_KERNEL);
	if (!controller)
		return NULL;
 
	memset(controller, 0, sizeof(*controller));
	controller->segment = seg;
	return controller;
}
 
static struct pci_bus *
scan_root_bus (int bus, struct pci_ops *ops, void *sysdata)
{
	struct pci_bus *b;
 
	/*
	 * We know this is a new root bus we haven't seen before, so
	 * scan it, even if we've seen the same bus number in a different
	 * segment.
	 */
	b = kmalloc(sizeof(*b), GFP_KERNEL);
	if (!b)
		return NULL;
 
	memset(b, 0, sizeof(*b));
	INIT_LIST_HEAD(&b->children);
	INIT_LIST_HEAD(&b->devices);
 
	list_add_tail(&b->node, &pci_root_buses);
 
	b->number = b->secondary = bus;
	b->resource[0] = &ioport_resource;
	b->resource[1] = &iomem_resource;
 
	b->sysdata = sysdata;
	b->ops = ops;
	b->subordinate = pci_do_scan_bus(b);
 
	return b;
}
 
static int
alloc_resource (char *name, struct resource *root, unsigned long start, unsigned long end, unsigned long flags)
{
	struct resource *res;
 
	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return -ENOMEM;
 
	memset(res, 0, sizeof(*res));
	res->name = name;
	res->start = start;
	res->end = end;
	res->flags = flags;
 
	if (request_resource(root, res))
		return -EBUSY;
 
	return 0;
}
 
static u64
add_io_space (struct acpi_resource_address64 *addr)
{
	u64 offset;
	int sparse = 0;
	int i;
 
	if (addr->address_translation_offset == 0)
		return IO_SPACE_BASE(0);	/* part of legacy IO space */
 
	if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
		sparse = 1;
 
	offset = (u64) ioremap(addr->address_translation_offset, 0);
	for (i = 0; i < num_io_spaces; i++)
		if (io_space[i].mmio_base == offset &&
		    io_space[i].sparse == sparse)
			return IO_SPACE_BASE(i);
 
	if (num_io_spaces == MAX_IO_SPACES) {
		printk("Too many IO port spaces\n");
		return ~0;
	}
 
	i = num_io_spaces++;
	io_space[i].mmio_base = offset;
	io_space[i].sparse = sparse;
 
	return IO_SPACE_BASE(i);
}
 
static acpi_status
count_window (struct acpi_resource *resource, void *data)
{
	unsigned int *windows = (unsigned int *) data;
	struct acpi_resource_address64 addr;
	acpi_status status;
 
	status = acpi_resource_to_address64(resource, &addr);
	if (ACPI_SUCCESS(status))
		if (addr.resource_type == ACPI_MEMORY_RANGE ||
		    addr.resource_type == ACPI_IO_RANGE)
			(*windows)++;
 
	return AE_OK;
}
 
struct pci_root_info {
	struct pci_controller *controller;
	char *name;
};
 
static acpi_status
add_window (struct acpi_resource *res, void *data)
{
	struct pci_root_info *info = (struct pci_root_info *) data;
	struct pci_window *window;
	struct acpi_resource_address64 addr;
	acpi_status status;
	unsigned long flags, offset = 0;
	struct resource *root;
 
	status = acpi_resource_to_address64(res, &addr);
	if (ACPI_SUCCESS(status)) {
		if (!addr.address_length)
			return AE_OK;
 
		if (addr.resource_type == ACPI_MEMORY_RANGE) {
			flags = IORESOURCE_MEM;
			root = &iomem_resource;
			offset = addr.address_translation_offset;
		} else if (addr.resource_type == ACPI_IO_RANGE) {
			flags = IORESOURCE_IO;
			root = &ioport_resource;
			offset = add_io_space(&addr);
			if (offset == ~0)
				return AE_OK;
		} else
			return AE_OK;
 
		window = &info->controller->window[info->controller->windows++];
		window->resource.flags |= flags;
		window->resource.start  = addr.min_address_range;
		window->resource.end    = addr.max_address_range;
		window->offset		= offset;
 
		if (alloc_resource(info->name, root, addr.min_address_range + offset,
			addr.max_address_range + offset, flags))
			printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
				addr.min_address_range + offset, addr.max_address_range + offset,
				root->name, info->name);
	}
 
	return AE_OK;
}
 
struct pci_bus *
pcibios_scan_root (void *handle, int seg, int bus)
{
	struct pci_root_info info;
	struct pci_controller *controller;
	unsigned int windows = 0;
	char *name;
 
	controller = alloc_pci_controller(seg);
	if (!controller)
		goto out1;
 
	controller->acpi_handle = handle;
 
	acpi_walk_resources(handle, METHOD_NAME__CRS, count_window, &windows);
	controller->window = kmalloc(sizeof(*controller->window) * windows, GFP_KERNEL);
	if (!controller->window)
		goto out2;
 
	name = kmalloc(16, GFP_KERNEL);
	if (!name)
		goto out3;
 
	sprintf(name, "PCI Bus %02x:%02x", seg, bus);
	info.controller = controller;
	info.name = name;
	acpi_walk_resources(handle, METHOD_NAME__CRS, add_window, &info);
 
	return scan_root_bus(bus, pci_root_ops, controller);
 
out3:
	kfree(controller->window);
out2:
	kfree(controller);
out1:
	return NULL;
}
 
void __init
pcibios_config_init (void)
{
	if (pci_root_ops)
		return;
 
	printk("PCI: Using SAL to access configuration space\n");
 
	pci_root_ops = &pci_sal_ops;
	pci_config_read = pci_sal_read;
	pci_config_write = pci_sal_write;
 
	return;
}
 
void __init
pcibios_init (void)
{
	pcibios_config_init();
 
	platform_pci_fixup(0);	/* phase 0 fixups (before buses scanned) */
 
	platform_pci_fixup(1);	/* phase 1 fixups (after buses scanned) */
 
	return;
}
 
void __init
pcibios_fixup_device_resources (struct pci_dev *dev, struct pci_bus *bus)
{
	struct pci_controller *controller = PCI_CONTROLLER(dev);
	struct pci_window *window;
	int i, j;
 
	for (i = 0; i < PCI_NUM_RESOURCES; i++) {
		if (!dev->resource[i].start)
			continue;
 
#define contains(win, res)	((res)->start >= (win)->start && \
				 (res)->end   <= (win)->end)
 
		for (j = 0; j < controller->windows; j++) {
			window = &controller->window[j];
			if (((dev->resource[i].flags & IORESOURCE_MEM &&
			      window->resource.flags & IORESOURCE_MEM) ||
			     (dev->resource[i].flags & IORESOURCE_IO &&
			      window->resource.flags & IORESOURCE_IO)) &&
			    contains(&window->resource, &dev->resource[i])) {
				dev->resource[i].start += window->offset;
				dev->resource[i].end   += window->offset;
			}
		}
	}
}
 
/*
 *  Called after each bus is probed, but before its children are examined.
 */
void __devinit
pcibios_fixup_bus (struct pci_bus *b)
{
	struct list_head *ln;
 
	for (ln = b->devices.next; ln != &b->devices; ln = ln->next)
		pcibios_fixup_device_resources(pci_dev_b(ln), b);
}
 
void __devinit
pcibios_update_resource (struct pci_dev *dev, struct resource *root,
			 struct resource *res, int resource)
{
	unsigned long where, size;
	u32 reg;
 
	where = PCI_BASE_ADDRESS_0 + (resource * 4);
	size = res->end - res->start;
	pci_read_config_dword(dev, where, &reg);
	reg = (reg & size) | (((u32)(res->start - root->start)) & ~size);
	pci_write_config_dword(dev, where, reg);
 
	/* ??? FIXME -- record old value for shutdown.  */
}
 
void __devinit
pcibios_update_irq (struct pci_dev *dev, int irq)
{
	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
 
	/* ??? FIXME -- record old value for shutdown.  */
}
 
void __devinit
pcibios_fixup_pbus_ranges (struct pci_bus * bus, struct pbus_set_ranges_data * ranges)
{
	ranges->io_start -= bus->resource[0]->start;
	ranges->io_end -= bus->resource[0]->start;
	ranges->mem_start -= bus->resource[1]->start;
	ranges->mem_end -= bus->resource[1]->start;
}
 
static inline int
pcibios_enable_resources (struct pci_dev *dev, int mask)
{
	u16 cmd, old_cmd;
	int idx;
	struct resource *r;
 
	if (!dev)
		return -EINVAL;
 
	pci_read_config_word(dev, PCI_COMMAND, &cmd);
	old_cmd = cmd;
	for (idx=0; idx<6; idx++) {
		/* Only set up the desired resources.  */
		if (!(mask & (1 << idx)))
			continue;
 
		r = &dev->resource[idx];
		if (!r->start && r->end) {
			printk(KERN_ERR
			       "PCI: Device %s not available because of resource collisions\n",
			       dev->slot_name);
			return -EINVAL;
		}
		if (r->flags & IORESOURCE_IO)
			cmd |= PCI_COMMAND_IO;
		if (r->flags & IORESOURCE_MEM)
			cmd |= PCI_COMMAND_MEMORY;
	}
	if (dev->resource[PCI_ROM_RESOURCE].start)
		cmd |= PCI_COMMAND_MEMORY;
	if (cmd != old_cmd) {
		printk("PCI: Enabling device %s (%04x -> %04x)\n", dev->slot_name, old_cmd, cmd);
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	}
	return 0;
}
 
int
pcibios_enable_device (struct pci_dev *dev, int mask)
{
	int ret;
 
	ret = pcibios_enable_resources(dev, mask);
	if (ret < 0)
		return ret;
 
	printk(KERN_INFO "PCI: Found IRQ %d for device %s\n", dev->irq, dev->slot_name);
 
	return 0;
}
 
void
pcibios_align_resource (void *data, struct resource *res,
		        unsigned long size, unsigned long align)
{
}
 
/*
 * PCI BIOS setup, always defaults to SAL interface
 */
char * __init
pcibios_setup (char *str)
{
	return NULL;
}
 
int
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
		     enum pci_mmap_state mmap_state, int write_combine)
{
	/*
	 * I/O space cannot be accessed via normal processor loads and stores on this
	 * platform.
	 */
	if (mmap_state == pci_mmap_io)
		/*
		 * XXX we could relax this for I/O spaces for which ACPI indicates that
		 * the space is 1-to-1 mapped.  But at the moment, we don't support
		 * multiple PCI address spaces and the legacy I/O space is not 1-to-1
		 * mapped, so this is moot.
		 */
		return -EINVAL;
 
	/*
	 * Leave vm_pgoff as-is, the PCI space address is the physical address on this
	 * platform.
	 */
	vma->vm_flags |= (VM_SHM | VM_LOCKED | VM_IO);
 
	if (write_combine)
		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	else
		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 
	if (remap_page_range(vma->vm_start, vma->vm_pgoff << PAGE_SHIFT,
			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
		return -EAGAIN;
 
	return 0;
}
 
/**
 * pci_cacheline_size - determine cacheline size for PCI devices
 * @dev: void
 *
 * We want to use the line-size of the outer-most cache.  We assume
 * that this line-size is the same for all CPUs.
 *
 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
 *
 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
 */
static unsigned long
pci_cacheline_size (void)
{
	u64 levels, unique_caches;
	s64 status;
	pal_cache_config_info_t cci;
	static u8 cacheline_size;
 
	if (cacheline_size)
		return cacheline_size;
 
	status = ia64_pal_cache_summary(&levels, &unique_caches);
	if (status != 0) {
		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
		       __FUNCTION__, status);
		return SMP_CACHE_BYTES;
	}
 
	status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
					    &cci);
	if (status != 0) {
		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
		       __FUNCTION__, status);
		return SMP_CACHE_BYTES;
	}
	cacheline_size = 1 << cci.pcci_line_size;
	return cacheline_size;
}
 
/**
 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
 * @dev: the PCI device for which MWI is enabled
 *
 * For ia64, we can get the cacheline sizes from PAL.
 *
 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
 */
int
pcibios_set_mwi (struct pci_dev *dev)
{
	unsigned long desired_linesize, current_linesize;
	int rc = 0;
	u8 pci_linesize;
 
	desired_linesize = pci_cacheline_size();
 
	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
	current_linesize = 4 * pci_linesize;
	if (desired_linesize != current_linesize) {
		printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
		       dev->slot_name, current_linesize);
		if (current_linesize > desired_linesize) {
			printk(" expected %lu bytes instead\n", desired_linesize);
			rc = -EINVAL;
		} else {
			printk(" correcting to %lu\n", desired_linesize);
			pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
		}
	}
	return rc;
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.