OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [kernel/] [salinfo.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 * salinfo.c
 *
 * Creates entries in /proc/sal for various system features.
 *
 * Copyright (c) 2003 Silicon Graphics, Inc.  All rights reserved.
 * Copyright (c) 2003 Hewlett-Packard Co
 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
 *
 * 10/30/2001	jbarnes@sgi.com		copied much of Stephane's palinfo
 *					code to create this file
 * Oct 23 2003	kaos@sgi.com
 *   Replace IPI with set_cpus_allowed() to read a record from the required cpu.
 *   Redesign salinfo log processing to separate interrupt and user space
 *   contexts.
 *   Cache the record across multi-block reads from user space.
 *   Support > 64 cpus.
 *   Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
 *
 * Jan 28 2004	kaos@sgi.com
 *   Periodically check for outstanding MCA or INIT records.
 *
 * Feb 21 2004	kaos@sgi.com
 *   Copy record contents rather than relying on the mca.c buffers, to cope with
 *   interrupts arriving in mca.c faster than salinfo.c can process them.
 */
 
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
 
#include <asm/semaphore.h>
#include <asm/sal.h>
#include <asm/uaccess.h>
 
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
MODULE_LICENSE("GPL");
 
static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
 
typedef struct {
	const char		*name;		/* name of the proc entry */
	unsigned long           feature;        /* feature bit */
	struct proc_dir_entry	*entry;		/* registered entry (removal) */
} salinfo_entry_t;
 
/*
 * List {name,feature} pairs for every entry in /proc/sal/<feature>
 * that this module exports
 */
static salinfo_entry_t salinfo_entries[]={
	{ "bus_lock",           IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
	{ "irq_redirection",	IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
	{ "ipi_redirection",	IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
	{ "itc_drift",		IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
};
 
#define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
 
static char *salinfo_log_name[] = {
	"mca",
	"init",
	"cmc",
	"cpe",
};
 
static struct proc_dir_entry *salinfo_proc_entries[
	ARRAY_SIZE(salinfo_entries) +			/* /proc/sal/bus_lock */
	ARRAY_SIZE(salinfo_log_name) +			/* /proc/sal/{mca,...} */
	(2 * ARRAY_SIZE(salinfo_log_name)) +		/* /proc/sal/mca/{event,data} */
	1];						/* /proc/sal */
 
/* Allow build with or without large SSI support */
#ifdef CPU_MASK_NONE
#define SCA(x, y) set_cpus_allowed((x), &(y))
#else
#define cpumask_t unsigned long
#define SCA(x, y) set_cpus_allowed((x), (y))
#endif
 
/* Some records we get ourselves, some are accessed as saved data in buffers
 * that are owned by mca.c.
 */
struct salinfo_data_saved {
	u8*			buffer;
	u64			size;
	u64			id;
	int			cpu;
	int			kmalloced :1;	/* buffer was kmalloc'ed */
};
 
/* State transitions.  Actions are :-
 *   Write "read <cpunum>" to the data file.
 *   Write "clear <cpunum>" to the data file.
 *   Write "oemdata <cpunum> <offset> to the data file.
 *   Read from the data file.
 *   Close the data file.
 *
 * Start state is NO_DATA.
 *
 * NO_DATA
 *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
 *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
 *    write "oemdata <cpunum> <offset> -> return -EINVAL.
 *    read data -> return EOF.
 *    close -> unchanged.  Free record areas.
 *
 * LOG_RECORD
 *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
 *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
 *    write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
 *    read data -> return the INIT/MCA/CMC/CPE record.
 *    close -> unchanged.  Keep record areas.
 *
 * OEMDATA
 *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
 *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
 *    write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
 *    read data -> return the formatted oemdata.
 *    close -> unchanged.  Keep record areas.
 *
 * Closing the data file does not change the state.  This allows shell scripts
 * to manipulate salinfo data, each shell redirection opens the file, does one
 * action then closes it again.  The record areas are only freed at close when
 * the state is NO_DATA.
 */
enum salinfo_state {
	STATE_NO_DATA,
	STATE_LOG_RECORD,
	STATE_OEMDATA,
};
 
struct salinfo_data {
	volatile cpumask_t	cpu_event;	/* which cpus have outstanding events */
	struct semaphore	sem;		/* count of cpus with outstanding events (bits set in cpu_event) */
	u8			*log_buffer;
	u64			log_size;
	u8			*oemdata;	/* decoded oem data */
	u64			oemdata_size;
	int			open;		/* single-open to prevent races */
	u8			type;
	u8			saved_num;	/* using a saved record? */
	enum salinfo_state	state :8;	/* processing state */
	u8			padding;
	int			cpu_check;	/* next CPU to check */
	struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
};
 
static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
 
static spinlock_t data_lock, data_saved_lock;
 
/** salinfo_platform_oemdata - optional callback to decode oemdata from an error
 * record.
 * @sect_header: pointer to the start of the section to decode.
 * @oemdata: returns vmalloc area containing the decded output.
 * @oemdata_size: returns length of decoded output (strlen).
 *
 * Description: If user space asks for oem data to be decoded by the kernel
 * and/or prom and the platform has set salinfo_platform_oemdata to the address
 * of a platform specific routine then call that routine.  salinfo_platform_oemdata
 * vmalloc's and formats its output area, returning the address of the text
 * and its strlen.  Returns 0 for success, -ve for error.  The callback is
 * invoked on the cpu that generated the error record.
 */
int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
 
struct salinfo_platform_oemdata_parms {
	const u8 *efi_guid;
	u8 **oemdata;
	u64 *oemdata_size;
	int ret;
};
 
static void
salinfo_platform_oemdata_cpu(void *context)
{
	struct salinfo_platform_oemdata_parms *parms = context;
	parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
}
 
static void
shift1_data_saved (struct salinfo_data *data, int shift)
{
	if (data->data_saved[shift].kmalloced)
		kfree(data->data_saved[shift].buffer);
	memcpy(data->data_saved+shift, data->data_saved+shift+1,
	       (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
	memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
	       sizeof(data->data_saved[0]));
}
 
/* This routine is invoked in interrupt context.  Note: mca.c enables
 * interrupts before calling this code for CMC/CPE.  MCA and INIT events are
 * not irq safe, do not call any routines that use spinlocks, they may deadlock.
 * MCA and INIT records are recorded, a timer event will look for any
 * outstanding events and wake up the user space code.
 *
 * The buffer passed from mca.c points to the output from ia64_log_get. This is
 * a persistent buffer but its contents can change between the interrupt and
 * when user space processes the record.  Save the record id to identify
 * changes.
 */
void
salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
{
	struct salinfo_data *data = salinfo_data + type;
	struct salinfo_data_saved *data_saved;
	unsigned long flags = 0;
	int i;
	int saved_size = ARRAY_SIZE(data->data_saved);
 
	BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
 
	if (irqsafe)
		spin_lock_irqsave(&data_saved_lock, flags);
	for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
		if (!data_saved->buffer)
			break;
	}
	if (i == saved_size) {
		if (!data->saved_num) {
			shift1_data_saved(data, 0);
			data_saved = data->data_saved + saved_size - 1;
		} else
			data_saved = NULL;
	}
	if (data_saved) {
		data_saved->cpu = smp_processor_id();
		data_saved->id = ((sal_log_record_header_t *)buffer)->id;
		data_saved->size = size;
		if (irqsafe && (data_saved->buffer = kmalloc(size, GFP_ATOMIC))) {
			memcpy(data_saved->buffer, buffer, size);
			data_saved->kmalloced = 1;
		} else {
			data_saved->buffer = buffer;
			data_saved->kmalloced = 0;
		}
	}
	if (irqsafe)
		spin_unlock_irqrestore(&data_saved_lock, flags);
 
	if (!test_and_set_bit(smp_processor_id(), &data->cpu_event)) {
		if (irqsafe)
			up(&data->sem);
	}
}
 
/* Check for outstanding MCA/INIT records every 5 minutes (arbitrary) */
#define SALINFO_TIMER_DELAY (5*60*HZ)
static struct timer_list salinfo_timer;
 
static void
salinfo_timeout_check(struct salinfo_data *data)
{
	int i;
	if (!data->open)
		return;
	for (i = 0; i < NR_CPUS; ++i) {
		if (test_bit(i, &data->cpu_event)) {
			/* double up() is not a problem, user space will see no
			 * records for the additional "events".
			 */
			up(&data->sem);
		}
	}
}
 
static void 
salinfo_timeout (unsigned long arg)
{
	salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
	salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
	salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
	add_timer(&salinfo_timer);
}
 
static int
salinfo_event_open(struct inode *inode, struct file *file)
{
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	return 0;
}
 
static ssize_t
salinfo_event_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
	struct inode *inode = file->f_dentry->d_inode;
	struct proc_dir_entry *entry = PDE(inode);
	struct salinfo_data *data = entry->data;
	char cmd[32];
	size_t size;
	int i, n, cpu = -1;
 
retry:
	if (down_trylock(&data->sem)) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;
		if (down_interruptible(&data->sem))
			return -ERESTARTSYS;
	}
 
	n = data->cpu_check;
	for (i = 0; i < NR_CPUS; i++) {
		if (test_bit(n, &data->cpu_event)) {
			cpu = n;
			break;
		}
		if (++n == NR_CPUS)
			n = 0;
	}
 
	if (cpu == -1)
		goto retry;
 
	/* events are sticky until the user says "clear" */
	up(&data->sem);
 
	/* for next read, start checking at next CPU */
	data->cpu_check = cpu;
	if (++data->cpu_check == NR_CPUS)
		data->cpu_check = 0;
 
	snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
 
	size = strlen(cmd);
	if (size > count)
		size = count;
	if (copy_to_user(buffer, cmd, size))
		return -EFAULT;
 
	return size;
}
 
static struct file_operations salinfo_event_fops = {
	.open  = salinfo_event_open,
	.read  = salinfo_event_read,
};
 
static int
salinfo_log_open(struct inode *inode, struct file *file)
{
	struct proc_dir_entry *entry = PDE(inode);
	struct salinfo_data *data = entry->data;
 
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
 
	spin_lock(&data_lock);
	if (data->open) {
		spin_unlock(&data_lock);
		return -EBUSY;
	}
	data->open = 1;
	spin_unlock(&data_lock);
 
	if (data->state == STATE_NO_DATA &&
	    !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
		data->open = 0;
		return -ENOMEM;
	}
 
	return 0;
}
 
static int
salinfo_log_release(struct inode *inode, struct file *file)
{
	struct proc_dir_entry *entry = PDE(inode);
	struct salinfo_data *data = entry->data;
 
	if (data->state == STATE_NO_DATA) {
		vfree(data->log_buffer);
		vfree(data->oemdata);
		data->log_buffer = NULL;
		data->oemdata = NULL;
	}
	spin_lock(&data_lock);
	data->open = 0;
	spin_unlock(&data_lock);
	return 0;
}
 
static void
call_on_cpu(int cpu, void (*fn)(void *), void *arg)
{
	cpumask_t save_cpus_allowed, new_cpus_allowed;
	memcpy(&save_cpus_allowed, &current->cpus_allowed, sizeof(save_cpus_allowed));
	memset(&new_cpus_allowed, 0, sizeof(new_cpus_allowed));
	set_bit(cpu, &new_cpus_allowed);
	SCA(current, new_cpus_allowed);
	(*fn)(arg);
	SCA(current, save_cpus_allowed);
}
 
static void
salinfo_log_read_cpu(void *context)
{
	struct salinfo_data *data = context;
	data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
	if (data->type == SAL_INFO_TYPE_CPE || data->type == SAL_INFO_TYPE_CMC)
		ia64_sal_clear_state_info(data->type);
}
 
static void
salinfo_log_new_read(int cpu, struct salinfo_data *data)
{
	struct salinfo_data_saved *data_saved;
	unsigned long flags;
	int i;
	int saved_size = ARRAY_SIZE(data->data_saved);
 
	data->saved_num = 0;
	spin_lock_irqsave(&data_saved_lock, flags);
retry:
	for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
		if (data_saved->buffer && data_saved->cpu == cpu) {
			sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
			data->log_size = data_saved->size;
			memcpy(data->log_buffer, rh, data->log_size);
			barrier();	/* id check must not be moved */
			if (rh->id == data_saved->id) {
				data->saved_num = i+1;
				break;
			}
			/* saved record changed by mca.c since interrupt, discard it */
			shift1_data_saved(data, i);
			goto retry;
		}
	}
	spin_unlock_irqrestore(&data_saved_lock, flags);
 
	if (!data->saved_num)
		call_on_cpu(cpu, salinfo_log_read_cpu, data);
	data->state = data->log_size ? STATE_LOG_RECORD : STATE_NO_DATA;
}
 
static ssize_t
salinfo_log_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
	struct inode *inode = file->f_dentry->d_inode;
	struct proc_dir_entry *entry = PDE(inode);
	struct salinfo_data *data = entry->data;
	void *saldata;
	size_t size;
	u8 *buf;
	u64 bufsize;
 
	if (data->state == STATE_LOG_RECORD) {
		buf = data->log_buffer;
		bufsize = data->log_size;
	} else if (data->state == STATE_OEMDATA) {
		buf = data->oemdata;
		bufsize = data->oemdata_size;
	} else {
		buf = NULL;
		bufsize = 0;
	}
	if (*ppos >= bufsize)
		return 0;
 
	saldata = buf + file->f_pos;
	size = bufsize - file->f_pos;
	if (size > count)
		size = count;
	if (copy_to_user(buffer, saldata, size))
		return -EFAULT;
 
	*ppos += size;
	return size;
}
 
static void
salinfo_log_clear_cpu(void *context)
{
	struct salinfo_data *data = context;
	ia64_sal_clear_state_info(data->type);
}
 
static int
salinfo_log_clear(struct salinfo_data *data, int cpu)
{
	data->state = STATE_NO_DATA;
	if (!test_bit(cpu, &data->cpu_event))
		return 0;
	down(&data->sem);
	clear_bit(cpu, &data->cpu_event);
	if (data->saved_num) {
		unsigned long flags;
		spin_lock_irqsave(&data_saved_lock, flags);
		shift1_data_saved(data, data->saved_num - 1 );
		data->saved_num = 0;
		spin_unlock_irqrestore(&data_saved_lock, flags);
	}
	/* ia64_mca_log_sal_error_record or salinfo_log_read_cpu already cleared
	 * CPE and CMC errors
	 */
	if (data->type != SAL_INFO_TYPE_CPE && data->type != SAL_INFO_TYPE_CMC)
		call_on_cpu(cpu, salinfo_log_clear_cpu, data);
	/* clearing a record may make a new record visible */
	salinfo_log_new_read(cpu, data);
	if (data->state == STATE_LOG_RECORD &&
	    !test_and_set_bit(cpu,  &data->cpu_event))
		up(&data->sem);
	return 0;
}
 
static ssize_t
salinfo_log_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
	struct inode *inode = file->f_dentry->d_inode;
	struct proc_dir_entry *entry = PDE(inode);
	struct salinfo_data *data = entry->data;
	char cmd[32];
	size_t size;
	u32 offset;
	int cpu;
 
	size = sizeof(cmd);
	if (count < size)
		size = count;
	if (copy_from_user(cmd, buffer, size))
		return -EFAULT;
 
	if (sscanf(cmd, "read %d", &cpu) == 1) {
		salinfo_log_new_read(cpu, data);
	} else if (sscanf(cmd, "clear %d", &cpu) == 1) {
		int ret;
		if ((ret = salinfo_log_clear(data, cpu)))
			count = ret;
	} else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
		if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
			return -EINVAL;
		if (offset > data->log_size - sizeof(efi_guid_t))
			return -EINVAL;
		data->state = STATE_OEMDATA;
		if (salinfo_platform_oemdata) {
			struct salinfo_platform_oemdata_parms parms = {
				.efi_guid = data->log_buffer + offset,
				.oemdata = &data->oemdata,
				.oemdata_size = &data->oemdata_size
			};
			call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
			if (parms.ret)
				count = parms.ret;
		} else
			data->oemdata_size = 0;
	} else
		return -EINVAL;
 
	return count;
}
 
static struct file_operations salinfo_data_fops = {
	.open    = salinfo_log_open,
	.release = salinfo_log_release,
	.read    = salinfo_log_read,
	.write   = salinfo_log_write,
};
 
static int __init
salinfo_init(void)
{
	struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
	struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
	struct proc_dir_entry *dir, *entry;
	struct salinfo_data *data;
	int i, j, online;
 
	salinfo_dir = proc_mkdir("sal", NULL);
	if (!salinfo_dir)
		return 0;
 
	for (i=0; i < NR_SALINFO_ENTRIES; i++) {
		/* pass the feature bit in question as misc data */
		*sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
						  salinfo_read, (void *)salinfo_entries[i].feature);
	}
 
	for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
		data = salinfo_data + i;
		data->type = i;
		sema_init(&data->sem, 0);
		dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
		if (!dir)
			continue;
 
		entry = create_proc_entry("event", S_IRUSR, dir);
		if (!entry)
			continue;
		entry->data = data;
		entry->proc_fops = &salinfo_event_fops;
		*sdir++ = entry;
 
		entry = create_proc_entry("data", S_IRUSR | S_IWUSR, dir);
		if (!entry)
			continue;
		entry->data = data;
		entry->proc_fops = &salinfo_data_fops;
		*sdir++ = entry;
 
		/* we missed any events before now */
		online = 0;
		for (j = 0; j < NR_CPUS; j++)
			if (cpu_online(j)) {
				set_bit(j, &data->cpu_event);
				++online;
			}
		sema_init(&data->sem, online);
 
		*sdir++ = dir;
	}
 
	*sdir++ = salinfo_dir;
 
	init_timer(&salinfo_timer);
	salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
	salinfo_timer.function = &salinfo_timeout;
	add_timer(&salinfo_timer);
 
	return 0;
}
 
/*
 * 'data' contains an integer that corresponds to the feature we're
 * testing
 */
static int
salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
{
	int len = 0;
 
	len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
 
	if (len <= off+count) *eof = 1;
 
	*start = page + off;
	len   -= off;
 
	if (len>count) len = count;
	if (len<0) len = 0;
 
	return len;
}
 
module_init(salinfo_init);
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.