OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [m68k/] [ifpsp060/] [src/] [isp.S] - Rev 1765

Compare with Previous | Blame | View Log

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
M68000 Hi-Performance Microprocessor Division
M68060 Software Package
Production Release P1.00 -- October 10, 1994

 
THE SOFTWARE is provided on an "AS IS" basis and without warranty.
To the maximum extent permitted by applicable law,
MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, 
INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
and any warranty against infringement with regard to the SOFTWARE
(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.

To the maximum extent permitted by applicable law,
IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.

You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
so long as this entire notice is retained without alteration in any modified and/or
redistributed versions, and that such modified versions are clearly identified as such.
No licenses are granted by implication, estoppel or otherwise under any patents
or trademarks of Motorola, Inc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ireal.s:
#       This file is appended to the top of the 060ISP package
# and contains the entry points into the package. The user, in
# effect, branches to one of the branch table entries located
# after _060ISP_TABLE.
#       Also, subroutine stubs exist in this file (_isp_done for
# example) that are referenced by the ISP package itself in order
# to call a given routine. The stub routine actually performs the
# callout. The ISP code does a "bsr" to the stub routine. This
# extra layer of hierarchy adds a slight performance penalty but
# it makes the ISP code easier to read and more mainatinable.
#

set     _off_chk,       0x00
set     _off_divbyzero, 0x04
set     _off_trace,     0x08
set     _off_access,    0x0c
set     _off_done,      0x10

set     _off_cas,       0x14
set     _off_cas2,      0x18
set     _off_lock,      0x1c
set     _off_unlock,    0x20

set     _off_imr,       0x40
set     _off_dmr,       0x44
set     _off_dmw,       0x48
set     _off_irw,       0x4c
set     _off_irl,       0x50
set     _off_drb,       0x54
set     _off_drw,       0x58
set     _off_drl,       0x5c
set     _off_dwb,       0x60
set     _off_dww,       0x64
set     _off_dwl,       0x68

_060ISP_TABLE:

# Here's the table of ENTRY POINTS for those linking the package.
        bra.l           _isp_unimp
        short           0x0000

        bra.l           _isp_cas
        short           0x0000

        bra.l           _isp_cas2
        short           0x0000

        bra.l           _isp_cas_finish
        short           0x0000

        bra.l           _isp_cas2_finish
        short           0x0000

        bra.l           _isp_cas_inrange
        short           0x0000

        bra.l           _isp_cas_terminate
        short           0x0000

        bra.l           _isp_cas_restart
        short           0x0000

        space           64

#############################################################

        global          _real_chk
_real_chk:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_chk,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _real_divbyzero
_real_divbyzero:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _real_trace
_real_trace:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_trace,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _real_access
_real_access:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_access,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _isp_done
_isp_done:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_done,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

#######################################

        global          _real_cas
_real_cas:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_cas,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _real_cas2
_real_cas2:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _real_lock_page
_real_lock_page:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_lock,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _real_unlock_page
_real_unlock_page:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

#######################################

        global          _imem_read
_imem_read:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_imr,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_read
_dmem_read:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_write
_dmem_write:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _imem_read_word
_imem_read_word:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_irw,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _imem_read_long
_imem_read_long:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_irl,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_read_byte
_dmem_read_byte:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_drb,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_read_word
_dmem_read_word:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_drw,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_read_long
_dmem_read_long:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_drl,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_write_byte
_dmem_write_byte:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_write_word
_dmem_write_word:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_dww,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

        global          _dmem_write_long
_dmem_write_long:
        mov.l           %d0,-(%sp)
        mov.l           (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0
        pea.l           (_060ISP_TABLE-0x80,%pc,%d0)
        mov.l           0x4(%sp),%d0
        rtd             &0x4

#
# This file contains a set of define statements for constants
# in oreder to promote readability within the core code itself.
#

set LOCAL_SIZE,         96                      # stack frame size(bytes)
set LV,                 -LOCAL_SIZE             # stack offset

set EXC_ISR,            0x4                     # stack status register
set EXC_IPC,            0x6                     # stack pc
set EXC_IVOFF,          0xa                     # stacked vector offset

set EXC_AREGS,          LV+64                   # offset of all address regs
set EXC_DREGS,          LV+32                   # offset of all data regs

set EXC_A7,             EXC_AREGS+(7*4)         # offset of a7
set EXC_A6,             EXC_AREGS+(6*4)         # offset of a6
set EXC_A5,             EXC_AREGS+(5*4)         # offset of a5
set EXC_A4,             EXC_AREGS+(4*4)         # offset of a4
set EXC_A3,             EXC_AREGS+(3*4)         # offset of a3
set EXC_A2,             EXC_AREGS+(2*4)         # offset of a2
set EXC_A1,             EXC_AREGS+(1*4)         # offset of a1
set EXC_A0,             EXC_AREGS+(0*4)         # offset of a0
set EXC_D7,             EXC_DREGS+(7*4)         # offset of d7
set EXC_D6,             EXC_DREGS+(6*4)         # offset of d6
set EXC_D5,             EXC_DREGS+(5*4)         # offset of d5
set EXC_D4,             EXC_DREGS+(4*4)         # offset of d4
set EXC_D3,             EXC_DREGS+(3*4)         # offset of d3
set EXC_D2,             EXC_DREGS+(2*4)         # offset of d2
set EXC_D1,             EXC_DREGS+(1*4)         # offset of d1
set EXC_D0,             EXC_DREGS+(0*4)         # offset of d0

set EXC_TEMP,           LV+16                   # offset of temp stack space

set EXC_SAVVAL,         LV+12                   # offset of old areg value
set EXC_SAVREG,         LV+11                   # offset of old areg index

set SPCOND_FLG,         LV+10                   # offset of spc condition flg

set EXC_CC,             LV+8                    # offset of cc register
set EXC_EXTWPTR,        LV+4                    # offset of current PC
set EXC_EXTWORD,        LV+2                    # offset of current ext opword
set EXC_OPWORD,         LV+0                    # offset of current opword

###########################
# SPecial CONDition FLaGs #
###########################
set mia7_flg,           0x04                    # (a7)+ flag
set mda7_flg,           0x08                    # -(a7) flag
set ichk_flg,           0x10                    # chk exception flag
set idbyz_flg,          0x20                    # divbyzero flag
set restore_flg,        0x40                    # restore -(an)+ flag
set immed_flg,          0x80                    # immediate data flag

set mia7_bit,           0x2                     # (a7)+ bit
set mda7_bit,           0x3                     # -(a7) bit
set ichk_bit,           0x4                     # chk exception bit
set idbyz_bit,          0x5                     # divbyzero bit
set restore_bit,        0x6                     # restore -(a7)+ bit
set immed_bit,          0x7                     # immediate data bit

#########
# Misc. #
#########
set BYTE,               1                       # len(byte) == 1 byte
set WORD,               2                       # len(word) == 2 bytes
set LONG,               4                       # len(longword) == 4 bytes

#########################################################################
# XDEF **************************************************************** #
#       _isp_unimp(): 060ISP entry point for Unimplemented Instruction  #
#                                                                       #
#       This handler should be the first code executed upon taking the  #
#       "Unimplemented Integer Instruction" exception in an operating   #
#       system.                                                         #
#                                                                       #
# XREF **************************************************************** #
#       _imem_read_{word,long}() - read instruction word/longword       #
#       _mul64() - emulate 64-bit multiply                              #
#       _div64() - emulate 64-bit divide                                #
#       _moveperipheral() - emulate "movep"                             #
#       _compandset() - emulate misaligned "cas"                        #
#       _compandset2() - emulate "cas2"                                 #
#       _chk2_cmp2() - emulate "cmp2" and "chk2"                        #
#       _isp_done() - "callout" for normal final exit                   #
#       _real_trace() - "callout" for Trace exception                   #
#       _real_chk() - "callout" for Chk exception                       #
#       _real_divbyzero() - "callout" for DZ exception                  #
#       _real_access() - "callout" for access error exception           #
#                                                                       #
# INPUT *************************************************************** #
#       - The system stack contains the Unimp Int Instr stack frame     #
#                                                                       #
# OUTPUT ************************************************************** #
#       If Trace exception:                                             #
#       - The system stack changed to contain Trace exc stack frame     #
#       If Chk exception:                                               #
#       - The system stack changed to contain Chk exc stack frame       #
#       If DZ exception:                                                #
#       - The system stack changed to contain DZ exc stack frame        #
#       If access error exception:                                      #
#       - The system stack changed to contain access err exc stk frame  #
#       Else:                                                           #
#       - Results saved as appropriate                                  #
#                                                                       #
# ALGORITHM *********************************************************** #
#       This handler fetches the first instruction longword from        #
# memory and decodes it to determine which of the unimplemented         #
# integer instructions caused this exception. This handler then calls   #
# one of _mul64(), _div64(), _moveperipheral(), _compandset(),          #
# _compandset2(), or _chk2_cmp2() as appropriate.                       #
#       Some of these instructions, by their nature, may produce other  #
# types of exceptions. "div" can produce a divide-by-zero exception,    #
# and "chk2" can cause a "Chk" exception. In both cases, the current    #
# exception stack frame must be converted to an exception stack frame   #
# of the correct exception type and an exit must be made through        #
# _real_divbyzero() or _real_chk() as appropriate. In addition, all     #
# instructions may be executing while Trace is enabled. If so, then     #
# a Trace exception stack frame must be created and an exit made        #
# through _real_trace().                                                #
#       Meanwhile, if any read or write to memory using the             #
# _mem_{read,write}() "callout"s returns a failing value, then an       #
# access error frame must be created and an exit made through           #
# _real_access().                                                       #
#       If none of these occur, then a normal exit is made through      #
# _isp_done().                                                          #
#                                                                       #
#       This handler, upon entry, saves almost all user-visible         #
# address and data registers to the stack. Although this may seem to    #
# cause excess memory traffic, it was found that due to having to       #
# access these register files for things like data retrieval and <ea>   #
# calculations, it was more efficient to have them on the stack where   #
# they could be accessed by indexing rather than to make subroutine     #
# calls to retrieve a register of a particular index.                   #
#                                                                       #
#########################################################################

        global          _isp_unimp
_isp_unimp:
        link.w          %a6,&-LOCAL_SIZE        # create room for stack frame

        movm.l          &0x3fff,EXC_DREGS(%a6)  # store d0-d7/a0-a5
        mov.l           (%a6),EXC_A6(%a6)       # store a6

        btst            &0x5,EXC_ISR(%a6)       # from s or u mode?
        bne.b           uieh_s                  # supervisor mode
uieh_u:
        mov.l           %usp,%a0                # fetch user stack pointer
        mov.l           %a0,EXC_A7(%a6)         # store a7
        bra.b           uieh_cont
uieh_s:
        lea             0xc(%a6),%a0
        mov.l           %a0,EXC_A7(%a6)         # store corrected sp

###############################################################################

uieh_cont:
        clr.b           SPCOND_FLG(%a6)         # clear "special case" flag

        mov.w           EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack
        mov.l           EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack

#
# fetch the opword and first extension word pointed to by the stacked pc
# and store them to the stack for now
#
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_long         # fetch opword & extword
        mov.l           %d0,EXC_OPWORD(%a6)     # store extword on stack

        
#########################################################################
# muls.l        0100 1100 00 |<ea>|     0*** 1100 0000 0***             #
# mulu.l        0100 1100 00 |<ea>|     0*** 0100 0000 0***             #
#                                                                       #
# divs.l        0100 1100 01 |<ea>|     0*** 1100 0000 0***             #
# divu.l        0100 1100 01 |<ea>|     0*** 0100 0000 0***             #
#                                                                       #
# movep.w m2r   0000 ***1 00 001***     | <displacement>  |             #
# movep.l m2r   0000 ***1 01 001***     | <displacement>  |             #
# movep.w r2m   0000 ***1 10 001***     | <displacement>  |             #
# movep.l r2m   0000 ***1 11 001***     | <displacement>  |             #
#                                                                       #
# cas.w         0000 1100 11 |<ea>|     0000 000* **00 0***             #
# cas.l         0000 1110 11 |<ea>|     0000 000* **00 0***             #
#                                                                       #
# cas2.w        0000 1100 11 111100     **** 000* **00 0***             #
#                                       **** 000* **00 0***             #
# cas2.l        0000 1110 11 111100     **** 000* **00 0***             #
#                                       **** 000* **00 0***             #
#                                                                       #
# chk2.b        0000 0000 11 |<ea>|     **** 1000 0000 0000             #
# chk2.w        0000 0010 11 |<ea>|     **** 1000 0000 0000             #
# chk2.l        0000 0100 11 |<ea>|     **** 1000 0000 0000             #
#                                                                       #
# cmp2.b        0000 0000 11 |<ea>|     **** 0000 0000 0000             #
# cmp2.w        0000 0010 11 |<ea>|     **** 0000 0000 0000             #
# cmp2.l        0000 0100 11 |<ea>|     **** 0000 0000 0000             #
#########################################################################

#
# using bit 14 of the operation word, separate into 2 groups:
# (group1) mul64, div64
# (group2) movep, chk2, cmp2, cas2, cas
#
        btst            &0x1e,%d0               # group1 or group2
        beq.b           uieh_group2             # go handle group2

#
# now, w/ group1, make mul64's decode the fastest since it will
# most likely be used the most.
#
uieh_group1:
        btst            &0x16,%d0               # test for div64
        bne.b           uieh_div64              # go handle div64

uieh_mul64:
# mul64() may use ()+ addressing and may, therefore, alter a7

        bsr.l           _mul64                  # _mul64()

        btst            &0x5,EXC_ISR(%a6)       # supervisor mode?
        beq.w           uieh_done
        btst            &mia7_bit,SPCOND_FLG(%a6) # was a7 changed?
        beq.w           uieh_done               # no
        btst            &0x7,EXC_ISR(%a6)       # is trace enabled?
        bne.w           uieh_trace_a7           # yes
        bra.w           uieh_a7                 # no

uieh_div64:
# div64() may use ()+ addressing and may, therefore, alter a7.
# div64() may take a divide by zero exception.

        bsr.l           _div64                  # _div64()

# here, we sort out all of the special cases that may have happened.
        btst            &mia7_bit,SPCOND_FLG(%a6) # was a7 changed?
        bne.b           uieh_div64_a7           # yes
uieh_div64_dbyz:
        btst            &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur?
        bne.w           uieh_divbyzero          # yes
        bra.w           uieh_done               # no
uieh_div64_a7:
        btst            &0x5,EXC_ISR(%a6)       # supervisor mode?
        beq.b           uieh_div64_dbyz         # no
# here, a7 has been incremented by 4 bytes in supervisor mode. we still
# may have the following 3 cases:
#       (i)     (a7)+
#       (ii)    (a7)+; trace
#       (iii)   (a7)+; divide-by-zero
#
        btst            &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur?
        bne.w           uieh_divbyzero_a7       # yes
        tst.b           EXC_ISR(%a6)            # no; is trace enabled?
        bmi.w           uieh_trace_a7           # yes
        bra.w           uieh_a7                 # no
        
#
# now, w/ group2, make movep's decode the fastest since it will
# most likely be used the most.
#
uieh_group2:
        btst            &0x18,%d0               # test for not movep
        beq.b           uieh_not_movep


        bsr.l           _moveperipheral         # _movep()
        bra.w           uieh_done

uieh_not_movep:
        btst            &0x1b,%d0               # test for chk2,cmp2
        beq.b           uieh_chk2cmp2           # go handle chk2,cmp2

        swap            %d0                     # put opword in lo word
        cmpi.b          %d0,&0xfc               # test for cas2
        beq.b           uieh_cas2               # go handle cas2

uieh_cas:

        bsr.l           _compandset             # _cas()

# the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor
# mode are simply not considered valid and therefore are not handled.

        bra.w           uieh_done

uieh_cas2:

        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word         # read extension word

        tst.l           %d1                     # ifetch error?
        bne.w           isp_iacc                # yes

        bsr.l           _compandset2            # _cas2()
        bra.w           uieh_done

uieh_chk2cmp2:
# chk2 may take a chk exception

        bsr.l           _chk2_cmp2              # _chk2_cmp2()

# here we check to see if a chk trap should be taken
        cmpi.b          SPCOND_FLG(%a6),&ichk_flg
        bne.w           uieh_done
        bra.b           uieh_chk_trap

###########################################################################

#
# the required emulation has been completed. now, clean up the necessary stack
# info and prepare for rte
#
uieh_done:
        mov.b           EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes

# if exception occurred in user mode, then we have to restore a7 in case it
# changed. we don't have to update a7  for supervisor mose because that case
# doesn't flow through here
        btst            &0x5,EXC_ISR(%a6)       # user or supervisor?
        bne.b           uieh_finish             # supervisor

        mov.l           EXC_A7(%a6),%a0         # fetch user stack pointer
        mov.l           %a0,%usp                # restore it

uieh_finish:
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5

        btst            &0x7,EXC_ISR(%a6)       # is trace mode on?
        bne.b           uieh_trace              # yes;go handle trace mode

        mov.l           EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame
        mov.l           EXC_A6(%a6),(%a6)       # prepare new a6 for unlink
        unlk            %a6                     # unlink stack frame
        bra.l           _isp_done

#
# The instruction that was just emulated was also being traced. The trace 
# trap for this instruction will be lost unless we jump to the trace handler.
# So, here we create a Trace Exception format number two exception stack
# frame from the Unimplemented Integer Intruction Exception stack frame
# format number zero and jump to the user supplied hook "_real_trace()".
#
#                  UIEH FRAME              TRACE FRAME
#               *****************       *****************
#               * 0x0 *  0x0f4  *       *    Current    *
#               *****************       *      PC       *
#               *    Current    *       *****************
#               *      PC       *       * 0x2 *  0x024  *
#               *****************       *****************
#               *      SR       *       *     Next      *
#               *****************       *      PC       *
#             ->*     Old       *       *****************
#  from link -->*      A6       *       *      SR       *
#               *****************       *****************
#              /*      A7       *       *      New      * <-- for final unlink
#             / *               *       *      A6       *
# link frame <  *****************       *****************
#             \ ~               ~       ~               ~
#              \*****************       *****************
#
uieh_trace:
        mov.l           EXC_A6(%a6),-0x4(%a6)
        mov.w           EXC_ISR(%a6),0x0(%a6)
        mov.l           EXC_IPC(%a6),0x8(%a6)
        mov.l           EXC_EXTWPTR(%a6),0x2(%a6)
        mov.w           &0x2024,0x6(%a6)
        sub.l           &0x4,%a6
        unlk            %a6
        bra.l           _real_trace

#
#          UIEH FRAME               CHK FRAME
#       *****************       *****************
#       * 0x0 *  0x0f4  *       *    Current    *
#       *****************       *      PC       *
#       *    Current    *       *****************
#       *      PC       *       * 0x2 *  0x018  *
#       *****************       *****************
#       *      SR       *       *     Next      *
#       *****************       *      PC       *
#           (4 words)           *****************
#                               *      SR       *
#                               *****************
#                                   (6 words)
#
# the chk2 instruction should take a chk trap. so, here we must create a
# chk stack frame from an unimplemented integer instruction exception frame
# and jump to the user supplied entry point "_real_chk()".
#
uieh_chk_trap:
        mov.b           EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5

        mov.w           EXC_ISR(%a6),(%a6)      # put new SR on stack
        mov.l           EXC_IPC(%a6),0x8(%a6)   # put "Current PC" on stack
        mov.l           EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack
        mov.w           &0x2018,0x6(%a6)        # put Vector Offset on stack

        mov.l           EXC_A6(%a6),%a6         # restore a6
        add.l           &LOCAL_SIZE,%sp         # clear stack frame

        bra.l           _real_chk

#
#          UIEH FRAME            DIVBYZERO FRAME
#       *****************       *****************
#       * 0x0 *  0x0f4  *       *    Current    *
#       *****************       *      PC       *
#       *    Current    *       *****************
#       *      PC       *       * 0x2 *  0x014  *
#       *****************       *****************
#       *      SR       *       *     Next      *
#       *****************       *      PC       *
#           (4 words)           *****************
#                               *      SR       *
#                               *****************
#                                   (6 words)
#
# the divide instruction should take an integer divide by zero trap. so, here 
# we must create a divbyzero stack frame from an unimplemented integer 
# instruction exception frame and jump to the user supplied entry point 
# "_real_divbyzero()".
#
uieh_divbyzero:
        mov.b           EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5

        mov.w           EXC_ISR(%a6),(%a6)      # put new SR on stack
        mov.l           EXC_IPC(%a6),0x8(%a6)   # put "Current PC" on stack
        mov.l           EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack
        mov.w           &0x2014,0x6(%a6)        # put Vector Offset on stack

        mov.l           EXC_A6(%a6),%a6         # restore a6
        add.l           &LOCAL_SIZE,%sp         # clear stack frame

        bra.l           _real_divbyzero

#
#                                DIVBYZERO FRAME
#                               *****************
#                               *    Current    *
#          UIEH FRAME           *      PC       *
#       *****************       *****************
#       * 0x0 *  0x0f4  *       * 0x2 * 0x014   *
#       *****************       *****************
#       *    Current    *       *     Next      *
#       *      PC       *       *      PC       *
#       *****************       *****************
#       *      SR       *       *      SR       *
#       *****************       *****************
#           (4 words)               (6 words)
#
# the divide instruction should take an integer divide by zero trap. so, here 
# we must create a divbyzero stack frame from an unimplemented integer 
# instruction exception frame and jump to the user supplied entry point 
# "_real_divbyzero()".
#
# However, we must also deal with the fact that (a7)+ was used from supervisor
# mode, thereby shifting the stack frame up 4 bytes.
#
uieh_divbyzero_a7:
        mov.b           EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5

        mov.l           EXC_IPC(%a6),0xc(%a6)   # put "Current PC" on stack
        mov.w           &0x2014,0xa(%a6)        # put Vector Offset on stack
        mov.l           EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack

        mov.l           EXC_A6(%a6),%a6         # restore a6
        add.l           &4+LOCAL_SIZE,%sp       # clear stack frame

        bra.l           _real_divbyzero

#
#                                  TRACE FRAME
#                               *****************
#                               *    Current    *
#          UIEH FRAME           *      PC       *
#       *****************       *****************
#       * 0x0 *  0x0f4  *       * 0x2 * 0x024   *
#       *****************       *****************
#       *    Current    *       *     Next      *
#       *      PC       *       *      PC       *
#       *****************       *****************
#       *      SR       *       *      SR       *
#       *****************       *****************
#           (4 words)               (6 words)
#
# 
# The instruction that was just emulated was also being traced. The trace 
# trap for this instruction will be lost unless we jump to the trace handler.
# So, here we create a Trace Exception format number two exception stack
# frame from the Unimplemented Integer Intruction Exception stack frame
# format number zero and jump to the user supplied hook "_real_trace()".
#
# However, we must also deal with the fact that (a7)+ was used from supervisor
# mode, thereby shifting the stack frame up 4 bytes.
#
uieh_trace_a7:
        mov.b           EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5

        mov.l           EXC_IPC(%a6),0xc(%a6)   # put "Current PC" on stack
        mov.w           &0x2024,0xa(%a6)        # put Vector Offset on stack
        mov.l           EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack

        mov.l           EXC_A6(%a6),%a6         # restore a6
        add.l           &4+LOCAL_SIZE,%sp       # clear stack frame

        bra.l           _real_trace

#
#                                  UIEH FRAME   
#                               *****************
#                               * 0x0 * 0x0f4   *
#          UIEH FRAME           *****************
#       *****************       *     Next      *
#       * 0x0 *  0x0f4  *       *      PC       *       
#       *****************       *****************
#       *    Current    *       *      SR       *
#       *      PC       *       *****************
#       *****************           (4 words)
#       *      SR       *
#       *****************
#           (4 words)
uieh_a7:
        mov.b           EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5

        mov.w           &0x00f4,0xe(%a6)        # put Vector Offset on stack
        mov.l           EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack
        mov.w           EXC_ISR(%a6),0x8(%a6)   # put SR on stack

        mov.l           EXC_A6(%a6),%a6         # restore a6
        add.l           &8+LOCAL_SIZE,%sp       # clear stack frame
        bra.l           _isp_done

##########

# this is the exit point if a data read or write fails.
# a0 = failing address
# d0 = fslw
isp_dacc:
        mov.l           %a0,(%a6)               # save address  
        mov.l           %d0,-0x4(%a6)           # save partial fslw

        lea             -64(%a6),%sp
        movm.l          (%sp)+,&0x7fff          # restore d0-d7/a0-a6

        mov.l           0xc(%sp),-(%sp)         # move voff,hi(pc)
        mov.l           0x4(%sp),0x10(%sp)      # store fslw
        mov.l           0xc(%sp),0x4(%sp)       # store sr,lo(pc)
        mov.l           0x8(%sp),0xc(%sp)       # store address
        mov.l           (%sp)+,0x4(%sp)         # store voff,hi(pc)
        mov.w           &0x4008,0x6(%sp)        # store new voff

        bra.b           isp_acc_exit

# this is the exit point if an instruction word read fails.
# FSLW:
#       misaligned = true
#       read = true
#       size = word
#       instruction = true
#       software emulation error = true
isp_iacc:
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore d0-d7/a0-a5
        unlk            %a6                     # unlink frame
        sub.w           &0x8,%sp                # make room for acc frame
        mov.l           0x8(%sp),(%sp)          # store sr,lo(pc)
        mov.w           0xc(%sp),0x4(%sp)       # store hi(pc)
        mov.w           &0x4008,0x6(%sp)        # store new voff
        mov.l           0x2(%sp),0x8(%sp)       # store address (=pc)
        mov.l           &0x09428001,0xc(%sp)    # store fslw

isp_acc_exit:
        btst            &0x5,(%sp)              # user or supervisor?
        beq.b           isp_acc_exit2           # user
        bset            &0x2,0xd(%sp)           # set supervisor TM bit
isp_acc_exit2:
        bra.l           _real_access            

# if the addressing mode was (an)+ or -(an), the address register must
# be restored to it's pre-exception value before entering _real_access.
isp_restore:
        cmpi.b          SPCOND_FLG(%a6),&restore_flg # do we need a restore?
        bne.b           isp_restore_done        # no
        clr.l           %d0
        mov.b           EXC_SAVREG(%a6),%d0     # regno to restore
        mov.l           EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value
isp_restore_done:
        rts

#########################################################################
# XDEF **************************************************************** #
#       _calc_ea(): routine to calculate effective address              #
#                                                                       #
# XREF **************************************************************** #
#       _imem_read_word() - read instruction word                       #
#       _imem_read_long() - read instruction longword                   #
#       _dmem_read_long() - read data longword (for memory indirect)    #
#       isp_iacc() - handle instruction access error exception          #
#       isp_dacc() - handle data access error exception                 #
#                                                                       #
# INPUT *************************************************************** #
#       d0 = number of bytes related to effective address (w,l)         #
#                                                                       #
# OUTPUT ************************************************************** #
#       If exiting through isp_dacc...                                  #
#               a0 = failing address                                    #
#               d0 = FSLW                                               #
#       elsif exiting though isp_iacc...                                #
#               none                                                    #
#       else                                                            #
#               a0 = effective address                                  #
#                                                                       #
# ALGORITHM *********************************************************** #
#       The effective address type is decoded from the opword residing  #
# on the stack. A jump table is used to vector to a routine for the     #
# appropriate mode. Since none of the emulated integer instructions     #
# uses byte-sized operands, only handle word and long operations.       #
#                                                                       #
#       Dn,An   - shouldn't enter here                                  #
#       (An)    - fetch An value from stack                             #
#       -(An)   - fetch An value from stack; return decr value;         #
#                 place decr value on stack; store old value in case of #
#                 future access error; if -(a7), set mda7_flg in        #
#                 SPCOND_FLG                                            #
#       (An)+   - fetch An value from stack; return value;              #
#                 place incr value on stack; store old value in case of #
#                 future access error; if (a7)+, set mia7_flg in        #
#                 SPCOND_FLG                                            #
#       (d16,An) - fetch An value from stack; read d16 using            #
#                 _imem_read_word(); fetch may fail -> branch to        #
#                 isp_iacc()                                            #
#       (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch         #
#                 address; fetch may fail                               #
#       #<data> - return address of immediate value; set immed_flg      #
#                 in SPCOND_FLG                                         #
#       (d16,PC) - fetch stacked PC value; read d16 using               #
#                 _imem_read_word(); fetch may fail -> branch to        #
#                 isp_iacc()                                            #
#       everything else - read needed displacements as appropriate w/   #
#                 _imem_read_{word,long}(); read may fail; if memory    #
#                 indirect, read indirect address using                 #
#                 _dmem_read_long() which may also fail                 #
#                                                                       #
#########################################################################

        global          _calc_ea
_calc_ea:
        mov.l           %d0,%a0                 # move # bytes to a0

# MODE and REG are taken from the EXC_OPWORD.
        mov.w           EXC_OPWORD(%a6),%d0     # fetch opcode word
        mov.w           %d0,%d1                 # make a copy

        andi.w          &0x3f,%d0               # extract mode field
        andi.l          &0x7,%d1                # extract reg  field

# jump to the corresponding function for each {MODE,REG} pair.
        mov.w           (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance
        jmp             (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode

        swbeg           &64
tbl_ea_mode:
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode

        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode
        short           tbl_ea_mode     -       tbl_ea_mode

        short           addr_ind_a0     -       tbl_ea_mode
        short           addr_ind_a1     -       tbl_ea_mode
        short           addr_ind_a2     -       tbl_ea_mode
        short           addr_ind_a3     -       tbl_ea_mode
        short           addr_ind_a4     -       tbl_ea_mode
        short           addr_ind_a5     -       tbl_ea_mode
        short           addr_ind_a6     -       tbl_ea_mode
        short           addr_ind_a7     -       tbl_ea_mode

        short           addr_ind_p_a0   -       tbl_ea_mode
        short           addr_ind_p_a1   -       tbl_ea_mode
        short           addr_ind_p_a2   -       tbl_ea_mode
        short           addr_ind_p_a3   -       tbl_ea_mode
        short           addr_ind_p_a4   -       tbl_ea_mode
        short           addr_ind_p_a5   -       tbl_ea_mode
        short           addr_ind_p_a6   -       tbl_ea_mode
        short           addr_ind_p_a7   -       tbl_ea_mode

        short           addr_ind_m_a0           -       tbl_ea_mode
        short           addr_ind_m_a1           -       tbl_ea_mode
        short           addr_ind_m_a2           -       tbl_ea_mode
        short           addr_ind_m_a3           -       tbl_ea_mode
        short           addr_ind_m_a4           -       tbl_ea_mode
        short           addr_ind_m_a5           -       tbl_ea_mode
        short           addr_ind_m_a6           -       tbl_ea_mode
        short           addr_ind_m_a7           -       tbl_ea_mode

        short           addr_ind_disp_a0        -       tbl_ea_mode
        short           addr_ind_disp_a1        -       tbl_ea_mode
        short           addr_ind_disp_a2        -       tbl_ea_mode
        short           addr_ind_disp_a3        -       tbl_ea_mode
        short           addr_ind_disp_a4        -       tbl_ea_mode
        short           addr_ind_disp_a5        -       tbl_ea_mode
        short           addr_ind_disp_a6        -       tbl_ea_mode
        short           addr_ind_disp_a7        -       tbl_ea_mode

        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode
        short           _addr_ind_ext           -       tbl_ea_mode

        short           abs_short               -       tbl_ea_mode
        short           abs_long                -       tbl_ea_mode
        short           pc_ind                  -       tbl_ea_mode
        short           pc_ind_ext              -       tbl_ea_mode
        short           immediate               -       tbl_ea_mode
        short           tbl_ea_mode             -       tbl_ea_mode
        short           tbl_ea_mode             -       tbl_ea_mode
        short           tbl_ea_mode             -       tbl_ea_mode

###################################
# Address register indirect: (An) #
###################################
addr_ind_a0:
        mov.l           EXC_A0(%a6),%a0         # Get current a0
        rts

addr_ind_a1:
        mov.l           EXC_A1(%a6),%a0         # Get current a1
        rts

addr_ind_a2:
        mov.l           EXC_A2(%a6),%a0         # Get current a2
        rts

addr_ind_a3:
        mov.l           EXC_A3(%a6),%a0         # Get current a3
        rts

addr_ind_a4:
        mov.l           EXC_A4(%a6),%a0         # Get current a4
        rts

addr_ind_a5:
        mov.l           EXC_A5(%a6),%a0         # Get current a5
        rts

addr_ind_a6:
        mov.l           EXC_A6(%a6),%a0         # Get current a6
        rts

addr_ind_a7:
        mov.l           EXC_A7(%a6),%a0         # Get current a7
        rts

#####################################################
# Address register indirect w/ postincrement: (An)+ #
#####################################################
addr_ind_p_a0:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A0(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A0(%a6)         # save incremented value
        
        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x0,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a1:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A1(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A1(%a6)         # save incremented value

        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x1,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a2:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A2(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A2(%a6)         # save incremented value

        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x2,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a3:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A3(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A3(%a6)         # save incremented value

        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x3,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a4:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A4(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A4(%a6)         # save incremented value

        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x4,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a5:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A5(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A5(%a6)         # save incremented value

        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x5,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a6:
        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A6(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A6(%a6)         # save incremented value

        mov.l           %a0,EXC_SAVVAL(%a6)     # save in case of access error
        mov.b           &0x6,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_p_a7:
        mov.b           &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag

        mov.l           %a0,%d0                 # copy no. bytes
        mov.l           EXC_A7(%a6),%a0         # load current value
        add.l           %a0,%d0                 # increment
        mov.l           %d0,EXC_A7(%a6)         # save incremented value
        rts

####################################################
# Address register indirect w/ predecrement: -(An) #
####################################################
addr_ind_m_a0:
        mov.l           EXC_A0(%a6),%d0         # Get current a0
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A0(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x0,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a1:
        mov.l           EXC_A1(%a6),%d0         # Get current a1
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A1(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x1,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a2:
        mov.l           EXC_A2(%a6),%d0         # Get current a2
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A2(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x2,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a3:
        mov.l           EXC_A3(%a6),%d0         # Get current a3
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A3(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x3,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a4:
        mov.l           EXC_A4(%a6),%d0         # Get current a4
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A4(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x4,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a5:
        mov.l           EXC_A5(%a6),%d0         # Get current a5
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A5(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x5,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a6:
        mov.l           EXC_A6(%a6),%d0         # Get current a6
        mov.l           %d0,EXC_SAVVAL(%a6)     # save in case of access error
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A6(%a6)         # Save decr value
        mov.l           %d0,%a0

        mov.b           &0x6,EXC_SAVREG(%a6)    # save regno, too
        mov.b           &restore_flg,SPCOND_FLG(%a6) # set flag
        rts

addr_ind_m_a7:
        mov.b           &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag

        mov.l           EXC_A7(%a6),%d0         # Get current a7
        sub.l           %a0,%d0                 # Decrement
        mov.l           %d0,EXC_A7(%a6)         # Save decr value
        mov.l           %d0,%a0
        rts

########################################################
# Address register indirect w/ displacement: (d16, An) #
########################################################
addr_ind_disp_a0:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A0(%a6),%a0         # a0 + d16
        rts

addr_ind_disp_a1:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A1(%a6),%a0         # a1 + d16
        rts

addr_ind_disp_a2:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A2(%a6),%a0         # a2 + d16
        rts

addr_ind_disp_a3:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A3(%a6),%a0         # a3 + d16
        rts

addr_ind_disp_a4:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A4(%a6),%a0         # a4 + d16
        rts

addr_ind_disp_a5:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A5(%a6),%a0         # a5 + d16
        rts

addr_ind_disp_a6:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A6(%a6),%a0         # a6 + d16
        rts

addr_ind_disp_a7:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement
        add.l           EXC_A7(%a6),%a0         # a7 + d16
        rts

########################################################################
# Address register indirect w/ index(8-bit displacement): (dn, An, Xn) #
#    "       "         "    w/   "  (base displacement): (bd, An, Xn)  #
# Memory indirect postindexed: ([bd, An], Xn, od)                      #
# Memory indirect preindexed: ([bd, An, Xn], od)                       #
########################################################################
_addr_ind_ext:
        mov.l           %d1,-(%sp)

        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word         # fetch extword in d0

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.l           (%sp)+,%d1

        mov.l           (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0

        btst            &0x8,%d0
        beq.b           addr_ind_index_8bit     # for ext word or not?

        movm.l          &0x3c00,-(%sp)          # save d2-d5

        mov.l           %d0,%d5                 # put extword in d5
        mov.l           %a0,%d3                 # put base in d3

        bra.l           calc_mem_ind            # calc memory indirect
        
addr_ind_index_8bit:
        mov.l           %d2,-(%sp)              # save old d2

        mov.l           %d0,%d1
        rol.w           &0x4,%d1
        andi.w          &0xf,%d1                # extract index regno

        mov.l           (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value

        btst            &0xb,%d0                # is it word or long?
        bne.b           aii8_long
        ext.l           %d1                     # sign extend word index
aii8_long:
        mov.l           %d0,%d2
        rol.w           &0x7,%d2
        andi.l          &0x3,%d2                # extract scale value

        lsl.l           %d2,%d1                 # shift index by scale

        extb.l          %d0                     # sign extend displacement
        add.l           %d1,%d0                 # index + disp
        add.l           %d0,%a0                 # An + (index + disp)

        mov.l           (%sp)+,%d2              # restore old d2
        rts

######################
# Immediate: #<data> #
#########################################################################
# word, long: <ea> of the data is the current extension word            #
#       pointer value. new extension word pointer is simply the old     #
#       plus the number of bytes in the data type(2 or 4).              #
#########################################################################
immediate:
        mov.b           &immed_flg,SPCOND_FLG(%a6) # set immediate flag

        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch extension word ptr
        rts

###########################
# Absolute short: (XXX).W #
###########################
abs_short:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word         # fetch short address

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # return <ea> in a0
        rts

##########################
# Absolute long: (XXX).L #
##########################
abs_long:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_long         # fetch long address

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.l           %d0,%a0                 # return <ea> in a0
        rts

#######################################################
# Program counter indirect w/ displacement: (d16, PC) #
#######################################################
pc_ind:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word         # fetch word displacement

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.w           %d0,%a0                 # sign extend displacement

        add.l           EXC_EXTWPTR(%a6),%a0    # pc + d16

# _imem_read_word() increased the extwptr by 2. need to adjust here.
        subq.l          &0x2,%a0                # adjust <ea>

        rts

##########################################################
# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
# "     "     w/   "  (base displacement): (bd, PC, An)  #
# PC memory indirect postindexed: ([bd, PC], Xn, od)     #
# PC memory indirect preindexed: ([bd, PC, Xn], od)      #
##########################################################
pc_ind_ext:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word         # fetch ext word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.l           EXC_EXTWPTR(%a6),%a0    # put base in a0
        subq.l          &0x2,%a0                # adjust base

        btst            &0x8,%d0                # is disp only 8 bits?
        beq.b           pc_ind_index_8bit       # yes

# the indexed addressing mode uses a base displacement of size
# word or long
        movm.l          &0x3c00,-(%sp)          # save d2-d5

        mov.l           %d0,%d5                 # put extword in d5
        mov.l           %a0,%d3                 # put base in d3

        bra.l           calc_mem_ind            # calc memory indirect
        
pc_ind_index_8bit:
        mov.l           %d2,-(%sp)              # create a temp register

        mov.l           %d0,%d1                 # make extword copy
        rol.w           &0x4,%d1                # rotate reg num into place
        andi.w          &0xf,%d1                # extract register number

        mov.l           (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value

        btst            &0xb,%d0                # is index word or long?
        bne.b           pii8_long               # long
        ext.l           %d1                     # sign extend word index
pii8_long:
        mov.l           %d0,%d2                 # make extword copy
        rol.w           &0x7,%d2                # rotate scale value into place
        andi.l          &0x3,%d2                # extract scale value

        lsl.l           %d2,%d1                 # shift index by scale

        extb.l          %d0                     # sign extend displacement
        add.l           %d1,%d0                 # index + disp
        add.l           %d0,%a0                 # An + (index + disp)

        mov.l           (%sp)+,%d2              # restore temp register

        rts

# a5 = exc_extwptr      (global to uaeh)
# a4 = exc_opword       (global to uaeh)
# a3 = exc_dregs        (global to uaeh)

# d2 = index            (internal "     "    )
# d3 = base             (internal "     "    )
# d4 = od               (internal "     "    )
# d5 = extword          (internal "     "    )
calc_mem_ind:
        btst            &0x6,%d5                # is the index suppressed?
        beq.b           calc_index
        clr.l           %d2                     # yes, so index = 0
        bra.b           base_supp_ck
calc_index:
        bfextu          %d5{&16:&4},%d2
        mov.l           (EXC_DREGS,%a6,%d2.w*4),%d2
        btst            &0xb,%d5                # is index word or long?
        bne.b           no_ext
        ext.l           %d2
no_ext:
        bfextu          %d5{&21:&2},%d0
        lsl.l           %d0,%d2
base_supp_ck:
        btst            &0x7,%d5                # is the bd suppressed?
        beq.b           no_base_sup
        clr.l           %d3
no_base_sup:
        bfextu          %d5{&26:&2},%d0 # get bd size
#       beq.l           _error                  # if (size == 0) it's reserved
        cmpi.b          %d0,&2
        blt.b           no_bd
        beq.b           get_word_bd

        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_long
        
        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        bra.b           chk_ind
get_word_bd:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        ext.l           %d0                     # sign extend bd
        
chk_ind:
        add.l           %d0,%d3                 # base += bd
no_bd:
        bfextu          %d5{&30:&2},%d0         # is od suppressed?
        beq.w           aii_bd
        cmpi.b          %d0,&0x2
        blt.b           null_od
        beq.b           word_od
        
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x4,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_long

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        bra.b           add_them

word_od:
        mov.l           EXC_EXTWPTR(%a6),%a0    # fetch instruction addr
        addq.l          &0x2,EXC_EXTWPTR(%a6)   # incr instruction ptr
        bsr.l           _imem_read_word

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        ext.l           %d0                     # sign extend od
        bra.b           add_them

null_od:
        clr.l           %d0
add_them:
        mov.l           %d0,%d4
        btst            &0x2,%d5                # pre or post indexing?
        beq.b           pre_indexed

        mov.l           %d3,%a0
        bsr.l           _dmem_read_long

        tst.l           %d1                     # dfetch error?
        bne.b           calc_ea_err             # yes

        add.l           %d2,%d0                 # <ea> += index
        add.l           %d4,%d0                 # <ea> += od
        bra.b           done_ea

pre_indexed:
        add.l           %d2,%d3                 # preindexing
        mov.l           %d3,%a0
        bsr.l           _dmem_read_long

        tst.l           %d1                     # ifetch error?
        bne.b           calc_ea_err             # yes

        add.l           %d4,%d0                 # ea += od
        bra.b           done_ea

aii_bd:
        add.l           %d2,%d3                 # ea = (base + bd) + index
        mov.l           %d3,%d0
done_ea:
        mov.l           %d0,%a0

        movm.l          (%sp)+,&0x003c          # restore d2-d5
        rts

# if dmem_read_long() returns a fail message in d1, the package
# must create an access error frame. here, we pass a skeleton fslw
# and the failing address to the routine that creates the new frame.
# FSLW:
#       read = true
#       size = longword
#       TM = data
#       software emulation error = true
calc_ea_err:
        mov.l           %d3,%a0                 # pass failing address
        mov.l           &0x01010001,%d0         # pass fslw
        bra.l           isp_dacc

#########################################################################
# XDEF **************************************************************** #
#       _moveperipheral(): routine to emulate movep instruction         #
#                                                                       #
# XREF **************************************************************** #
#       _dmem_read_byte() - read byte from memory                       #
#       _dmem_write_byte() - write byte to memory                       #
#       isp_dacc() - handle data access error exception                 #
#                                                                       #
# INPUT *************************************************************** #
#       none                                                            #
#                                                                       #
# OUTPUT ************************************************************** #
#       If exiting through isp_dacc...                                  #
#               a0 = failing address                                    #
#               d0 = FSLW                                               #
#       else                                                            #
#               none                                                    #
#                                                                       #
# ALGORITHM *********************************************************** #
#       Decode the movep instruction words stored at EXC_OPWORD and     #
# either read or write the required bytes from/to memory. Use the       #
# _dmem_{read,write}_byte() routines. If one of the memory routines     #
# returns a failing value, we must pass the failing address and a FSLW  #
# to the _isp_dacc() routine.                                           #
#       Since this instruction is used to access peripherals, make sure #
# to only access the required bytes.                                    #
#                                                                       #
#########################################################################

###########################
# movep.(w,l)   Dx,(d,Ay) #
# movep.(w,l)   (d,Ay),Dx #
###########################
        global          _moveperipheral
_moveperipheral:
        mov.w           EXC_OPWORD(%a6),%d1     # fetch the opcode word

        mov.b           %d1,%d0
        and.w           &0x7,%d0                # extract Ay from opcode word

        mov.l           (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay

        add.w           EXC_EXTWORD(%a6),%a0    # add: an + sgn_ext(disp)

        btst            &0x7,%d1                # (reg 2 mem) or (mem 2 reg)
        beq.w           mem2reg

# reg2mem: fetch dx, then write it to memory
reg2mem:
        mov.w           %d1,%d0
        rol.w           &0x7,%d0
        and.w           &0x7,%d0                # extract Dx from opcode word

        mov.l           (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx

        btst            &0x6,%d1                # word or long operation?
        beq.b           r2mwtrans

# a0 = dst addr
# d0 = Dx
r2mltrans:
        mov.l           %d0,%d2                 # store data
        mov.l           %a0,%a2                 # store addr
        rol.l           &0x8,%d2
        mov.l           %d2,%d0

        bsr.l           _dmem_write_byte        # os  : write hi

        tst.l           %d1                     # dfetch error?
        bne.w           movp_write_err          # yes

        add.w           &0x2,%a2                # incr addr
        mov.l           %a2,%a0
        rol.l           &0x8,%d2
        mov.l           %d2,%d0

        bsr.l           _dmem_write_byte        # os  : write lo

        tst.l           %d1                     # dfetch error?
        bne.w           movp_write_err          # yes

        add.w           &0x2,%a2                # incr addr
        mov.l           %a2,%a0
        rol.l           &0x8,%d2
        mov.l           %d2,%d0

        bsr.l           _dmem_write_byte        # os  : write lo

        tst.l           %d1                     # dfetch error?
        bne.w           movp_write_err          # yes

        add.w           &0x2,%a2                # incr addr
        mov.l           %a2,%a0
        rol.l           &0x8,%d2
        mov.l           %d2,%d0

        bsr.l           _dmem_write_byte        # os  : write lo

        tst.l           %d1                     # dfetch error?
        bne.w           movp_write_err          # yes

        rts

# a0 = dst addr
# d0 = Dx
r2mwtrans:
        mov.l           %d0,%d2                 # store data
        mov.l           %a0,%a2                 # store addr
        lsr.w           &0x8,%d0

        bsr.l           _dmem_write_byte        # os  : write hi

        tst.l           %d1                     # dfetch error?
        bne.w           movp_write_err          # yes

        add.w           &0x2,%a2
        mov.l           %a2,%a0
        mov.l           %d2,%d0

        bsr.l           _dmem_write_byte        # os  : write lo

        tst.l           %d1                     # dfetch error?
        bne.w           movp_write_err          # yes

        rts

# mem2reg: read bytes from memory.
# determines the dest register, and then writes the bytes into it.
mem2reg:
        btst            &0x6,%d1                # word or long operation?
        beq.b           m2rwtrans

# a0 = dst addr
m2rltrans:
        mov.l           %a0,%a2                 # store addr

        bsr.l           _dmem_read_byte         # read first byte

        tst.l           %d1                     # dfetch error?
        bne.w           movp_read_err           # yes

        mov.l           %d0,%d2

        add.w           &0x2,%a2                # incr addr by 2 bytes
        mov.l           %a2,%a0

        bsr.l           _dmem_read_byte         # read second byte

        tst.l           %d1                     # dfetch error?
        bne.w           movp_read_err           # yes

        lsl.w           &0x8,%d2
        mov.b           %d0,%d2                 # append bytes

        add.w           &0x2,%a2                # incr addr by 2 bytes
        mov.l           %a2,%a0

        bsr.l           _dmem_read_byte         # read second byte

        tst.l           %d1                     # dfetch error?
        bne.w           movp_read_err           # yes

        lsl.l           &0x8,%d2
        mov.b           %d0,%d2                 # append bytes

        add.w           &0x2,%a2                # incr addr by 2 bytes
        mov.l           %a2,%a0

        bsr.l           _dmem_read_byte         # read second byte

        tst.l           %d1                     # dfetch error?
        bne.w           movp_read_err           # yes

        lsl.l           &0x8,%d2
        mov.b           %d0,%d2                 # append bytes

        mov.b           EXC_OPWORD(%a6),%d1
        lsr.b           &0x1,%d1
        and.w           &0x7,%d1                # extract Dx from opcode word
        
        mov.l           %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx

        rts
        
# a0 = dst addr
m2rwtrans:
        mov.l           %a0,%a2                 # store addr

        bsr.l           _dmem_read_byte         # read first byte

        tst.l           %d1                     # dfetch error?
        bne.w           movp_read_err           # yes

        mov.l           %d0,%d2

        add.w           &0x2,%a2                # incr addr by 2 bytes
        mov.l           %a2,%a0

        bsr.l           _dmem_read_byte         # read second byte

        tst.l           %d1                     # dfetch error?
        bne.w           movp_read_err           # yes

        lsl.w           &0x8,%d2
        mov.b           %d0,%d2                 # append bytes

        mov.b           EXC_OPWORD(%a6),%d1
        lsr.b           &0x1,%d1
        and.w           &0x7,%d1                # extract Dx from opcode word
        
        mov.w           %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx

        rts

# if dmem_{read,write}_byte() returns a fail message in d1, the package
# must create an access error frame. here, we pass a skeleton fslw
# and the failing address to the routine that creates the new frame.
# FSLW:
#       write = true
#       size = byte
#       TM = data
#       software emulation error = true
movp_write_err:
        mov.l           %a2,%a0                 # pass failing address
        mov.l           &0x00a10001,%d0         # pass fslw
        bra.l           isp_dacc

# FSLW:
#       read = true
#       size = byte
#       TM = data
#       software emulation error = true
movp_read_err:
        mov.l           %a2,%a0                 # pass failing address
        mov.l           &0x01210001,%d0         # pass fslw
        bra.l           isp_dacc

#########################################################################
# XDEF **************************************************************** #
#       _chk2_cmp2(): routine to emulate chk2/cmp2 instructions         #
#                                                                       #
# XREF **************************************************************** #
#       _calc_ea(): calculate effective address                         #
#       _dmem_read_long(): read operands                                #
#       _dmem_read_word(): read operands                                #
#       isp_dacc(): handle data access error exception                  #
#                                                                       #
# INPUT *************************************************************** #
#       none                                                            #
#                                                                       #
# OUTPUT ************************************************************** #
#       If exiting through isp_dacc...                                  #
#               a0 = failing address                                    #
#               d0 = FSLW                                               #
#       else                                                            #
#               none                                                    #
#                                                                       #
# ALGORITHM *********************************************************** #
#       First, calculate the effective address, then fetch the byte,    #
# word, or longword sized operands. Then, in the interest of            #
# simplicity, all operands are converted to longword size whether the   #
# operation is byte, word, or long. The bounds are sign extended        #
# accordingly. If Rn is a data regsiter, Rn is also sign extended. If   #
# Rn is an address register, it need not be sign extended since the     #
# full register is always used.                                         #
#       The comparisons are made and the condition codes calculated.    #
# If the instruction is chk2 and the Rn value is out-of-bounds, set     #
# the ichk_flg in SPCOND_FLG.                                           #
#       If the memory fetch returns a failing value, pass the failing   #
# address and FSLW to the isp_dacc() routine.                           #
#                                                                       #
#########################################################################

        global          _chk2_cmp2
_chk2_cmp2:

# passing size parameter doesn't matter since chk2 & cmp2 can't do
# either predecrement, postincrement, or immediate.
        bsr.l           _calc_ea                # calculate <ea>

        mov.b           EXC_EXTWORD(%a6), %d0   # fetch hi extension word
        rol.b           &0x4, %d0               # rotate reg bits into lo
        and.w           &0xf, %d0               # extract reg bits

        mov.l           (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval

        cmpi.b          EXC_OPWORD(%a6), &0x2   # what size is operation?
        blt.b           chk2_cmp2_byte          # size == byte
        beq.b           chk2_cmp2_word          # size == word

# the bounds are longword size. call routine to read the lower
# bound into d0 and the higher bound into d1.
chk2_cmp2_long:
        mov.l           %a0,%a2                 # save copy of <ea>
        bsr.l           _dmem_read_long         # fetch long lower bound

        tst.l           %d1                     # dfetch error?
        bne.w           chk2_cmp2_err_l         # yes

        mov.l           %d0,%d3                 # save long lower bound
        addq.l          &0x4,%a2
        mov.l           %a2,%a0                 # pass <ea> of long upper bound
        bsr.l           _dmem_read_long         # fetch long upper bound

        tst.l           %d1                     # dfetch error?
        bne.w           chk2_cmp2_err_l         # yes

        mov.l           %d0,%d1                 # long upper bound in d1
        mov.l           %d3,%d0                 # long lower bound in d0
        bra.w           chk2_cmp2_compare       # go do the compare emulation

# the bounds are word size. fetch them in one subroutine call by
# reading a longword. sign extend both. if it's a data operation,
# sign extend Rn to long, also.
chk2_cmp2_word:
        mov.l           %a0,%a2
        bsr.l           _dmem_read_long         # fetch 2 word bounds

        tst.l           %d1                     # dfetch error?
        bne.w           chk2_cmp2_err_l         # yes

        mov.w           %d0, %d1                # place hi in %d1
        swap            %d0                     # place lo in %d0

        ext.l           %d0                     # sign extend lo bnd
        ext.l           %d1                     # sign extend hi bnd

        btst            &0x7, EXC_EXTWORD(%a6)  # address compare?
        bne.w           chk2_cmp2_compare       # yes; don't sign extend

# operation is a data register compare.
# sign extend word to long so we can do simple longword compares.
        ext.l           %d2                     # sign extend data word
        bra.w           chk2_cmp2_compare       # go emulate compare

# the bounds are byte size. fetch them in one subroutine call by
# reading a word. sign extend both. if it's a data operation,
# sign extend Rn to long, also.
chk2_cmp2_byte:
        mov.l           %a0,%a2
        bsr.l           _dmem_read_word         # fetch 2 byte bounds

        tst.l           %d1                     # dfetch error?
        bne.w           chk2_cmp2_err_w         # yes

        mov.b           %d0, %d1                # place hi in %d1
        lsr.w           &0x8, %d0               # place lo in %d0

        extb.l          %d0                     # sign extend lo bnd
        extb.l          %d1                     # sign extend hi bnd

        btst            &0x7, EXC_EXTWORD(%a6)  # address compare?
        bne.b           chk2_cmp2_compare       # yes; don't sign extend

# operation is a data register compare.
# sign extend byte to long so we can do simple longword compares.
        extb.l          %d2                     # sign extend data byte

#
# To set the ccodes correctly:
#       (1) save 'Z' bit from (Rn - lo)
#       (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi))
#       (3) keep 'X', 'N', and 'V' from before instruction
#       (4) combine ccodes
#
chk2_cmp2_compare:
        sub.l           %d0, %d2                # (Rn - lo)
        mov.w           %cc, %d3                # fetch resulting ccodes
        andi.b          &0x4, %d3               # keep 'Z' bit
        sub.l           %d0, %d1                # (hi - lo)
        cmp.l           %d1,%d2                 # ((hi - lo) - (Rn - hi))

        mov.w           %cc, %d4                # fetch resulting ccodes
        or.b            %d4, %d3                # combine w/ earlier ccodes
        andi.b          &0x5, %d3               # keep 'Z' and 'N'

        mov.w           EXC_CC(%a6), %d4        # fetch old ccodes
        andi.b          &0x1a, %d4              # keep 'X','N','V' bits
        or.b            %d3, %d4                # insert new ccodes
        mov.w           %d4, EXC_CC(%a6)        # save new ccodes

        btst            &0x3, EXC_EXTWORD(%a6)  # separate chk2,cmp2
        bne.b           chk2_finish             # it's a chk2

        rts

# this code handles the only difference between chk2 and cmp2. chk2 would
# have trapped out if the value was out of bounds. we check this by seeing
# if the 'N' bit was set by the operation.
chk2_finish:    
        btst            &0x0, %d4               # is 'N' bit set?
        bne.b           chk2_trap               # yes;chk2 should trap
        rts
chk2_trap:
        mov.b           &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag
        rts

# if dmem_read_{long,word}() returns a fail message in d1, the package
# must create an access error frame. here, we pass a skeleton fslw
# and the failing address to the routine that creates the new frame.
# FSLW:
#       read = true
#       size = longword
#       TM = data
#       software emulation error = true
chk2_cmp2_err_l:
        mov.l           %a2,%a0                 # pass failing address
        mov.l           &0x01010001,%d0         # pass fslw
        bra.l           isp_dacc

# FSLW:
#       read = true
#       size = word
#       TM = data
#       software emulation error = true
chk2_cmp2_err_w:
        mov.l           %a2,%a0                 # pass failing address
        mov.l           &0x01410001,%d0         # pass fslw
        bra.l           isp_dacc

#########################################################################
# XDEF **************************************************************** #
#       _div64(): routine to emulate div{u,s}.l <ea>,Dr:Dq              #
#                                                       64/32->32r:32q  #
#                                                                       #
# XREF **************************************************************** #
#       _calc_ea() - calculate effective address                        #
#       isp_iacc() - handle instruction access error exception          #
#       isp_dacc() - handle data access error exception                 #
#       isp_restore() - restore An on access error w/ -() or ()+        #
#                                                                       #
# INPUT *************************************************************** #
#       none                                                            #
#                                                                       #
# OUTPUT ************************************************************** #
#       If exiting through isp_dacc...                                  #
#               a0 = failing address                                    #
#               d0 = FSLW                                               #
#       else                                                            #
#               none                                                    #
#                                                                       #
# ALGORITHM *********************************************************** #
#       First, decode the operand location. If it's in Dn, fetch from   #
# the stack. If it's in memory, use _calc_ea() to calculate the         #
# effective address. Use _dmem_read_long() to fetch at that address.    #
# Unless the operand is immediate data. Then use _imem_read_long().     #
# Send failures to isp_dacc() or isp_iacc() as appropriate.             #
#       If the operands are signed, make them unsigned and save the     #
# sign info for later. Separate out special cases like divide-by-zero   #
# or 32-bit divides if possible. Else, use a special math algorithm     #
# to calculate the result.                                              #
#       Restore sign info if signed instruction. Set the condition      #
# codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the     #
# quotient and remainder in the appropriate data registers on the stack.#
#                                                                       #
#########################################################################

set     NDIVISOR,       EXC_TEMP+0x0
set     NDIVIDEND,      EXC_TEMP+0x1
set     NDRSAVE,        EXC_TEMP+0x2
set     NDQSAVE,        EXC_TEMP+0x4
set     DDSECOND,       EXC_TEMP+0x6
set     DDQUOTIENT,     EXC_TEMP+0x8
set     DDNORMAL,       EXC_TEMP+0xc

        global          _div64
#############
# div(u,s)l #
#############
_div64:
        mov.b           EXC_OPWORD+1(%a6), %d0
        andi.b          &0x38, %d0              # extract src mode

        bne.w           dcontrolmodel_s         # %dn dest or control mode?

        mov.b           EXC_OPWORD+1(%a6), %d0  # extract Dn from opcode
        andi.w          &0x7, %d0
        mov.l           (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register

dgotsrcl:
        beq.w           div64eq0                # divisor is = 0!!!

        mov.b           EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword
        mov.b           EXC_EXTWORD(%a6), %d1   # extract Dq from extword
        and.w           &0x7, %d0
        lsr.b           &0x4, %d1
        and.w           &0x7, %d1
        mov.w           %d0, NDRSAVE(%a6)       # save Dr for later
        mov.w           %d1, NDQSAVE(%a6)       # save Dq for later

# fetch %dr and %dq directly off stack since all regs are saved there
        mov.l           (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi
        mov.l           (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo

# separate signed and unsigned divide
        btst            &0x3, EXC_EXTWORD(%a6)  # signed or unsigned?
        beq.b           dspecialcases           # use positive divide

# save the sign of the divisor
# make divisor unsigned if it's negative
        tst.l           %d7                     # chk sign of divisor
        slt             NDIVISOR(%a6)           # save sign of divisor
        bpl.b           dsgndividend
        neg.l           %d7                     # complement negative divisor

# save the sign of the dividend
# make dividend unsigned if it's negative
dsgndividend:
        tst.l           %d5                     # chk sign of hi(dividend)
        slt             NDIVIDEND(%a6)          # save sign of dividend
        bpl.b           dspecialcases

        mov.w           &0x0, %cc               # clear 'X' cc bit
        negx.l          %d6                     # complement signed dividend
        negx.l          %d5

# extract some special cases:
#       - is (dividend == 0) ?
#       - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)
dspecialcases:
        tst.l           %d5                     # is (hi(dividend) == 0)
        bne.b           dnormaldivide           # no, so try it the long way

        tst.l           %d6                     # is (lo(dividend) == 0), too
        beq.w           ddone                   # yes, so (dividend == 0)

        cmp.l           %d7,%d6                 # is (divisor <= lo(dividend))
        bls.b           d32bitdivide            # yes, so use 32 bit divide

        exg             %d5,%d6                 # q = 0, r = dividend
        bra.w           divfinish               # can't divide, we're done.

d32bitdivide:
        tdivu.l         %d7, %d5:%d6            # it's only a 32/32 bit div!

        bra.b           divfinish

dnormaldivide:
# last special case:
#       - is hi(dividend) >= divisor ? if yes, then overflow
        cmp.l           %d7,%d5
        bls.b           ddovf                   # answer won't fit in 32 bits

# perform the divide algorithm:
        bsr.l           dclassical              # do int divide

# separate into signed and unsigned finishes.
divfinish:
        btst            &0x3, EXC_EXTWORD(%a6)  # do divs, divu separately
        beq.b           ddone                   # divu has no processing!!!

# it was a divs.l, so ccode setting is a little more complicated...
        tst.b           NDIVIDEND(%a6)          # remainder has same sign 
        beq.b           dcc                     # as dividend.
        neg.l           %d5                     # sgn(rem) = sgn(dividend)
dcc:
        mov.b           NDIVISOR(%a6), %d0
        eor.b           %d0, NDIVIDEND(%a6)     # chk if quotient is negative
        beq.b           dqpos                   # branch to quot positive

# 0x80000000 is the largest number representable as a 32-bit negative
# number. the negative of 0x80000000 is 0x80000000.
        cmpi.l          %d6, &0x80000000        # will (-quot) fit in 32 bits?
        bhi.b           ddovf

        neg.l           %d6                     # make (-quot) 2's comp

        bra.b           ddone

dqpos:
        btst            &0x1f, %d6              # will (+quot) fit in 32 bits?
        bne.b           ddovf

ddone:
# at this point, result is normal so ccodes are set based on result.
        mov.w           EXC_CC(%a6), %cc
        tst.l           %d6                     # set %ccode bits
        mov.w           %cc, EXC_CC(%a6)

        mov.w           NDRSAVE(%a6), %d0       # get Dr off stack
        mov.w           NDQSAVE(%a6), %d1       # get Dq off stack      

# if the register numbers are the same, only the quotient gets saved.
# so, if we always save the quotient second, we save ourselves a cmp&beq
        mov.l           %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder
        mov.l           %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient

        rts

ddovf:
        bset            &0x1, EXC_CC+1(%a6)     # 'V' set on overflow
        bclr            &0x0, EXC_CC+1(%a6)     # 'C' cleared on overflow

        rts

div64eq0:
        andi.b          &0x1e, EXC_CC+1(%a6)    # clear 'C' bit on divbyzero
        ori.b           &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag
        rts

###########################################################################
#########################################################################
# This routine uses the 'classical' Algorithm D from Donald Knuth's     #
# Art of Computer Programming, vol II, Seminumerical Algorithms.        #
# For this implementation b=2**16, and the target is U1U2U3U4/V1V2,     #
# where U,V are words of the quadword dividend and longword divisor,    #
# and U1, V1 are the most significant words.                            #
#                                                                       #
# The most sig. longword of the 64 bit dividend must be in %d5, least   #
# in %d6. The divisor must be in the variable ddivisor, and the         #
# signed/unsigned flag ddusign must be set (0=unsigned,1=signed).       #
# The quotient is returned in %d6, remainder in %d5, unless the         #
# v (overflow) bit is set in the saved %ccr. If overflow, the dividend  #
# is unchanged.                                                         #
#########################################################################
dclassical:
# if the divisor msw is 0, use simpler algorithm then the full blown
# one at ddknuth:

        cmpi.l          %d7, &0xffff
        bhi.b           ddknuth                 # go use D. Knuth algorithm

# Since the divisor is only a word (and larger than the mslw of the dividend),
# a simpler algorithm may be used :
# In the general case, four quotient words would be created by
# dividing the divisor word into each dividend word. In this case,
# the first two quotient words must be zero, or overflow would occur.
# Since we already checked this case above, we can treat the most significant
# longword of the dividend as (0) remainder (see Knuth) and merely complete 
# the last two divisions to get a quotient longword and word remainder:

        clr.l           %d1
        swap            %d5                     # same as r*b if previous step rqd
        swap            %d6                     # get u3 to lsw position
        mov.w           %d6, %d5                # rb + u3

        divu.w          %d7, %d5

        mov.w           %d5, %d1                # first quotient word
        swap            %d6                     # get u4
        mov.w           %d6, %d5                # rb + u4

        divu.w          %d7, %d5

        swap            %d1
        mov.w           %d5, %d1                # 2nd quotient 'digit'
        clr.w           %d5
        swap            %d5                     # now remainder
        mov.l           %d1, %d6                # and quotient

        rts

ddknuth:
# In this algorithm, the divisor is treated as a 2 digit (word) number
# which is divided into a 3 digit (word) dividend to get one quotient
# digit (word). After subtraction, the dividend is shifted and the
# process repeated. Before beginning, the divisor and quotient are
# 'normalized' so that the process of estimating the quotient digit
# will yield verifiably correct results..

        clr.l           DDNORMAL(%a6)           # count of shifts for normalization
        clr.b           DDSECOND(%a6)           # clear flag for quotient digits
        clr.l           %d1                     # %d1 will hold trial quotient
ddnchk:
        btst            &31, %d7                # must we normalize? first word of 
        bne.b           ddnormalized            # divisor (V1) must be >= 65536/2
        addq.l          &0x1, DDNORMAL(%a6)     # count normalization shifts
        lsl.l           &0x1, %d7               # shift the divisor
        lsl.l           &0x1, %d6               # shift u4,u3 with overflow to u2
        roxl.l          &0x1, %d5               # shift u1,u2 
        bra.w           ddnchk
ddnormalized:

# Now calculate an estimate of the quotient words (msw first, then lsw).
# The comments use subscripts for the first quotient digit determination.
        mov.l           %d7, %d3                # divisor
        mov.l           %d5, %d2                # dividend mslw
        swap            %d2
        swap            %d3
        cmp.w           %d2, %d3                # V1 = U1 ?
        bne.b           ddqcalc1
        mov.w           &0xffff, %d1            # use max trial quotient word
        bra.b           ddadj0
ddqcalc1:
        mov.l           %d5, %d1                

        divu.w          %d3, %d1                # use quotient of mslw/msw

        andi.l          &0x0000ffff, %d1        # zero any remainder
ddadj0:

# now test the trial quotient and adjust. This step plus the
# normalization assures (according to Knuth) that the trial
# quotient will be at worst 1 too large.
        mov.l           %d6, -(%sp)
        clr.w           %d6                     # word u3 left
        swap            %d6                     # in lsw position
ddadj1: mov.l           %d7, %d3
        mov.l           %d1, %d2
        mulu.w          %d7, %d2                # V2q
        swap            %d3
        mulu.w          %d1, %d3                # V1q
        mov.l           %d5, %d4                # U1U2
        sub.l           %d3, %d4                # U1U2 - V1q

        swap            %d4

        mov.w           %d4,%d0
        mov.w           %d6,%d4                 # insert lower word (U3)

        tst.w           %d0                     # is upper word set?
        bne.w           ddadjd1

#       add.l           %d6, %d4                # (U1U2 - V1q) + U3

        cmp.l           %d2, %d4
        bls.b           ddadjd1                 # is V2q > (U1U2-V1q) + U3 ?
        subq.l          &0x1, %d1               # yes, decrement and recheck
        bra.b           ddadj1
ddadjd1:
# now test the word by multiplying it by the divisor (V1V2) and comparing
# the 3 digit (word) result with the current dividend words
        mov.l           %d5, -(%sp)             # save %d5 (%d6 already saved)
        mov.l           %d1, %d6
        swap            %d6                     # shift answer to ms 3 words
        mov.l           %d7, %d5
        bsr.l           dmm2
        mov.l           %d5, %d2                # now %d2,%d3 are trial*divisor
        mov.l           %d6, %d3
        mov.l           (%sp)+, %d5             # restore dividend
        mov.l           (%sp)+, %d6
        sub.l           %d3, %d6
        subx.l          %d2, %d5                # subtract double precision
        bcc             dd2nd                   # no carry, do next quotient digit
        subq.l          &0x1, %d1               # q is one too large
# need to add back divisor longword to current ms 3 digits of dividend
# - according to Knuth, this is done only 2 out of 65536 times for random
# divisor, dividend selection.
        clr.l           %d2
        mov.l           %d7, %d3
        swap            %d3
        clr.w           %d3                     # %d3 now ls word of divisor
        add.l           %d3, %d6                # aligned with 3rd word of dividend
        addx.l          %d2, %d5
        mov.l           %d7, %d3
        clr.w           %d3                     # %d3 now ms word of divisor
        swap            %d3                     # aligned with 2nd word of dividend
        add.l           %d3, %d5
dd2nd:
        tst.b           DDSECOND(%a6)           # both q words done?
        bne.b           ddremain
# first quotient digit now correct. store digit and shift the
# (subtracted) dividend 
        mov.w           %d1, DDQUOTIENT(%a6)
        clr.l           %d1
        swap            %d5
        swap            %d6
        mov.w           %d6, %d5
        clr.w           %d6
        st              DDSECOND(%a6)           # second digit
        bra.w           ddnormalized
ddremain:
# add 2nd word to quotient, get the remainder.
        mov.w           %d1, DDQUOTIENT+2(%a6)
# shift down one word/digit to renormalize remainder.
        mov.w           %d5, %d6
        swap            %d6
        swap            %d5
        mov.l           DDNORMAL(%a6), %d7      # get norm shift count
        beq.b           ddrn
        subq.l          &0x1, %d7               # set for loop count
ddnlp:
        lsr.l           &0x1, %d5               # shift into %d6
        roxr.l          &0x1, %d6
        dbf             %d7, ddnlp
ddrn:
        mov.l           %d6, %d5                # remainder
        mov.l           DDQUOTIENT(%a6), %d6    # quotient

        rts
dmm2:
# factors for the 32X32->64 multiplication are in %d5 and %d6.
# returns 64 bit result in %d5 (hi) %d6(lo).
# destroys %d2,%d3,%d4.

# multiply hi,lo words of each factor to get 4 intermediate products
        mov.l           %d6, %d2
        mov.l           %d6, %d3
        mov.l           %d5, %d4
        swap            %d3
        swap            %d4
        mulu.w          %d5, %d6                # %d6 <- lsw*lsw
        mulu.w          %d3, %d5                # %d5 <- msw-dest*lsw-source
        mulu.w          %d4, %d2                # %d2 <- msw-source*lsw-dest
        mulu.w          %d4, %d3                # %d3 <- msw*msw
# now use swap and addx to consolidate to two longwords
        clr.l           %d4
        swap            %d6
        add.w           %d5, %d6                # add msw of l*l to lsw of m*l product
        addx.w          %d4, %d3                # add any carry to m*m product
        add.w           %d2, %d6                # add in lsw of other m*l product
        addx.w          %d4, %d3                # add any carry to m*m product
        swap            %d6                     # %d6 is low 32 bits of final product
        clr.w           %d5
        clr.w           %d2                     # lsw of two mixed products used,
        swap            %d5                     # now use msws of longwords
        swap            %d2
        add.l           %d2, %d5                                
        add.l           %d3, %d5                # %d5 now ms 32 bits of final product
        rts

##########
dcontrolmodel_s:
        movq.l          &LONG,%d0
        bsr.l           _calc_ea                # calc <ea>

        cmpi.b          SPCOND_FLG(%a6),&immed_flg # immediate addressing mode?
        beq.b           dimmed                  # yes

        mov.l           %a0,%a2
        bsr.l           _dmem_read_long         # fetch divisor from <ea>

        tst.l           %d1                     # dfetch error?
        bne.b           div64_err               # yes

        mov.l           %d0, %d7
        bra.w           dgotsrcl

# we have to split out immediate data here because it must be read using
# imem_read() instead of dmem_read(). this becomes especially important
# if the fetch runs into some deadly fault.
dimmed:
        addq.l          &0x4,EXC_EXTWPTR(%a6)
        bsr.l           _imem_read_long         # read immediate value

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.l           %d0,%d7
        bra.w           dgotsrcl

##########

# if dmem_read_long() returns a fail message in d1, the package
# must create an access error frame. here, we pass a skeleton fslw
# and the failing address to the routine that creates the new frame.
# also, we call isp_restore in case the effective addressing mode was
# (an)+ or -(an) in which case the previous "an" value must be restored.
# FSLW:
#       read = true
#       size = longword
#       TM = data
#       software emulation error = true
div64_err:
        bsr.l           isp_restore             # restore addr reg
        mov.l           %a2,%a0                 # pass failing address
        mov.l           &0x01010001,%d0         # pass fslw
        bra.l           isp_dacc

#########################################################################
# XDEF **************************************************************** #
#       _mul64(): routine to emulate mul{u,s}.l <ea>,Dh:Dl 32x32->64    #
#                                                                       #
# XREF **************************************************************** #
#       _calc_ea() - calculate effective address                        #
#       isp_iacc() - handle instruction access error exception          #
#       isp_dacc() - handle data access error exception                 #
#       isp_restore() - restore An on access error w/ -() or ()+        #
#                                                                       #
# INPUT *************************************************************** #
#       none                                                            #
#                                                                       #
# OUTPUT ************************************************************** #
#       If exiting through isp_dacc...                                  #
#               a0 = failing address                                    #
#               d0 = FSLW                                               #
#       else                                                            #
#               none                                                    #
#                                                                       #
# ALGORITHM *********************************************************** #
#       First, decode the operand location. If it's in Dn, fetch from   #
# the stack. If it's in memory, use _calc_ea() to calculate the         #
# effective address. Use _dmem_read_long() to fetch at that address.    #
# Unless the operand is immediate data. Then use _imem_read_long().     #
# Send failures to isp_dacc() or isp_iacc() as appropriate.             #
#       If the operands are signed, make them unsigned and save the     #
# sign info for later. Perform the multiplication using 16x16->32       #
# unsigned multiplies and "add" instructions. Store the high and low    #
# portions of the result in the appropriate data registers on the       #
# stack. Calculate the condition codes, also.                           #
#                                                                       #
#########################################################################

#############
# mul(u,s)l #
#############
        global          _mul64
_mul64:
        mov.b           EXC_OPWORD+1(%a6), %d0  # extract src {mode,reg}
        cmpi.b          %d0, &0x7               # is src mode Dn or other?
        bgt.w           mul64_memop             # src is in memory

# multiplier operand in the data register file.
# must extract the register number and fetch the operand from the stack.
mul64_regop:
        andi.w          &0x7, %d0               # extract Dn
        mov.l           (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier

# multiplier is in %d3. now, extract Dl and Dh fields and fetch the
# multiplicand from the data register specified by Dl.
mul64_multiplicand:
        mov.w           EXC_EXTWORD(%a6), %d2   # fetch ext word
        clr.w           %d1                     # clear Dh reg
        mov.b           %d2, %d1                # grab Dh
        rol.w           &0x4, %d2               # align Dl byte
        andi.w          &0x7, %d2               # extract Dl

        mov.l           (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand

# check for the case of "zero" result early
        tst.l           %d4                     # test multiplicand
        beq.w           mul64_zero              # handle zero separately
        tst.l           %d3                     # test multiplier
        beq.w           mul64_zero              # handle zero separately

# multiplier is in %d3 and multiplicand is in %d4.
# if the operation is to be signed, then the operands are converted
# to unsigned and the result sign is saved for the end.
        clr.b           EXC_TEMP(%a6)           # clear temp space
        btst            &0x3, EXC_EXTWORD(%a6)  # signed or unsigned?
        beq.b           mul64_alg               # unsigned; skip sgn calc

        tst.l           %d3                     # is multiplier negative?
        bge.b           mul64_chk_md_sgn        # no
        neg.l           %d3                     # make multiplier positive
        ori.b           &0x1, EXC_TEMP(%a6)     # save multiplier sgn

# the result sign is the exclusive or of the operand sign bits.
mul64_chk_md_sgn:
        tst.l           %d4                     # is multiplicand negative?
        bge.b           mul64_alg               # no    
        neg.l           %d4                     # make multiplicand positive
        eori.b          &0x1, EXC_TEMP(%a6)     # calculate correct sign

#########################################################################
#       63                         32                           0        #
#       ----------------------------                                    #
#       | hi(mplier) * hi(mplicand)|                                    #
#       ----------------------------                                    #
#                    -----------------------------                      #
#                    | hi(mplier) * lo(mplicand) |                      #
#                    -----------------------------                      #
#                    -----------------------------                      #
#                    | lo(mplier) * hi(mplicand) |                      #
#                    -----------------------------                      #
#         |                        -----------------------------        #
#       --|--                      | lo(mplier) * lo(mplicand) |        #
#         |                        -----------------------------        #
#       ========================================================        #
#       --------------------------------------------------------        #
#       |       hi(result)         |        lo(result)         |        #
#       --------------------------------------------------------        #
#########################################################################
mul64_alg:
# load temp registers with operands
        mov.l           %d3, %d5                # mr in %d5
        mov.l           %d3, %d6                # mr in %d6
        mov.l           %d4, %d7                # md in %d7
        swap            %d6                     # hi(mr) in lo %d6
        swap            %d7                     # hi(md) in lo %d7

# complete necessary multiplies:
        mulu.w          %d4, %d3                # [1] lo(mr) * lo(md)
        mulu.w          %d6, %d4                # [2] hi(mr) * lo(md)
        mulu.w          %d7, %d5                # [3] lo(mr) * hi(md)
        mulu.w          %d7, %d6                # [4] hi(mr) * hi(md)

# add lo portions of [2],[3] to hi portion of [1].
# add carries produced from these adds to [4].
# lo([1]) is the final lo 16 bits of the result.
        clr.l           %d7                     # load %d7 w/ zero value
        swap            %d3                     # hi([1]) <==> lo([1])
        add.w           %d4, %d3                # hi([1]) + lo([2])
        addx.l          %d7, %d6                #    [4]  + carry
        add.w           %d5, %d3                # hi([1]) + lo([3])
        addx.l          %d7, %d6                #    [4]  + carry
        swap            %d3                     # lo([1]) <==> hi([1])

# lo portions of [2],[3] have been added in to final result.
# now, clear lo, put hi in lo reg, and add to [4]
        clr.w           %d4                     # clear lo([2])
        clr.w           %d5                     # clear hi([3])
        swap            %d4                     # hi([2]) in lo %d4
        swap            %d5                     # hi([3]) in lo %d5
        add.l           %d5, %d4                #    [4]  + hi([2])
        add.l           %d6, %d4                #    [4]  + hi([3])

# unsigned result is now in {%d4,%d3}
        tst.b           EXC_TEMP(%a6)           # should result be signed?
        beq.b           mul64_done              # no

# result should be a signed negative number.
# compute 2's complement of the unsigned number:
#   -negate all bits and add 1
mul64_neg:
        not.l           %d3                     # negate lo(result) bits
        not.l           %d4                     # negate hi(result) bits
        addq.l          &1, %d3                 # add 1 to lo(result)
        addx.l          %d7, %d4                # add carry to hi(result)

# the result is saved to the register file.
# for '040 compatability, if Dl == Dh then only the hi(result) is
# saved. so, saving hi after lo accomplishes this without need to
# check Dl,Dh equality.
mul64_done:
        mov.l           %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result)
        mov.w           &0x0, %cc
        mov.l           %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result)

# now, grab the condition codes. only one that can be set is 'N'.
# 'N' CAN be set if the operation is unsigned if bit 63 is set.
        mov.w           %cc, %d7                # fetch %ccr to see if 'N' set
        andi.b          &0x8, %d7               # extract 'N' bit

mul64_ccode_set:
        mov.b           EXC_CC+1(%a6), %d6      # fetch previous %ccr
        andi.b          &0x10, %d6              # all but 'X' bit changes

        or.b            %d7, %d6                # group 'X' and 'N'
        mov.b           %d6, EXC_CC+1(%a6)      # save new %ccr

        rts

# one or both of the operands is zero so the result is also zero.
# save the zero result to the register file and set the 'Z' ccode bit.
mul64_zero:
        clr.l           (EXC_DREGS,%a6,%d2.w*4) # save lo(result)
        clr.l           (EXC_DREGS,%a6,%d1.w*4) # save hi(result)

        movq.l          &0x4, %d7               # set 'Z' ccode bit
        bra.b           mul64_ccode_set         # finish ccode set

##########

# multiplier operand is in memory at the effective address.
# must calculate the <ea> and go fetch the 32-bit operand.
mul64_memop:
        movq.l          &LONG, %d0              # pass # of bytes
        bsr.l           _calc_ea                # calculate <ea>

        cmpi.b          SPCOND_FLG(%a6),&immed_flg # immediate addressing mode?
        beq.b           mul64_immed             # yes

        mov.l           %a0,%a2
        bsr.l           _dmem_read_long         # fetch src from addr (%a0)

        tst.l           %d1                     # dfetch error?
        bne.w           mul64_err               # yes

        mov.l           %d0, %d3                # store multiplier in %d3

        bra.w           mul64_multiplicand

# we have to split out immediate data here because it must be read using
# imem_read() instead of dmem_read(). this becomes especially important
# if the fetch runs into some deadly fault.
mul64_immed:
        addq.l          &0x4,EXC_EXTWPTR(%a6)
        bsr.l           _imem_read_long         # read immediate value

        tst.l           %d1                     # ifetch error?
        bne.l           isp_iacc                # yes

        mov.l           %d0,%d3
        bra.w           mul64_multiplicand

##########

# if dmem_read_long() returns a fail message in d1, the package
# must create an access error frame. here, we pass a skeleton fslw
# and the failing address to the routine that creates the new frame.
# also, we call isp_restore in case the effective addressing mode was
# (an)+ or -(an) in which case the previous "an" value must be restored.
# FSLW:
#       read = true
#       size = longword
#       TM = data
#       software emulation error = true
mul64_err:
        bsr.l           isp_restore             # restore addr reg
        mov.l           %a2,%a0                 # pass failing address
        mov.l           &0x01010001,%d0         # pass fslw
        bra.l           isp_dacc

#########################################################################
# XDEF **************************************************************** #
#       _compandset2(): routine to emulate cas2()                       #
#                       (internal to package)                           #
#                                                                       #
#       _isp_cas2_finish(): store ccodes, store compare regs            #
#                           (external to package)                       #
#                                                                       #
# XREF **************************************************************** #
#       _real_lock_page() - "callout" to lock op's page from page-outs  #
#       _cas_terminate2() - access error exit                           #
#       _real_cas2() - "callout" to core cas2 emulation code            #
#       _real_unlock_page() - "callout" to unlock page                  #
#                                                                       #
# INPUT *************************************************************** #
# _compandset2():                                                       #
#       d0 = instruction extension word                                 #
#                                                                       #
# _isp_cas2_finish():                                                   #
#       see cas2 core emulation code                                    #
#                                                                       #
# OUTPUT ************************************************************** #
# _compandset2():                                                       #
#       see cas2 core emulation code                                    #
#                                                                       #
# _isp_cas_finish():                                                    #
#       None (register file or memroy changed as appropriate)           #
#                                                                       #
# ALGORITHM *********************************************************** #
# compandset2():                                                        #
#       Decode the instruction and fetch the appropriate Update and     #
# Compare operands. Then call the "callout" _real_lock_page() for each  #
# memory operand address so that the operating system can keep these    #
# pages from being paged out. If either _real_lock_page() fails, exit   #
# through _cas_terminate2(). Don't forget to unlock the 1st locked page #
# using _real_unlock_paged() if the 2nd lock-page fails.                #
# Finally, branch to the core cas2 emulation code by calling the        #
# "callout" _real_cas2().                                               #
#                                                                       #
# _isp_cas2_finish():                                                   #
#       Re-perform the comparison so we can determine the condition     #
# codes which were too much trouble to keep around during the locked    #
# emulation. Then unlock each operands page by calling the "callout"    #
# _real_unlock_page().                                                  #
#                                                                       #
#########################################################################

set ADDR1,      EXC_TEMP+0xc
set ADDR2,      EXC_TEMP+0x0
set DC2,        EXC_TEMP+0xa
set DC1,        EXC_TEMP+0x8

        global          _compandset2
_compandset2:
        mov.l           %d0,EXC_TEMP+0x4(%a6)           # store for possible restart
        mov.l           %d0,%d1                 # extension word in d0

        rol.w           &0x4,%d0
        andi.w          &0xf,%d0                # extract Rn2
        mov.l           (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2
        mov.l           %a1,ADDR2(%a6)

        mov.l           %d1,%d0

        lsr.w           &0x6,%d1
        andi.w          &0x7,%d1                # extract Du2
        mov.l           (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op

        andi.w          &0x7,%d0                # extract Dc2
        mov.l           (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op
        mov.w           %d0,DC2(%a6)

        mov.w           EXC_EXTWORD(%a6),%d0
        mov.l           %d0,%d1

        rol.w           &0x4,%d0
        andi.w          &0xf,%d0                # extract Rn1
        mov.l           (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1
        mov.l           %a0,ADDR1(%a6)

        mov.l           %d1,%d0

        lsr.w           &0x6,%d1
        andi.w          &0x7,%d1                # extract Du1
        mov.l           (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op
        
        andi.w          &0x7,%d0                # extract Dc1
        mov.l           (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op
        mov.w           %d0,DC1(%a6)

        btst            &0x1,EXC_OPWORD(%a6)    # word or long?
        sne             %d7

        btst            &0x5,EXC_ISR(%a6)       # user or supervisor?
        sne             %d6

        mov.l           %a0,%a2
        mov.l           %a1,%a3

        mov.l           %d7,%d1                 # pass size
        mov.l           %d6,%d0                 # pass mode
        bsr.l           _real_lock_page         # lock page
        mov.l           %a2,%a0
        tst.l           %d0                     # error?
        bne.l           _cas_terminate2         # yes

        mov.l           %d7,%d1                 # pass size
        mov.l           %d6,%d0                 # pass mode
        mov.l           %a3,%a0                 # pass addr
        bsr.l           _real_lock_page         # lock page
        mov.l           %a3,%a0
        tst.l           %d0                     # error?
        bne.b           cas_preterm             # yes

        mov.l           %a2,%a0
        mov.l           %a3,%a1

        bra.l           _real_cas2

# if the 2nd lock attempt fails, then we must still unlock the 
# first page(s).
cas_preterm:
        mov.l           %d0,-(%sp)              # save FSLW
        mov.l           %d7,%d1                 # pass size
        mov.l           %d6,%d0                 # pass mode
        mov.l           %a2,%a0                 # pass ADDR1
        bsr.l           _real_unlock_page       # unlock first page(s)
        mov.l           (%sp)+,%d0              # restore FSLW
        mov.l           %a3,%a0                 # pass failing addr
        bra.l           _cas_terminate2

#############################################################

        global          _isp_cas2_finish
_isp_cas2_finish:
        btst            &0x1,EXC_OPWORD(%a6)
        bne.b           cas2_finish_l

        mov.w           EXC_CC(%a6),%cc         # load old ccodes
        cmp.w           %d0,%d2
        bne.b           cas2_finish_w_save
        cmp.w           %d1,%d3
cas2_finish_w_save:
        mov.w           %cc,EXC_CC(%a6)         # save new ccodes

        tst.b           %d4                     # update compare reg?
        bne.b           cas2_finish_w_done      # no

        mov.w           DC2(%a6),%d3            # fetch Dc2
        mov.w           %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op

        mov.w           DC1(%a6),%d2            # fetch Dc1
        mov.w           %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op

cas2_finish_w_done:
        btst            &0x5,EXC_ISR(%a6)
        sne             %d2
        mov.l           %d2,%d0                 # pass mode
        sf              %d1                     # pass size
        mov.l           ADDR1(%a6),%a0          # pass ADDR1
        bsr.l           _real_unlock_page       # unlock page
        
        mov.l           %d2,%d0                 # pass mode
        sf              %d1                     # pass size
        mov.l           ADDR2(%a6),%a0          # pass ADDR2
        bsr.l           _real_unlock_page       # unlock page
        rts

cas2_finish_l:
        mov.w           EXC_CC(%a6),%cc         # load old ccodes
        cmp.l           %d0,%d2
        bne.b           cas2_finish_l_save
        cmp.l           %d1,%d3
cas2_finish_l_save:
        mov.w           %cc,EXC_CC(%a6)         # save new ccodes

        tst.b           %d4                     # update compare reg?
        bne.b           cas2_finish_l_done      # no

        mov.w           DC2(%a6),%d3            # fetch Dc2
        mov.l           %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op

        mov.w           DC1(%a6),%d2            # fetch Dc1
        mov.l           %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op

cas2_finish_l_done:
        btst            &0x5,EXC_ISR(%a6)
        sne             %d2
        mov.l           %d2,%d0                 # pass mode
        st              %d1                     # pass size
        mov.l           ADDR1(%a6),%a0          # pass ADDR1
        bsr.l           _real_unlock_page       # unlock page
        
        mov.l           %d2,%d0                 # pass mode
        st              %d1                     # pass size
        mov.l           ADDR2(%a6),%a0          # pass ADDR2
        bsr.l           _real_unlock_page       # unlock page
        rts

########
        global          cr_cas2
cr_cas2:
        mov.l           EXC_TEMP+0x4(%a6),%d0
        bra.w           _compandset2

#########################################################################
# XDEF **************************************************************** #
#       _compandset(): routine to emulate cas w/ misaligned <ea>        #
#                      (internal to package)                            #
#       _isp_cas_finish(): routine called when cas emulation completes  #
#                          (external and internal to package)           #
#       _isp_cas_restart(): restart cas emulation after a fault         #
#                           (external to package)                       #
#       _isp_cas_terminate(): create access error stack frame on fault  #
#                             (external and internal to package)        #
#       _isp_cas_inrange(): checks whether instr addess is within range #
#                           of core cas/cas2emulation code              #
#                           (external to package)                       #
#                                                                       #
# XREF **************************************************************** #
#       _calc_ea(): calculate effective address                         #
#                                                                       #
# INPUT *************************************************************** #
# compandset():                                                         #
#       none                                                            #
# _isp_cas_restart():                                                   #
#       d6 = previous sfc/dfc                                           #
# _isp_cas_finish():                                                    #
# _isp_cas_terminate():                                                 #
#       a0 = failing address                                            #
#       d0 = FSLW                                                       #
#       d6 = previous sfc/dfc                                           #
# _isp_cas_inrange():                                                   #
#       a0 = instruction address to be checked                          #
#                                                                       #
# OUTPUT ************************************************************** #
# compandset():                                                         #
#               none                                                    #
# _isp_cas_restart():                                                   #
#       a0 = effective address                                          #
#       d7 = word or longword flag                                      #
# _isp_cas_finish():                                                    #
#       a0 = effective address                                          #
# _isp_cas_terminate():                                                 #
#       initial register set before emulation exception                 #
# _isp_cas_inrange():                                                   #
#       d0 = 0 => in range; -1 => out of range                          #
#                                                                       #
# ALGORITHM *********************************************************** #
#                                                                       #
# compandset():                                                         #
#       First, calculate the effective address. Then, decode the        #
# instruction word and fetch the "compare" (DC) and "update" (Du)       #
# operands.                                                             #
#       Next, call the external routine _real_lock_page() so that the   #
# operating system can keep this page from being paged out while we're  #
# in this routine. If this call fails, jump to _cas_terminate2().       #
#       The routine then branches to _real_cas(). This external routine #
# that actually emulates cas can be supplied by the external os or      #
# made to point directly back into the 060ISP which has a routine for   #
# this purpose.                                                         #
#                                                                       #
# _isp_cas_finish():                                                    #
#       Either way, after emulation, the package is re-entered at       #
# _isp_cas_finish(). This routine re-compares the operands in order to  #
# set the condition codes. Finally, these routines will call            #
# _real_unlock_page() in order to unlock the pages that were previously #
# locked.                                                               #
#                                                                       #
# _isp_cas_restart():                                                   #
#       This routine can be entered from an access error handler where  #
# the emulation sequence should be re-started from the beginning.       #
#                                                                       #
# _isp_cas_terminate():                                                 #
#       This routine can be entered from an access error handler where  #
# an emulation operand access failed and the operating system would     #
# like an access error stack frame created instead of the current       #
# unimplemented integer instruction frame.                              #
#       Also, the package enters here if a call to _real_lock_page()    #
# fails.                                                                #
#                                                                       #
# _isp_cas_inrange():                                                   #
#       Checks to see whether the instruction address passed to it in   #
# a0 is within the software package cas/cas2 emulation routines. This   #
# can be helpful for an operating system to determine whether an access #
# error during emulation was due to a cas/cas2 emulation access.        #
#                                                                       #
#########################################################################

set DC,         EXC_TEMP+0x8
set ADDR,       EXC_TEMP+0x4

        global          _compandset
_compandset:
        btst            &0x1,EXC_OPWORD(%a6)    # word or long operation?
        bne.b           compandsetl             # long  

compandsetw:
        movq.l          &0x2,%d0                # size = 2 bytes
        bsr.l           _calc_ea                # a0 = calculated <ea>  
        mov.l           %a0,ADDR(%a6)           # save <ea> for possible restart
        sf              %d7                     # clear d7 for word size
        bra.b           compandsetfetch

compandsetl:
        movq.l          &0x4,%d0                # size = 4 bytes
        bsr.l           _calc_ea                # a0 = calculated <ea>  
        mov.l           %a0,ADDR(%a6)           # save <ea> for possible restart
        st              %d7                     # set d7 for longword size

compandsetfetch:
        mov.w           EXC_EXTWORD(%a6),%d0    # fetch cas extension word
        mov.l           %d0,%d1                 # make a copy

        lsr.w           &0x6,%d0
        andi.w          &0x7,%d0                # extract Du
        mov.l           (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand

        andi.w          &0x7,%d1                # extract Dc
        mov.l           (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand
        mov.w           %d1,DC(%a6)             # save Dc

        btst            &0x5,EXC_ISR(%a6)       # which mode for exception?
        sne             %d6                     # set on supervisor mode

        mov.l           %a0,%a2                 # save temporarily
        mov.l           %d7,%d1                 # pass size
        mov.l           %d6,%d0                 # pass mode
        bsr.l           _real_lock_page         # lock page
        tst.l           %d0                     # did error occur?
        bne.w           _cas_terminate2         # yes, clean up the mess
        mov.l           %a2,%a0                 # pass addr in a0
        
        bra.l           _real_cas

########
        global          _isp_cas_finish
_isp_cas_finish:
        btst            &0x1,EXC_OPWORD(%a6)
        bne.b           cas_finish_l

# just do the compare again since it's faster than saving the ccodes
# from the locked routine...
cas_finish_w:
        mov.w           EXC_CC(%a6),%cc         # restore cc
        cmp.w           %d0,%d4                 # do word compare
        mov.w           %cc,EXC_CC(%a6)         # save cc

        tst.b           %d1                     # update compare reg?
        bne.b           cas_finish_w_done       # no

        mov.w           DC(%a6),%d3
        mov.w           %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination

cas_finish_w_done:
        mov.l           ADDR(%a6),%a0           # pass addr
        sf              %d1                     # pass size
        btst            &0x5,EXC_ISR(%a6)
        sne             %d0                     # pass mode
        bsr.l           _real_unlock_page       # unlock page
        rts

# just do the compare again since it's faster than saving the ccodes
# from the locked routine...
cas_finish_l:
        mov.w           EXC_CC(%a6),%cc         # restore cc
        cmp.l           %d0,%d4                 # do longword compare
        mov.w           %cc,EXC_CC(%a6)         # save cc

        tst.b           %d1                     # update compare reg?
        bne.b           cas_finish_l_done       # no

        mov.w           DC(%a6),%d3
        mov.l           %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination

cas_finish_l_done:
        mov.l           ADDR(%a6),%a0           # pass addr
        st              %d1                     # pass size
        btst            &0x5,EXC_ISR(%a6)
        sne             %d0                     # pass mode
        bsr.l           _real_unlock_page       # unlock page
        rts

########
        
        global          _isp_cas_restart
_isp_cas_restart:
        mov.l           %d6,%sfc                # restore previous sfc
        mov.l           %d6,%dfc                # restore previous dfc

        cmpi.b          EXC_OPWORD+1(%a6),&0xfc # cas or cas2?
        beq.l           cr_cas2                 # cas2
cr_cas:
        mov.l           ADDR(%a6),%a0           # load <ea>
        btst            &0x1,EXC_OPWORD(%a6)    # word or long operation?
        sne             %d7                     # set d7 accordingly
        bra.w           compandsetfetch 

########

# At this stage, it would be nice if d0 held the FSLW.
        global          _isp_cas_terminate
_isp_cas_terminate:
        mov.l           %d6,%sfc                # restore previous sfc
        mov.l           %d6,%dfc                # restore previous dfc

        global          _cas_terminate2
_cas_terminate2:
        mov.l           %a0,%a2                 # copy failing addr to a2

        mov.l           %d0,-(%sp)
        bsr.l           isp_restore             # restore An (if ()+ or -())
        mov.l           (%sp)+,%d0

        addq.l          &0x4,%sp                # remove sub return addr
        subq.l          &0x8,%sp                # make room for bigger stack
        subq.l          &0x8,%a6                # shift frame ptr down, too
        mov.l           &26,%d1                 # want to move 51 longwords
        lea             0x8(%sp),%a0            # get address of old stack
        lea             0x0(%sp),%a1            # get address of new stack
cas_term_cont:
        mov.l           (%a0)+,(%a1)+           # move a longword
        dbra.w          %d1,cas_term_cont       # keep going

        mov.w           &0x4008,EXC_IVOFF(%a6)  # put new stk fmt, voff
        mov.l           %a2,EXC_IVOFF+0x2(%a6)  # put faulting addr on stack
        mov.l           %d0,EXC_IVOFF+0x6(%a6)  # put FSLW on stack
        movm.l          EXC_DREGS(%a6),&0x3fff  # restore user regs
        unlk            %a6                     # unlink stack frame
        bra.l           _real_access

########

        global          _isp_cas_inrange
_isp_cas_inrange:
        clr.l           %d0                     # clear return result
        lea             _CASHI(%pc),%a1         # load end of CAS core code
        cmp.l           %a1,%a0                 # is PC in range?
        blt.b           cin_no                  # no
        lea             _CASLO(%pc),%a1         # load begin of CAS core code
        cmp.l           %a0,%a1                 # is PC in range?
        blt.b           cin_no                  # no
        rts                                     # yes; return d0 = 0
cin_no: 
        mov.l           &-0x1,%d0               # out of range; return d0 = -1
        rts

#################################################################
#################################################################
#################################################################
# This is the start of the cas and cas2 "core" emulation code.  #
# This is the section that may need to be replaced by the host  #
# OS if it is too operating system-specific.                    #
# Please refer to the package documentation to see how to       #
# "replace" this section, if necessary.                         #
#################################################################
#################################################################
#################################################################

#       ######      ##      ######     ####
#       #          #  #     #         #    #
#       #         ######    ######        #
#       #         #    #         #      #
#       ######    #    #    ######    ######

#########################################################################
# XDEF **************************************************************** #
#       _isp_cas2(): "core" emulation code for the cas2 instruction     #
#                                                                       #
# XREF **************************************************************** #
#       _isp_cas2_finish() - only exit point for this emulation code;   #
#                            do clean-up; calculate ccodes; store       #
#                            Compare Ops if appropriate.                #
#                                                                       #
# INPUT *************************************************************** #
#       *see chart below*                                               #
#                                                                       #
# OUTPUT ************************************************************** #
#       *see chart below*                                               #
#                                                                       #
# ALGORITHM *********************************************************** #
#       (1) Make several copies of the effective address.               #
#       (2) Save current SR; Then mask off all maskable interrupts.     #
#       (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set     #
#           according to whether exception occurred in user or          #
#           supervisor mode.                                            #
#       (4) Use "plpaw" instruction to pre-load ATC with effective      #
#           address pages(s). THIS SHOULD NOT FAULT!!! The relevant     #
#           page(s) should have already been made resident prior to     #
#           entering this routine.                                      #
#       (5) Push the operand lines from the cache w/ "cpushl".          #
#           In the 68040, this was done within the locked region. In    #
#           the 68060, it is done outside of the locked region.         #
#       (6) Use "plpar" instruction to do a re-load of ATC entries for  #
#           ADDR1 since ADDR2 entries may have pushed ADDR1 out of the  #
#           ATC.                                                        #
#       (7) Pre-fetch the core emulation instructions by executing      #
#           one branch within each physical line (16 bytes) of the code #
#           before actually executing the code.                         #
#       (8) Load the BUSCR w/ the bus lock value.                       #
#       (9) Fetch the source operands using "moves".                    #
#       (10)Do the compares. If both equal, go to step (13).            #
#       (11)Unequal. No update occurs. But, we do write the DST1 op     #
#           back to itself (as w/ the '040) so we can gracefully unlock #
#           the bus (and assert LOCKE*) using BUSCR and the final move. #
#       (12)Exit.                                                       #
#       (13)Write update operand to the DST locations. Use BUSCR to     #
#           assert LOCKE* for the final write operation.                #
#       (14)Exit.                                                       #
#                                                                       #
#       The algorithm is actually implemented slightly differently      #
# depending on the size of the operation and the misalignment of the    #
# operands. A misaligned operand must be written in aligned chunks or   #
# else the BUSCR register control gets confused.                        #
#                                                                       #
#########################################################################

#################################################################
# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON           # 
# ENTERING _isp_cas2().                                         #
#                                                               #
# D0 = xxxxxxxx                                                 #
# D1 = xxxxxxxx                                                 #
# D2 = cmp operand 1                                            #
# D3 = cmp operand 2                                            #
# D4 = update oper 1                                            #
# D5 = update oper 2                                            #
# D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode     #
# D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word       #
# A0 = ADDR1                                                    #
# A1 = ADDR2                                                    #
# A2 = xxxxxxxx                                                 #
# A3 = xxxxxxxx                                                 #
# A4 = xxxxxxxx                                                 #
# A5 = xxxxxxxx                                                 #
# A6 = frame pointer                                            #
# A7 = stack pointer                                            #
#################################################################

#       align           0x1000
# beginning label used by _isp_cas_inrange()
        global          _CASLO
_CASLO:

        global          _isp_cas2
_isp_cas2:
        tst.b           %d6                     # user or supervisor mode?
        bne.b           cas2_supervisor         # supervisor
cas2_user:
        movq.l          &0x1,%d0                # load user data fc
        bra.b           cas2_cont
cas2_supervisor:
        movq.l          &0x5,%d0                # load supervisor data fc
cas2_cont:
        tst.b           %d7                     # word or longword?
        beq.w           cas2w                   # word

####
cas2l:
        mov.l           %a0,%a2                 # copy ADDR1
        mov.l           %a1,%a3                 # copy ADDR2
        mov.l           %a0,%a4                 # copy ADDR1
        mov.l           %a1,%a5                 # copy ADDR2

        addq.l          &0x3,%a4                # ADDR1+3
        addq.l          &0x3,%a5                # ADDR2+3
        mov.l           %a2,%d1                 # ADDR1

# mask interrupts levels 0-6. save old mask value.
        mov.w           %sr,%d7                 # save current SR
        ori.w           &0x0700,%sr             # inhibit interrupts

# load the SFC and DFC with the appropriate mode.
        movc            %sfc,%d6                # save old SFC/DFC
        movc            %d0,%sfc                # store new SFC
        movc            %d0,%dfc                # store new DFC

# pre-load the operand ATC. no page faults should occur here because
# _real_lock_page() should have taken care of this.
        plpaw           (%a2)                   # load atc for ADDR1
        plpaw           (%a4)                   # load atc for ADDR1+3
        plpaw           (%a3)                   # load atc for ADDR2
        plpaw           (%a5)                   # load atc for ADDR2+3

# push the operand lines from the cache if they exist.
        cpushl          %dc,(%a2)               # push line for ADDR1
        cpushl          %dc,(%a4)               # push line for ADDR1+3
        cpushl          %dc,(%a3)               # push line for ADDR2
        cpushl          %dc,(%a5)               # push line for ADDR2+2

        mov.l           %d1,%a2                 # ADDR1
        addq.l          &0x3,%d1
        mov.l           %d1,%a4                 # ADDR1+3
# if ADDR1 was ATC resident before the above "plpaw" and was executed
# and it was the next entry scheduled for replacement and ADDR2
# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1
# entries from the ATC. so, we do a second set of "plpa"s.
        plpar           (%a2)                   # load atc for ADDR1
        plpar           (%a4)                   # load atc for ADDR1+3

# load the BUSCR values.
        mov.l           &0x80000000,%a2         # assert LOCK* buscr value
        mov.l           &0xa0000000,%a3         # assert LOCKE* buscr value
        mov.l           &0x00000000,%a4         # buscr unlock value

# there are three possible mis-aligned cases for longword cas. they
# are separated because the final write which asserts LOCKE* must
# be aligned.
        mov.l           %a0,%d0                 # is ADDR1 misaligned?
        andi.b          &0x3,%d0
        beq.b           CAS2L_ENTER             # no
        cmpi.b          %d0,&0x2
        beq.w           CAS2L2_ENTER            # yes; word misaligned
        bra.w           CAS2L3_ENTER            # yes; byte misaligned

#
# D0 = dst operand 1 <-
# D1 = dst operand 2 <-
# D2 = cmp operand 1
# D3 = cmp operand 2
# D4 = update oper 1
# D5 = update oper 2
# D6 = old SFC/DFC
# D7 = old SR
# A0 = ADDR1
# A1 = ADDR2
# A2 = bus LOCK*  value
# A3 = bus LOCKE* value
# A4 = bus unlock value
# A5 = xxxxxxxx
#
        align           0x10
CAS2L_START:
        movc            %a2,%buscr              # assert LOCK*
        movs.l          (%a1),%d1               # fetch Dest2[31:0]
        movs.l          (%a0),%d0               # fetch Dest1[31:0]
        bra.b           CAS2L_CONT
CAS2L_ENTER:
        bra.b           ~+16

CAS2L_CONT:
        cmp.l           %d0,%d2                 # Dest1 - Compare1
        bne.b           CAS2L_NOUPDATE
        cmp.l           %d1,%d3                 # Dest2 - Compare2
        bne.b           CAS2L_NOUPDATE
        movs.l          %d5,(%a1)               # Update2[31:0] -> DEST2
        bra.b           CAS2L_UPDATE
        bra.b           ~+16

CAS2L_UPDATE:
        movc            %a3,%buscr              # assert LOCKE*
        movs.l          %d4,(%a0)               # Update1[31:0] -> DEST1
        movc            %a4,%buscr              # unlock the bus
        bra.b           cas2l_update_done
        bra.b           ~+16

CAS2L_NOUPDATE:
        movc            %a3,%buscr              # assert LOCKE*
        movs.l          %d0,(%a0)               # Dest1[31:0] -> DEST1
        movc            %a4,%buscr              # unlock the bus
        bra.b           cas2l_noupdate_done
        bra.b           ~+16

CAS2L_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CAS2L_START

####

#################################################################
# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON      # 
# ENTERING _isp_cas2().                                         #
#                                                               #
# D0 = destination[31:0] operand 1                              #
# D1 = destination[31:0] operand 2                              #
# D2 = cmp[31:0] operand 1                                      #
# D3 = cmp[31:0] operand 2                                      #
# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
# D5 = xxxxxxxx                                                 #
# D6 = xxxxxxxx                                                 #
# D7 = xxxxxxxx                                                 #
# A0 = xxxxxxxx                                                 #
# A1 = xxxxxxxx                                                 #
# A2 = xxxxxxxx                                                 #
# A3 = xxxxxxxx                                                 #
# A4 = xxxxxxxx                                                 #
# A5 = xxxxxxxx                                                 #
# A6 = frame pointer                                            #
# A7 = stack pointer                                            #
#################################################################

cas2l_noupdate_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        sf              %d4                     # indicate no update was done
        bra.l           _isp_cas2_finish

cas2l_update_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        st              %d4                     # indicate update was done
        bra.l           _isp_cas2_finish
####

        align           0x10
CAS2L2_START:
        movc            %a2,%buscr              # assert LOCK*
        movs.l          (%a1),%d1               # fetch Dest2[31:0]
        movs.l          (%a0),%d0               # fetch Dest1[31:0]
        bra.b           CAS2L2_CONT
CAS2L2_ENTER:
        bra.b           ~+16

CAS2L2_CONT:
        cmp.l           %d0,%d2                 # Dest1 - Compare1
        bne.b           CAS2L2_NOUPDATE
        cmp.l           %d1,%d3                 # Dest2 - Compare2
        bne.b           CAS2L2_NOUPDATE
        movs.l          %d5,(%a1)               # Update2[31:0] -> Dest2
        bra.b           CAS2L2_UPDATE
        bra.b           ~+16

CAS2L2_UPDATE:
        swap            %d4                     # get Update1[31:16]
        movs.w          %d4,(%a0)+              # Update1[31:16] -> DEST1
        movc            %a3,%buscr              # assert LOCKE*
        swap            %d4                     # get Update1[15:0]
        bra.b           CAS2L2_UPDATE2
        bra.b           ~+16

CAS2L2_UPDATE2:
        movs.w          %d4,(%a0)               # Update1[15:0] -> DEST1+0x2
        movc            %a4,%buscr              # unlock the bus
        bra.w           cas2l_update_done
        nop
        bra.b           ~+16

CAS2L2_NOUPDATE:
        swap            %d0                     # get Dest1[31:16]
        movs.w          %d0,(%a0)+              # Dest1[31:16] -> DEST1
        movc            %a3,%buscr              # assert LOCKE*
        swap            %d0                     # get Dest1[15:0]
        bra.b           CAS2L2_NOUPDATE2
        bra.b           ~+16

CAS2L2_NOUPDATE2:
        movs.w          %d0,(%a0)               # Dest1[15:0] -> DEST1+0x2
        movc            %a4,%buscr              # unlock the bus
        bra.w           cas2l_noupdate_done
        nop
        bra.b           ~+16

CAS2L2_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CAS2L2_START

#################################

        align           0x10
CAS2L3_START:
        movc            %a2,%buscr              # assert LOCK*
        movs.l          (%a1),%d1               # fetch Dest2[31:0]
        movs.l          (%a0),%d0               # fetch Dest1[31:0]
        bra.b           CAS2L3_CONT
CAS2L3_ENTER:
        bra.b           ~+16

CAS2L3_CONT:
        cmp.l           %d0,%d2                 # Dest1 - Compare1
        bne.b           CAS2L3_NOUPDATE
        cmp.l           %d1,%d3                 # Dest2 - Compare2
        bne.b           CAS2L3_NOUPDATE
        movs.l          %d5,(%a1)               # Update2[31:0] -> DEST2
        bra.b           CAS2L3_UPDATE
        bra.b           ~+16

CAS2L3_UPDATE:
        rol.l           &0x8,%d4                # get Update1[31:24]
        movs.b          %d4,(%a0)+              # Update1[31:24] -> DEST1
        swap            %d4                     # get Update1[23:8]
        movs.w          %d4,(%a0)+              # Update1[23:8] -> DEST1+0x1
        bra.b           CAS2L3_UPDATE2
        bra.b           ~+16

CAS2L3_UPDATE2:
        rol.l           &0x8,%d4                # get Update1[7:0]
        movc            %a3,%buscr              # assert LOCKE*
        movs.b          %d4,(%a0)               # Update1[7:0] -> DEST1+0x3
        bra.b           CAS2L3_UPDATE3
        nop
        bra.b           ~+16

CAS2L3_UPDATE3:
        movc            %a4,%buscr              # unlock the bus
        bra.w           cas2l_update_done
        nop
        nop
        nop
        bra.b           ~+16
        
CAS2L3_NOUPDATE:
        rol.l           &0x8,%d0                # get Dest1[31:24]
        movs.b          %d0,(%a0)+              # Dest1[31:24] -> DEST1
        swap            %d0                     # get Dest1[23:8]
        movs.w          %d0,(%a0)+              # Dest1[23:8] -> DEST1+0x1
        bra.b           CAS2L3_NOUPDATE2
        bra.b           ~+16

CAS2L3_NOUPDATE2:
        rol.l           &0x8,%d0                # get Dest1[7:0]
        movc            %a3,%buscr              # assert LOCKE*
        movs.b          %d0,(%a0)               # Update1[7:0] -> DEST1+0x3
        bra.b           CAS2L3_NOUPDATE3
        nop
        bra.b           ~+16

CAS2L3_NOUPDATE3:
        movc            %a4,%buscr              # unlock the bus
        bra.w           cas2l_noupdate_done
        nop
        nop
        nop
        bra.b           ~+14

CAS2L3_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        bra.w           CAS2L3_START

#############################################################
#############################################################

cas2w:
        mov.l           %a0,%a2                 # copy ADDR1
        mov.l           %a1,%a3                 # copy ADDR2
        mov.l           %a0,%a4                 # copy ADDR1
        mov.l           %a1,%a5                 # copy ADDR2

        addq.l          &0x1,%a4                # ADDR1+1
        addq.l          &0x1,%a5                # ADDR2+1
        mov.l           %a2,%d1                 # ADDR1

# mask interrupt levels 0-6. save old mask value.
        mov.w           %sr,%d7                 # save current SR
        ori.w           &0x0700,%sr             # inhibit interrupts

# load the SFC and DFC with the appropriate mode.
        movc            %sfc,%d6                # save old SFC/DFC
        movc            %d0,%sfc                # store new SFC
        movc            %d0,%dfc                # store new DFC

# pre-load the operand ATC. no page faults should occur because
# _real_lock_page() should have taken care of this.
        plpaw           (%a2)                   # load atc for ADDR1
        plpaw           (%a4)                   # load atc for ADDR1+1
        plpaw           (%a3)                   # load atc for ADDR2
        plpaw           (%a5)                   # load atc for ADDR2+1

# push the operand cache lines from the cache if they exist.
        cpushl          %dc,(%a2)               # push line for ADDR1
        cpushl          %dc,(%a4)               # push line for ADDR1+1
        cpushl          %dc,(%a3)               # push line for ADDR2
        cpushl          %dc,(%a5)               # push line for ADDR2+1

        mov.l           %d1,%a2                 # ADDR1
        addq.l          &0x3,%d1
        mov.l           %d1,%a4                 # ADDR1+3
# if ADDR1 was ATC resident before the above "plpaw" and was executed
# and it was the next entry scheduled for replacement and ADDR2
# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1
# entries from the ATC. so, we do a second set of "plpa"s.
        plpar           (%a2)                   # load atc for ADDR1
        plpar           (%a4)                   # load atc for ADDR1+3

# load the BUSCR values.
        mov.l           &0x80000000,%a2         # assert LOCK* buscr value
        mov.l           &0xa0000000,%a3         # assert LOCKE* buscr value
        mov.l           &0x00000000,%a4         # buscr unlock value

# there are two possible mis-aligned cases for word cas. they
# are separated because the final write which asserts LOCKE* must
# be aligned.
        mov.l           %a0,%d0                 # is ADDR1 misaligned?
        btst            &0x0,%d0
        bne.w           CAS2W2_ENTER            # yes
        bra.b           CAS2W_ENTER             # no

#
# D0 = dst operand 1 <-
# D1 = dst operand 2 <-
# D2 = cmp operand 1
# D3 = cmp operand 2
# D4 = update oper 1
# D5 = update oper 2
# D6 = old SFC/DFC
# D7 = old SR
# A0 = ADDR1
# A1 = ADDR2
# A2 = bus LOCK*  value
# A3 = bus LOCKE* value
# A4 = bus unlock value
# A5 = xxxxxxxx
#
        align           0x10
CAS2W_START:
        movc            %a2,%buscr              # assert LOCK*
        movs.w          (%a1),%d1               # fetch Dest2[15:0]
        movs.w          (%a0),%d0               # fetch Dest1[15:0]
        bra.b           CAS2W_CONT2
CAS2W_ENTER:
        bra.b           ~+16

CAS2W_CONT2:
        cmp.w           %d0,%d2                 # Dest1 - Compare1
        bne.b           CAS2W_NOUPDATE
        cmp.w           %d1,%d3                 # Dest2 - Compare2
        bne.b           CAS2W_NOUPDATE
        movs.w          %d5,(%a1)               # Update2[15:0] -> DEST2
        bra.b           CAS2W_UPDATE
        bra.b           ~+16

CAS2W_UPDATE:
        movc            %a3,%buscr              # assert LOCKE*
        movs.w          %d4,(%a0)               # Update1[15:0] -> DEST1
        movc            %a4,%buscr              # unlock the bus
        bra.b           cas2w_update_done
        bra.b           ~+16

CAS2W_NOUPDATE:
        movc            %a3,%buscr              # assert LOCKE*
        movs.w          %d0,(%a0)               # Dest1[15:0] -> DEST1
        movc            %a4,%buscr              # unlock the bus
        bra.b           cas2w_noupdate_done
        bra.b           ~+16

CAS2W_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CAS2W_START

####

#################################################################
# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON      # 
# ENTERING _isp_cas2().                                         #
#                                                               #
# D0 = destination[15:0] operand 1                              #
# D1 = destination[15:0] operand 2                              #
# D2 = cmp[15:0] operand 1                                      #
# D3 = cmp[15:0] operand 2                                      #
# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
# D5 = xxxxxxxx                                                 #
# D6 = xxxxxxxx                                                 #
# D7 = xxxxxxxx                                                 #
# A0 = xxxxxxxx                                                 #
# A1 = xxxxxxxx                                                 #
# A2 = xxxxxxxx                                                 #
# A3 = xxxxxxxx                                                 #
# A4 = xxxxxxxx                                                 #
# A5 = xxxxxxxx                                                 #
# A6 = frame pointer                                            #
# A7 = stack pointer                                            #
#################################################################

cas2w_noupdate_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        sf              %d4                     # indicate no update was done
        bra.l           _isp_cas2_finish

cas2w_update_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        st              %d4                     # indicate update was done
        bra.l           _isp_cas2_finish
####

        align           0x10
CAS2W2_START:
        movc            %a2,%buscr              # assert LOCK*
        movs.w          (%a1),%d1               # fetch Dest2[15:0]
        movs.w          (%a0),%d0               # fetch Dest1[15:0]
        bra.b           CAS2W2_CONT2
CAS2W2_ENTER:
        bra.b           ~+16

CAS2W2_CONT2:
        cmp.w           %d0,%d2                 # Dest1 - Compare1
        bne.b           CAS2W2_NOUPDATE
        cmp.w           %d1,%d3                 # Dest2 - Compare2
        bne.b           CAS2W2_NOUPDATE
        movs.w          %d5,(%a1)               # Update2[15:0] -> DEST2
        bra.b           CAS2W2_UPDATE
        bra.b           ~+16

CAS2W2_UPDATE:
        ror.l           &0x8,%d4                # get Update1[15:8]
        movs.b          %d4,(%a0)+              # Update1[15:8] -> DEST1
        movc            %a3,%buscr              # assert LOCKE*
        rol.l           &0x8,%d4                # get Update1[7:0]
        bra.b           CAS2W2_UPDATE2
        bra.b           ~+16

CAS2W2_UPDATE2:
        movs.b          %d4,(%a0)               # Update1[7:0] -> DEST1+0x1
        movc            %a4,%buscr              # unlock the bus
        bra.w           cas2w_update_done
        nop
        bra.b           ~+16

CAS2W2_NOUPDATE:
        ror.l           &0x8,%d0                # get Dest1[15:8]
        movs.b          %d0,(%a0)+              # Dest1[15:8] -> DEST1
        movc            %a3,%buscr              # assert LOCKE*
        rol.l           &0x8,%d0                # get Dest1[7:0]
        bra.b           CAS2W2_NOUPDATE2
        bra.b           ~+16

CAS2W2_NOUPDATE2:
        movs.b          %d0,(%a0)               # Dest1[7:0] -> DEST1+0x1
        movc            %a4,%buscr              # unlock the bus
        bra.w           cas2w_noupdate_done
        nop
        bra.b           ~+16

CAS2W2_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CAS2W2_START

#       ######      ##      ######
#       #          #  #     #     
#       #         ######    ######
#       #         #    #         #
#       ######    #    #    ######

#########################################################################
# XDEF **************************************************************** #
#       _isp_cas(): "core" emulation code for the cas instruction       #
#                                                                       #
# XREF **************************************************************** #
#       _isp_cas_finish() - only exit point for this emulation code;    #
#                           do clean-up                                 #
#                                                                       #
# INPUT *************************************************************** #
#       *see entry chart below*                                         #
#                                                                       #
# OUTPUT ************************************************************** #
#       *see exit chart below*                                          #
#                                                                       #
# ALGORITHM *********************************************************** #
#       (1) Make several copies of the effective address.               #
#       (2) Save current SR; Then mask off all maskable interrupts.     #
#       (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set     #
#           SFC/DFC according to whether exception occurred in user or  #
#           supervisor mode.                                            #
#       (4) Use "plpaw" instruction to pre-load ATC with efective       #
#           address page(s). THIS SHOULD NOT FAULT!!! The relevant      #
#           page(s) should have been made resident prior to entering    #
#           this routine.                                               #
#       (5) Push the operand lines from the cache w/ "cpushl".          #
#           In the 68040, this was done within the locked region. In    #
#           the 68060, it is done outside of the locked region.         #
#       (6) Pre-fetch the core emulation instructions by executing one  #
#           branch within each physical line (16 bytes) of the code     #
#           before actually executing the code.                         #
#       (7) Load the BUSCR with the bus lock value.                     #
#       (8) Fetch the source operand.                                   #
#       (9) Do the compare. If equal, go to step (12).                  #
#       (10)Unequal. No update occurs. But, we do write the DST op back #
#           to itself (as w/ the '040) so we can gracefully unlock      #
#           the bus (and assert LOCKE*) using BUSCR and the final move. #
#       (11)Exit.                                                       #
#       (12)Write update operand to the DST location. Use BUSCR to      #
#           assert LOCKE* for the final write operation.                #
#       (13)Exit.                                                       #
#                                                                       #
#       The algorithm is actually implemented slightly differently      #
# depending on the size of the operation and the misalignment of the    #
# operand. A misaligned operand must be written in aligned chunks or    #
# else the BUSCR register control gets confused.                        #
#                                                                       #
#########################################################################

#########################################################
# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON   #
# ENTERING _isp_cas().                                  #
#                                                       #
# D0 = xxxxxxxx                                         #
# D1 = xxxxxxxx                                         #
# D2 = update operand                                   #
# D3 = xxxxxxxx                                         #
# D4 = compare operand                                  #
# D5 = xxxxxxxx                                         #
# D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00)  #
# D7 = longword ('xxxxxxff) or word size ('xxxxxx00)    #
# A0 = ADDR                                             #
# A1 = xxxxxxxx                                         #
# A2 = xxxxxxxx                                         #
# A3 = xxxxxxxx                                         #
# A4 = xxxxxxxx                                         #
# A5 = xxxxxxxx                                         #
# A6 = frame pointer                                    #
# A7 = stack pointer                                    #
#########################################################

        global          _isp_cas
_isp_cas:
        tst.b           %d6                     # user or supervisor mode?
        bne.b           cas_super               # supervisor
cas_user:
        movq.l          &0x1,%d0                # load user data fc
        bra.b           cas_cont
cas_super:
        movq.l          &0x5,%d0                # load supervisor data fc

cas_cont:
        tst.b           %d7                     # word or longword?
        bne.w           casl                    # longword

####
casw:
        mov.l           %a0,%a1                 # make copy for plpaw1
        mov.l           %a0,%a2                 # make copy for plpaw2
        addq.l          &0x1,%a2                # plpaw2 points to end of word

        mov.l           %d2,%d3                 # d3 = update[7:0]
        lsr.w           &0x8,%d2                # d2 = update[15:8]

# mask interrupt levels 0-6. save old mask value.
        mov.w           %sr,%d7                 # save current SR
        ori.w           &0x0700,%sr             # inhibit interrupts

# load the SFC and DFC with the appropriate mode.
        movc            %sfc,%d6                # save old SFC/DFC
        movc            %d0,%sfc                # load new sfc
        movc            %d0,%dfc                # load new dfc

# pre-load the operand ATC. no page faults should occur here because
# _real_lock_page() should have taken care of this.
        plpaw           (%a1)                   # load atc for ADDR
        plpaw           (%a2)                   # load atc for ADDR+1

# push the operand lines from the cache if they exist.
        cpushl          %dc,(%a1)               # push dirty data
        cpushl          %dc,(%a2)               # push dirty data

# load the BUSCR values.
        mov.l           &0x80000000,%a1         # assert LOCK* buscr value
        mov.l           &0xa0000000,%a2         # assert LOCKE* buscr value
        mov.l           &0x00000000,%a3         # buscr unlock value

# pre-load the instruction cache for the following algorithm.
# this will minimize the number of cycles that LOCK* will be asserted.
        bra.b           CASW_ENTER              # start pre-loading icache

#
# D0 = dst operand <-
# D1 = update[15:8] operand
# D2 = update[7:0]  operand
# D3 = xxxxxxxx
# D4 = compare[15:0] operand
# D5 = xxxxxxxx
# D6 = old SFC/DFC
# D7 = old SR
# A0 = ADDR
# A1 = bus LOCK*  value
# A2 = bus LOCKE* value
# A3 = bus unlock value
# A4 = xxxxxxxx
# A5 = xxxxxxxx
#
        align           0x10
CASW_START:
        movc            %a1,%buscr              # assert LOCK*
        movs.w          (%a0),%d0               # fetch Dest[15:0]
        cmp.w           %d0,%d4                 # Dest - Compare
        bne.b           CASW_NOUPDATE
        bra.b           CASW_UPDATE
CASW_ENTER:
        bra.b           ~+16

CASW_UPDATE:
        movs.b          %d2,(%a0)+              # Update[15:8] -> DEST
        movc            %a2,%buscr              # assert LOCKE*
        movs.b          %d3,(%a0)               # Update[7:0] -> DEST+0x1
        bra.b           CASW_UPDATE2
        bra.b           ~+16

CASW_UPDATE2:
        movc            %a3,%buscr              # unlock the bus
        bra.b           casw_update_done
        nop
        nop
        nop
        nop
        bra.b           ~+16

CASW_NOUPDATE:
        ror.l           &0x8,%d0                # get Dest[15:8]
        movs.b          %d0,(%a0)+              # Dest[15:8] -> DEST
        movc            %a2,%buscr              # assert LOCKE*
        rol.l           &0x8,%d0                # get Dest[7:0]
        bra.b           CASW_NOUPDATE2
        bra.b           ~+16

CASW_NOUPDATE2:
        movs.b          %d0,(%a0)               # Dest[7:0] -> DEST+0x1
        movc            %a3,%buscr              # unlock the bus
        bra.b           casw_noupdate_done
        nop
        nop
        bra.b           ~+16

CASW_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CASW_START

#################################################################
# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON      #
# CALLING _isp_cas_finish().                                    #
#                                                               #
# D0 = destination[15:0] operand                                #
# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
# D2 = xxxxxxxx                                                 #
# D3 = xxxxxxxx                                                 #
# D4 = compare[15:0] operand                                    #
# D5 = xxxxxxxx                                                 #
# D6 = xxxxxxxx                                                 #
# D7 = xxxxxxxx                                                 #
# A0 = xxxxxxxx                                                 #
# A1 = xxxxxxxx                                                 #
# A2 = xxxxxxxx                                                 #
# A3 = xxxxxxxx                                                 #
# A4 = xxxxxxxx                                                 #
# A5 = xxxxxxxx                                                 #
# A6 = frame pointer                                            #
# A7 = stack pointer                                            #
#################################################################

casw_noupdate_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        sf              %d1                     # indicate no update was done
        bra.l           _isp_cas_finish

casw_update_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        st              %d1                     # indicate update was done
        bra.l           _isp_cas_finish

################

# there are two possible mis-aligned cases for longword cas. they
# are separated because the final write which asserts LOCKE* must
# be an aligned write.
casl:
        mov.l           %a0,%a1                 # make copy for plpaw1
        mov.l           %a0,%a2                 # make copy for plpaw2
        addq.l          &0x3,%a2                # plpaw2 points to end of longword

        mov.l           %a0,%d1                 # byte or word misaligned?
        btst            &0x0,%d1
        bne.w           casl2                   # byte misaligned

        mov.l           %d2,%d3                 # d3 = update[15:0]
        swap            %d2                     # d2 = update[31:16]

# mask interrupts levels 0-6. save old mask value.
        mov.w           %sr,%d7                 # save current SR
        ori.w           &0x0700,%sr             # inhibit interrupts

# load the SFC and DFC with the appropriate mode.
        movc            %sfc,%d6                # save old SFC/DFC
        movc            %d0,%sfc                # load new sfc
        movc            %d0,%dfc                # load new dfc

# pre-load the operand ATC. no page faults should occur here because
# _real_lock_page() should have taken care of this.
        plpaw           (%a1)                   # load atc for ADDR
        plpaw           (%a2)                   # load atc for ADDR+3

# push the operand lines from the cache if they exist.
        cpushl          %dc,(%a1)               # push dirty data
        cpushl          %dc,(%a2)               # push dirty data

# load the BUSCR values.
        mov.l           &0x80000000,%a1         # assert LOCK* buscr value
        mov.l           &0xa0000000,%a2         # assert LOCKE* buscr value
        mov.l           &0x00000000,%a3         # buscr unlock value

        bra.b           CASL_ENTER              # start pre-loading icache

#
# D0 = dst operand <-
# D1 = xxxxxxxx
# D2 = update[31:16] operand
# D3 = update[15:0]  operand
# D4 = compare[31:0] operand
# D5 = xxxxxxxx
# D6 = old SFC/DFC
# D7 = old SR
# A0 = ADDR
# A1 = bus LOCK*  value
# A2 = bus LOCKE* value
# A3 = bus unlock value
# A4 = xxxxxxxx
# A5 = xxxxxxxx
#
        align           0x10
CASL_START:
        movc            %a1,%buscr              # assert LOCK*
        movs.l          (%a0),%d0               # fetch Dest[31:0]
        cmp.l           %d0,%d4                 # Dest - Compare
        bne.b           CASL_NOUPDATE
        bra.b           CASL_UPDATE
CASL_ENTER:
        bra.b           ~+16

CASL_UPDATE:
        movs.w          %d2,(%a0)+              # Update[31:16] -> DEST
        movc            %a2,%buscr              # assert LOCKE*
        movs.w          %d3,(%a0)               # Update[15:0] -> DEST+0x2
        bra.b           CASL_UPDATE2
        bra.b           ~+16

CASL_UPDATE2:
        movc            %a3,%buscr              # unlock the bus
        bra.b           casl_update_done
        nop
        nop
        nop
        nop
        bra.b           ~+16

CASL_NOUPDATE:
        swap            %d0                     # get Dest[31:16]
        movs.w          %d0,(%a0)+              # Dest[31:16] -> DEST
        swap            %d0                     # get Dest[15:0]
        movc            %a2,%buscr              # assert LOCKE*
        bra.b           CASL_NOUPDATE2
        bra.b           ~+16

CASL_NOUPDATE2:
        movs.w          %d0,(%a0)               # Dest[15:0] -> DEST+0x2
        movc            %a3,%buscr              # unlock the bus
        bra.b           casl_noupdate_done
        nop
        nop
        bra.b           ~+16

CASL_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CASL_START

#################################################################
# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON      #
# CALLING _isp_cas_finish().                                    #
#                                                               #
# D0 = destination[31:0] operand                                #
# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
# D2 = xxxxxxxx                                                 #
# D3 = xxxxxxxx                                                 #
# D4 = compare[31:0] operand                                    #
# D5 = xxxxxxxx                                                 #
# D6 = xxxxxxxx                                                 #
# D7 = xxxxxxxx                                                 #
# A0 = xxxxxxxx                                                 #
# A1 = xxxxxxxx                                                 #
# A2 = xxxxxxxx                                                 #
# A3 = xxxxxxxx                                                 #
# A4 = xxxxxxxx                                                 #
# A5 = xxxxxxxx                                                 #
# A6 = frame pointer                                            #
# A7 = stack pointer                                            #
#################################################################

casl_noupdate_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupt mask level.
        mov.w           %d7,%sr                 # restore old SR

        sf              %d1                     # indicate no update was done
        bra.l           _isp_cas_finish

casl_update_done:

# restore previous SFC/DFC value.
        movc            %d6,%sfc                # restore old SFC
        movc            %d6,%dfc                # restore old DFC

# restore previous interrupts mask level.
        mov.w           %d7,%sr                 # restore old SR

        st              %d1                     # indicate update was done
        bra.l           _isp_cas_finish

#######################################
casl2:
        mov.l           %d2,%d5                 # d5 = Update[7:0]
        lsr.l           &0x8,%d2
        mov.l           %d2,%d3                 # d3 = Update[23:8]
        swap            %d2                     # d2 = Update[31:24]

# mask interrupts levels 0-6. save old mask value.
        mov.w           %sr,%d7                 # save current SR
        ori.w           &0x0700,%sr             # inhibit interrupts

# load the SFC and DFC with the appropriate mode.
        movc            %sfc,%d6                # save old SFC/DFC
        movc            %d0,%sfc                # load new sfc
        movc            %d0,%dfc                # load new dfc

# pre-load the operand ATC. no page faults should occur here because
# _real_lock_page() should have taken care of this already.
        plpaw           (%a1)                   # load atc for ADDR
        plpaw           (%a2)                   # load atc for ADDR+3

# puch the operand lines from the cache if they exist.
        cpushl          %dc,(%a1)               # push dirty data
        cpushl          %dc,(%a2)               # push dirty data

# load the BUSCR values.
        mov.l           &0x80000000,%a1         # assert LOCK* buscr value
        mov.l           &0xa0000000,%a2         # assert LOCKE* buscr value
        mov.l           &0x00000000,%a3         # buscr unlock value

# pre-load the instruction cache for the following algorithm. 
# this will minimize the number of cycles that LOCK* will be asserted.
        bra.b           CASL2_ENTER             # start pre-loading icache

#
# D0 = dst operand <-
# D1 = xxxxxxxx
# D2 = update[31:24] operand
# D3 = update[23:8]  operand
# D4 = compare[31:0] operand
# D5 = update[7:0]  operand
# D6 = old SFC/DFC
# D7 = old SR
# A0 = ADDR
# A1 = bus LOCK*  value
# A2 = bus LOCKE* value
# A3 = bus unlock value
# A4 = xxxxxxxx
# A5 = xxxxxxxx
#
        align           0x10
CASL2_START:
        movc            %a1,%buscr              # assert LOCK*
        movs.l          (%a0),%d0               # fetch Dest[31:0]
        cmp.l           %d0,%d4                 # Dest - Compare
        bne.b           CASL2_NOUPDATE
        bra.b           CASL2_UPDATE
CASL2_ENTER:
        bra.b           ~+16

CASL2_UPDATE:
        movs.b          %d2,(%a0)+              # Update[31:24] -> DEST
        movs.w          %d3,(%a0)+              # Update[23:8] -> DEST+0x1
        movc            %a2,%buscr              # assert LOCKE*
        bra.b           CASL2_UPDATE2
        bra.b           ~+16

CASL2_UPDATE2:
        movs.b          %d5,(%a0)               # Update[7:0] -> DEST+0x3
        movc            %a3,%buscr              # unlock the bus
        bra.w           casl_update_done
        nop
        bra.b           ~+16

CASL2_NOUPDATE:
        rol.l           &0x8,%d0                # get Dest[31:24]
        movs.b          %d0,(%a0)+              # Dest[31:24] -> DEST
        swap            %d0                     # get Dest[23:8]
        movs.w          %d0,(%a0)+              # Dest[23:8] -> DEST+0x1
        bra.b           CASL2_NOUPDATE2
        bra.b           ~+16

CASL2_NOUPDATE2:
        rol.l           &0x8,%d0                # get Dest[7:0]
        movc            %a2,%buscr              # assert LOCKE*
        movs.b          %d0,(%a0)               # Dest[7:0] -> DEST+0x3
        bra.b           CASL2_NOUPDATE3
        nop
        bra.b           ~+16

CASL2_NOUPDATE3:
        movc            %a3,%buscr              # unlock the bus
        bra.w           casl_noupdate_done
        nop
        nop
        nop
        bra.b           ~+16

CASL2_FILLER:
        nop
        nop
        nop
        nop
        nop
        nop
        nop
        bra.b           CASL2_START

####
####
# end label used by _isp_cas_inrange()
        global          _CASHI
_CASHI:

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.