URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [mips64/] [kernel/] [linux32.c] - Rev 1275
Go to most recent revision | Compare with Previous | Blame | View Log
/* * Conversion between 32-bit and 64-bit native system calls. * * Copyright (C) 2000 Silicon Graphics, Inc. * Written by Ulf Carlsson (ulfc@engr.sgi.com) * sys32_execve from ia64/ia32 code, Feb 2000, Kanoj Sarcar (kanoj@sgi.com) */ #include <linux/config.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/file.h> #include <linux/smp_lock.h> #include <linux/highuid.h> #include <linux/dirent.h> #include <linux/resource.h> #include <linux/highmem.h> #include <linux/time.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/filter.h> #include <linux/shm.h> #include <linux/sem.h> #include <linux/msg.h> #include <linux/icmpv6.h> #include <linux/sysctl.h> #include <linux/utime.h> #include <linux/utsname.h> #include <linux/personality.h> #include <linux/timex.h> #include <linux/dnotify.h> #include <linux/linkage.h> #include <linux/module.h> #include <net/sock.h> #include <net/scm.h> #include <asm/uaccess.h> #include <asm/mman.h> #include <asm/ipc.h> extern asmlinkage long sys_socket(int family, int type, int protocol); extern asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen); extern asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen); extern asmlinkage long sys_listen(int fd, int backlog); extern asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen); extern asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_socketpair(int family, int type, int protocol, int *usockvec); extern asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags); extern asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags, struct sockaddr *addr, int addr_len); extern asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags); extern asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags, struct sockaddr *addr, int *addr_len); extern asmlinkage long sys_shutdown(int fd, int how); extern asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); extern asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen); extern asmlinkage long sys_sendmsg(int fd, struct msghdr *msg, unsigned flags); extern asmlinkage long sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags); /* Use this to get at 32-bit user passed pointers. */ /* A() macro should be used for places where you e.g. have some internal variable u32 and just want to get rid of a compiler warning. AA() has to be used in places where you want to convert a function argument to 32bit pointer or when you e.g. access pt_regs structure and want to consider 32bit registers only. */ #define A(__x) ((unsigned long)(__x)) #define AA(__x) ((unsigned long)((int)__x)) #ifdef __MIPSEB__ #define merge_64(r1,r2) ((((r1) & 0xffffffffUL) << 32) + ((r2) & 0xffffffffUL)) #endif #ifdef __MIPSEL__ #define merge_64(r1,r2) ((((r2) & 0xffffffffUL) << 32) + ((r1) & 0xffffffffUL)) #endif /* * Revalidate the inode. This is required for proper NFS attribute caching. */ static __inline__ int do_revalidate(struct dentry *dentry) { struct inode * inode = dentry->d_inode; if (inode->i_op && inode->i_op->revalidate) return inode->i_op->revalidate(dentry); return 0; } static int cp_new_stat32(struct inode * inode, struct stat32 * statbuf) { struct stat32 tmp; unsigned int blocks, indirect; memset(&tmp, 0, sizeof(tmp)); tmp.st_dev = kdev_t_to_nr(inode->i_dev); tmp.st_ino = inode->i_ino; tmp.st_mode = inode->i_mode; tmp.st_nlink = inode->i_nlink; SET_STAT_UID(tmp, inode->i_uid); SET_STAT_GID(tmp, inode->i_gid); tmp.st_rdev = kdev_t_to_nr(inode->i_rdev); tmp.st_size = inode->i_size; tmp.st_atime = inode->i_atime; tmp.st_mtime = inode->i_mtime; tmp.st_ctime = inode->i_ctime; /* * st_blocks and st_blksize are approximated with a simple algorithm if * they aren't supported directly by the filesystem. The minix and msdos * filesystems don't keep track of blocks, so they would either have to * be counted explicitly (by delving into the file itself), or by using * this simple algorithm to get a reasonable (although not 100% * accurate) value. */ /* * Use minix fs values for the number of direct and indirect blocks. * The count is now exact for the minix fs except that it counts zero * blocks. Everything is in units of BLOCK_SIZE until the assignment * to tmp.st_blksize. */ #define D_B 7 #define I_B (BLOCK_SIZE / sizeof(unsigned short)) if (!inode->i_blksize) { blocks = (tmp.st_size + BLOCK_SIZE - 1) / BLOCK_SIZE; if (blocks > D_B) { indirect = (blocks - D_B + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) { indirect = (indirect - 1 + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) blocks++; } } tmp.st_blocks = (BLOCK_SIZE / 512) * blocks; tmp.st_blksize = BLOCK_SIZE; } else { tmp.st_blocks = inode->i_blocks; tmp.st_blksize = inode->i_blksize; } return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } asmlinkage int sys32_newstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage int sys32_newlstat(char * filename, struct stat32 *statbuf) { struct nameidata nd; int error; error = user_path_walk_link(filename, &nd); if (!error) { error = do_revalidate(nd.dentry); if (!error) error = cp_new_stat32(nd.dentry->d_inode, statbuf); path_release(&nd); } return error; } asmlinkage long sys32_newfstat(unsigned int fd, struct stat32 * statbuf) { struct file * f; int err = -EBADF; f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_new_stat32(dentry->d_inode, statbuf); fput(f); } return err; } asmlinkage unsigned long sys32_mmap2(unsigned long addr, size_t len, unsigned long prot, unsigned long flags, unsigned long fd, unsigned long pgoff) { struct file * file = NULL; unsigned long error; error = -EINVAL; if (!(flags & MAP_ANONYMOUS)) { error = -EBADF; file = fget(fd); if (!file) goto out; } flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); down_write(¤t->mm->mmap_sem); error = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); up_write(¤t->mm->mmap_sem); if (file) fput(file); out: return error; } asmlinkage long sys_truncate(const char * path, unsigned long length); asmlinkage int sys_truncate64(const char *path, unsigned int high, unsigned int low) { if ((int)high < 0) return -EINVAL; return sys_truncate(path, ((long) high << 32) | low); } asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length); asmlinkage int sys_ftruncate64(unsigned int fd, unsigned int high, unsigned int low) { if ((int)high < 0) return -EINVAL; return sys_ftruncate(fd, ((long) high << 32) | low); } extern asmlinkage int sys_utime(char * filename, struct utimbuf * times); struct utimbuf32 { __kernel_time_t32 actime, modtime; }; asmlinkage int sys32_utime(char * filename, struct utimbuf32 *times) { struct utimbuf t; mm_segment_t old_fs; int ret; char *filenam; if (!times) return sys_utime(filename, NULL); if (get_user (t.actime, ×->actime) || __get_user (t.modtime, ×->modtime)) return -EFAULT; filenam = getname (filename); ret = PTR_ERR(filenam); if (!IS_ERR(filenam)) { old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_utime(filenam, &t); set_fs (old_fs); putname (filenam); } return ret; } #if 0 /* * count32() counts the number of arguments/envelopes */ static int count32(u32 * argv, int max) { int i = 0; if (argv != NULL) { for (;;) { u32 p; int error; error = get_user(p,argv); if (error) return error; if (!p) break; argv++; if (++i > max) return -E2BIG; } } return i; } /* * 'copy_strings32()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. */ int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm) { while (argc-- > 0) { u32 str; int len; unsigned long pos; if (get_user(str, argv+argc) || !str || !(len = strnlen_user((char *)A(str), bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; /* XXX: add architecture specific overflow check here. */ pos = bprm->p; while (len > 0) { char *kaddr; int i, new, err; struct page *page; int offset, bytes_to_copy; offset = pos % PAGE_SIZE; i = pos/PAGE_SIZE; page = bprm->page[i]; new = 0; if (!page) { page = alloc_page(GFP_HIGHUSER); bprm->page[i] = page; if (!page) return -ENOMEM; new = 1; } kaddr = kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, (char *)A(str), bytes_to_copy); kunmap(page); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * sys_execve32() executes a new program. */ int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs) { struct linux_binprm bprm; struct dentry * dentry; int retval; int i; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0])); dentry = open_namei(filename, 0, 0); retval = PTR_ERR(dentry); if (IS_ERR(dentry)) return retval; bprm.dentry = dentry; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count32(argv, bprm.p / sizeof(u32))) < 0) { dput(dentry); return bprm.argc; } if ((bprm.envc = count32(envp, bprm.p / sizeof(u32))) < 0) { dput(dentry); return bprm.envc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings32(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings32(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm,regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ if (bprm.dentry) dput(bprm.dentry); /* Assumes that free_page() can take a NULL argument. */ /* I hope this is ok for all architectures */ for (i = 0 ; i < MAX_ARG_PAGES ; i++) if (bprm.page[i]) __free_page(bprm.page[i]); return retval; } /* * sys_execve() executes a new program. */ asmlinkage int sys32_execve(abi64_no_regargs, struct pt_regs regs) { int error; char * filename; filename = getname((char *) (long)regs.regs[4]); printk("Executing: %s\n", filename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve32(filename, (u32 *) (long)regs.regs[5], (u32 *) (long)regs.regs[6], ®s); putname(filename); out: return error; } #else static int nargs(unsigned int arg, char **ap) { unsigned int addr; int n, err; if (!arg) return 0; n = 0; do { err = get_user(addr, (unsigned int *)A(arg)); if (err) return err; if (ap) *ap++ = (char *) A(addr); arg += sizeof(unsigned int); n++; } while (addr); return n - 1; } asmlinkage int sys32_execve(abi64_no_regargs, struct pt_regs regs) { extern asmlinkage int sys_execve(abi64_no_regargs, struct pt_regs regs); extern asmlinkage long sys_munmap(unsigned long addr, size_t len); unsigned int argv = (unsigned int)regs.regs[5]; unsigned int envp = (unsigned int)regs.regs[6]; char **av, **ae; int na, ne, r, len; char * filename; na = nargs(argv, NULL); if (na < 0) return na; ne = nargs(envp, NULL); if (ne < 0) return ne; len = (na + ne + 2) * sizeof(*av); /* * kmalloc won't work because the `sys_exec' code will attempt * to do a `get_user' on the arg list and `get_user' will fail * on a kernel address (simplifies `get_user'). Instead we * do an mmap to get a user address. Note that since a successful * `execve' frees all current memory we only have to do an * `munmap' if the `execve' fails. */ down_write(¤t->mm->mmap_sem); av = (char **) do_mmap_pgoff(0, 0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0); up_write(¤t->mm->mmap_sem); if (IS_ERR(av)) return (long) av; ae = av + na + 1; r = __put_user(0, (av + na)); r |= __put_user(0, (ae + ne)); if (r) goto out; r = nargs(argv, av); if (r < 0) goto out; r = nargs(envp, ae); if (r < 0) goto out; filename = getname((char *) (long)regs.regs[4]); r = PTR_ERR(filename); if (IS_ERR(filename)) goto out; r = do_execve(filename, av, ae, ®s); putname(filename); if (r) out: sys_munmap((unsigned long)av, len); return r ; } #endif struct dirent32 { unsigned int d_ino; unsigned int d_off; unsigned short d_reclen; char d_name[NAME_MAX + 1]; }; static void xlate_dirent(void *dirent64, void *dirent32, long n) { long off; struct dirent *dirp; struct dirent32 *dirp32; off = 0; while (off < n) { dirp = (struct dirent *)(dirent64 + off); dirp32 = (struct dirent32 *)(dirent32 + off); off += dirp->d_reclen; dirp32->d_ino = dirp->d_ino; dirp32->d_off = (unsigned int)dirp->d_off; dirp32->d_reclen = dirp->d_reclen; strncpy(dirp32->d_name, dirp->d_name, dirp->d_reclen - ((3 * 4) + 2)); } return; } asmlinkage long sys_getdents(unsigned int fd, void * dirent, unsigned int count); asmlinkage long sys32_getdents(unsigned int fd, void * dirent32, unsigned int count) { long n; void *dirent64; dirent64 = (void *)((unsigned long)(dirent32 + (sizeof(long) - 1)) & ~(sizeof(long) - 1)); if ((n = sys_getdents(fd, dirent64, count - (dirent64 - dirent32))) < 0) return(n); xlate_dirent(dirent64, dirent32, n); return(n); } asmlinkage int old_readdir(unsigned int fd, void * dirent, unsigned int count); asmlinkage int sys32_readdir(unsigned int fd, void * dirent32, unsigned int count) { int n; struct dirent dirent64; if ((n = old_readdir(fd, &dirent64, count)) < 0) return(n); xlate_dirent(&dirent64, dirent32, dirent64.d_reclen); return(n); } struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int ru_maxrss; int ru_ixrss; int ru_idrss; int ru_isrss; int ru_minflt; int ru_majflt; int ru_nswap; int ru_inblock; int ru_oublock; int ru_msgsnd; int ru_msgrcv; int ru_nsignals; int ru_nvcsw; int ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; if (verify_area(VERIFY_WRITE, ru, sizeof *ru)) return -EFAULT; err = __put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } asmlinkage int sys32_wait4(__kernel_pid_t32 pid, unsigned int * stat_addr, int options, struct rusage32 * ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r); set_fs(old_fs); if (put_rusage (ru, &r)) return -EFAULT; if (stat_addr && put_user (status, stat_addr)) return -EFAULT; return ret; } } asmlinkage int sys32_waitpid(__kernel_pid_t32 pid, unsigned int *stat_addr, int options) { return sys32_wait4(pid, stat_addr, options, NULL); } struct sysinfo32 { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; u16 procs; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[8]; }; extern asmlinkage int sys_sysinfo(struct sysinfo *info); asmlinkage int sys32_sysinfo(struct sysinfo32 *info) { struct sysinfo s; int ret, err; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sysinfo(&s); set_fs (old_fs); err = put_user (s.uptime, &info->uptime); err |= __put_user (s.loads[0], &info->loads[0]); err |= __put_user (s.loads[1], &info->loads[1]); err |= __put_user (s.loads[2], &info->loads[2]); err |= __put_user (s.totalram, &info->totalram); err |= __put_user (s.freeram, &info->freeram); err |= __put_user (s.sharedram, &info->sharedram); err |= __put_user (s.bufferram, &info->bufferram); err |= __put_user (s.totalswap, &info->totalswap); err |= __put_user (s.freeswap, &info->freeswap); err |= __put_user (s.procs, &info->procs); err |= __put_user (s.totalhigh, &info->totalhigh); err |= __put_user (s.freehigh, &info->freehigh); err |= __put_user (s.mem_unit, &info->mem_unit); if (err) return -EFAULT; return ret; } #define RLIM_INFINITY32 0x7fffffff #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { int rlim_cur; int rlim_max; }; extern asmlinkage int sys_old_getrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_old_getrlimit(resource, &r); set_fs (old_fs); if (!ret) { ret = put_user (RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user (RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } extern asmlinkage int sys_setrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user (r.rlim_cur, &rlim->rlim_cur) || __get_user (r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs (KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs (old_fs); return ret; } struct statfs32 { int f_type; int f_bsize; int f_frsize; int f_blocks; int f_bfree; int f_files; int f_ffree; int f_bavail; __kernel_fsid_t32 f_fsid; int f_namelen; int f_spare[6]; }; static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { int err; err = put_user (kbuf->f_type, &ubuf->f_type); err |= __put_user (kbuf->f_bsize, &ubuf->f_bsize); err |= __put_user (kbuf->f_blocks, &ubuf->f_blocks); err |= __put_user (kbuf->f_bfree, &ubuf->f_bfree); err |= __put_user (kbuf->f_bavail, &ubuf->f_bavail); err |= __put_user (kbuf->f_files, &ubuf->f_files); err |= __put_user (kbuf->f_ffree, &ubuf->f_ffree); err |= __put_user (kbuf->f_namelen, &ubuf->f_namelen); err |= __put_user (kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]); err |= __put_user (kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]); return err; } extern asmlinkage int sys_statfs(const char * path, struct statfs * buf); asmlinkage int sys32_statfs(const char * path, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); char *pth; pth = getname (path); ret = PTR_ERR(pth); if (!IS_ERR(pth)) { set_fs (KERNEL_DS); ret = sys_statfs((const char *)path, &s); set_fs (old_fs); if (!ret && put_statfs(buf, &s)) return -EFAULT; } return ret; } extern asmlinkage int sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage int sys32_fstatfs(unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } #ifdef __MIPSEB__ asmlinkage long sys32_truncate64(const char * path, unsigned long __dummy, int length_hi, int length_lo) #endif #ifdef __MIPSEL__ asmlinkage long sys32_truncate64(const char * path, unsigned long __dummy, int length_lo, int length_hi) #endif { loff_t length; length = ((unsigned long) length_hi << 32) | (unsigned int) length_lo; return sys_truncate(path, length); } #ifdef __MIPSEB__ asmlinkage long sys32_ftruncate64(unsigned int fd, unsigned long __dummy, int length_hi, int length_lo) #endif #ifdef __MIPSEL__ asmlinkage long sys32_ftruncate64(unsigned int fd, unsigned long __dummy, int length_lo, int length_hi) #endif { loff_t length; length = ((unsigned long) length_hi << 32) | (unsigned int) length_lo; return sys_ftruncate(fd, length); } extern asmlinkage int sys_getrusage(int who, struct rusage *ru); asmlinkage int sys32_getrusage(int who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getrusage(who, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } static inline long get_tv32(struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); } static inline long get_it32(struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); } static inline long put_tv32(struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } static inline long put_it32(struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); } extern int do_getitimer(int which, struct itimerval *value); asmlinkage int sys32_getitimer(int which, struct itimerval32 *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; return error; } extern int do_setitimer(int which, struct itimerval *, struct itimerval *); asmlinkage int sys32_setitimer(int which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; return 0; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); asmlinkage int sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage int sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } extern asmlinkage long sys_llseek(unsigned int fd, unsigned long offset_high, unsigned long offset_low, loff_t * result, unsigned int origin); asmlinkage int sys32_llseek(unsigned int fd, unsigned int offset_high, unsigned int offset_low, loff_t * result, unsigned int origin) { return sys_llseek(fd, offset_high, offset_low, result, origin); } struct iovec32 { unsigned int iov_base; int iov_len; }; typedef ssize_t (*IO_fn_t)(struct file *, char *, size_t, loff_t *); static long do_readv_writev32(int type, struct file *file, const struct iovec32 *vector, u32 count) { unsigned long tot_len; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack, *ivp; struct inode *inode; long retval, i; IO_fn_t fn; /* First get the "struct iovec" from user memory and * verify all the pointers */ if (!count) return 0; if(verify_area(VERIFY_READ, vector, sizeof(struct iovec32)*count)) return -EFAULT; if (count > UIO_MAXIOV) return -EINVAL; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return -ENOMEM; } tot_len = 0; i = count; ivp = iov; while (i > 0) { u32 len; u32 buf; __get_user(len, &vector->iov_len); __get_user(buf, &vector->iov_base); tot_len += len; ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t) len; vector++; ivp++; i--; } inode = file->f_dentry->d_inode; /* VERIFY_WRITE actually means a read, as we write to user space */ retval = locks_verify_area((type == VERIFY_WRITE ? FLOCK_VERIFY_READ : FLOCK_VERIFY_WRITE), inode, file, file->f_pos, tot_len); if (retval) { if (iov != iovstack) kfree(iov); return retval; } /* Then do the actual IO. Note that sockets need to be handled * specially as they have atomicity guarantees and can handle * iovec's natively */ if (inode->i_sock) { int err; err = sock_readv_writev(type, inode, file, iov, count, tot_len); if (iov != iovstack) kfree(iov); return err; } if (!file->f_op) { if (iov != iovstack) kfree(iov); return -EINVAL; } /* VERIFY_WRITE actually means a read, as we write to user space */ fn = file->f_op->read; if (type == VERIFY_READ) fn = (IO_fn_t) file->f_op->write; ivp = iov; while (count > 0) { void * base; int len, nr; base = ivp->iov_base; len = ivp->iov_len; ivp++; count--; nr = fn(file, base, len, &file->f_pos); if (nr < 0) { if (retval) break; retval = nr; break; } retval += nr; if (nr != len) break; } if (iov != iovstack) kfree(iov); return retval; } asmlinkage long sys32_readv(int fd, struct iovec32 *vector, u32 count) { struct file *file; ssize_t ret; ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_READ) && (file->f_op->readv || file->f_op->read)) ret = do_readv_writev32(VERIFY_WRITE, file, vector, count); fput(file); bad_file: return ret; } asmlinkage long sys32_writev(int fd, struct iovec32 *vector, u32 count) { struct file *file; ssize_t ret; ret = -EBADF; file = fget(fd); if(!file) goto bad_file; if (file->f_op && (file->f_mode & FMODE_WRITE) && (file->f_op->writev || file->f_op->write)) ret = do_readv_writev32(VERIFY_READ, file, vector, count); fput(file); bad_file: return ret; } /* From the Single Unix Spec: pread & pwrite act like lseek to pos + op + lseek back to original location. They fail just like lseek does on non-seekable files. */ asmlinkage ssize_t sys32_pread(unsigned int fd, char * buf, size_t count, u32 unused, u64 a4, u64 a5) { ssize_t ret; struct file * file; ssize_t (*read)(struct file *, char *, size_t, loff_t *); loff_t pos; ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (!(file->f_mode & FMODE_READ)) goto out; pos = merge_64(a4, a5); ret = locks_verify_area(FLOCK_VERIFY_READ, file->f_dentry->d_inode, file, pos, count); if (ret) goto out; ret = -EINVAL; if (!file->f_op || !(read = file->f_op->read)) goto out; if (pos < 0) goto out; ret = read(file, buf, count, &pos); if (ret > 0) dnotify_parent(file->f_dentry, DN_ACCESS); out: fput(file); bad_file: return ret; } asmlinkage ssize_t sys32_pwrite(unsigned int fd, const char * buf, size_t count, u32 unused, u64 a4, u64 a5) { ssize_t ret; struct file * file; ssize_t (*write)(struct file *, const char *, size_t, loff_t *); loff_t pos; ret = -EBADF; file = fget(fd); if (!file) goto bad_file; if (!(file->f_mode & FMODE_WRITE)) goto out; pos = merge_64(a4, a5); ret = locks_verify_area(FLOCK_VERIFY_WRITE, file->f_dentry->d_inode, file, pos, count); if (ret) goto out; ret = -EINVAL; if (!file->f_op || !(write = file->f_op->write)) goto out; if (pos < 0) goto out; ret = write(file, buf, count, &pos); if (ret > 0) dnotify_parent(file->f_dentry, DN_MODIFY); out: fput(file); bad_file: return ret; } /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset) { if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } /* * We can actually return ERESTARTSYS instead of EINTR, but I'd * like to be certain this leads to no problems. So I return * EINTR just for safety. * * Update: ERESTARTSYS breaks at least the xview clock binary, so * I'm trying ERESTARTNOHAND which restart only when you want to. */ #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) asmlinkage int sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, struct timeval32 *tvp) { fd_set_bits fds; char *bits; unsigned long nn; long timeout; int ret, size; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp) { time_t sec, usec; if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp))) || (ret = __get_user(sec, &tvp->tv_sec)) || (ret = __get_user(usec, &tvp->tv_usec))) goto out_nofds; ret = -EINVAL; if(sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = (usec + 1000000/HZ - 1) / (1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if ((ret = get_fd_set32(nn, fds.in, inp)) || (ret = get_fd_set32(nn, fds.out, outp)) || (ret = get_fd_set32(nn, fds.ex, exp))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } put_user(sec, &tvp->tv_sec); put_user(usec, &tvp->tv_usec); } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set32(nn, inp, fds.res_in); set_fd_set32(nn, outp, fds.res_out); set_fd_set32(nn, exp, fds.res_ex); out: kfree(bits); out_nofds: return ret; } struct timespec32 { int tv_sec; int tv_nsec; }; extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); asmlinkage int sys32_sched_rr_get_interval(__kernel_pid_t32 pid, struct timespec32 *interval) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sched_rr_get_interval(pid, &t); set_fs (old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || __put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; return ret; } extern asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); asmlinkage int sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); if (get_user (t.tv_sec, &rqtp->tv_sec) || __get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs (old_fs); if (rmtp && ret == -EINTR) { if (__put_user (t.tv_sec, &rmtp->tv_sec) || __put_user (t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; } struct tms32 { int tms_utime; int tms_stime; int tms_cutime; int tms_cstime; }; extern asmlinkage long sys_times(struct tms * tbuf); asmlinkage long sys32_times(struct tms32 *tbuf) { struct tms t; long ret; mm_segment_t old_fs = get_fs(); int err; set_fs(KERNEL_DS); ret = sys_times(tbuf ? &t : NULL); set_fs(old_fs); if (tbuf) { err = put_user (t.tms_utime, &tbuf->tms_utime); err |= __put_user (t.tms_stime, &tbuf->tms_stime); err |= __put_user (t.tms_cutime, &tbuf->tms_cutime); err |= __put_user (t.tms_cstime, &tbuf->tms_cstime); if (err) ret = -EFAULT; } return ret; } static int do_set_attach_filter(int fd, int level, int optname, char *optval, int optlen) { struct sock_fprog32 { __u16 len; __u32 filter; } *fprog32 = (struct sock_fprog32 *)optval; struct sock_fprog kfprog; struct sock_filter *kfilter; unsigned int fsize; mm_segment_t old_fs; __u32 uptr; int ret; if (get_user(kfprog.len, &fprog32->len) || __get_user(uptr, &fprog32->filter)) return -EFAULT; kfprog.filter = (struct sock_filter *)A(uptr); fsize = kfprog.len * sizeof(struct sock_filter); kfilter = (struct sock_filter *)kmalloc(fsize, GFP_KERNEL); if (kfilter == NULL) return -ENOMEM; if (copy_from_user(kfilter, kfprog.filter, fsize)) { kfree(kfilter); return -EFAULT; } kfprog.filter = kfilter; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *)&kfprog, sizeof(kfprog)); set_fs(old_fs); kfree(kfilter); return ret; } static int do_set_icmpv6_filter(int fd, int level, int optname, char *optval, int optlen) { struct icmp6_filter kfilter; mm_segment_t old_fs; int ret, i; if (copy_from_user(&kfilter, optval, sizeof(kfilter))) return -EFAULT; for (i = 0; i < 8; i += 2) { u32 tmp = kfilter.data[i]; kfilter.data[i] = kfilter.data[i + 1]; kfilter.data[i + 1] = tmp; } old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_setsockopt(fd, level, optname, (char *) &kfilter, sizeof(kfilter)); set_fs(old_fs); return ret; } asmlinkage int sys32_setsockopt(int fd, int level, int optname, char *optval, int optlen) { if (optname == SO_ATTACH_FILTER) return do_set_attach_filter(fd, level, optname, optval, optlen); if (level == SOL_ICMPV6 && optname == ICMPV6_FILTER) return do_set_icmpv6_filter(fd, level, optname, optval, optlen); return sys_setsockopt(fd, level, optname, optval, optlen); } static inline int get_flock(struct flock *kfl, struct flock32 *ufl) { int err; if (!access_ok(VERIFY_READ, ufl, sizeof(*ufl))) return -EFAULT; err = __get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock(struct flock *kfl, struct flock32 *ufl) { int err; if (!access_ok(VERIFY_WRITE, ufl, sizeof(*ufl))) return -EFAULT; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(0, &ufl->l_sysid); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK: case F_SETLK: case F_SETLKW: { struct flock f; mm_segment_t old_fs; long ret; if (get_flock(&f, (struct flock32 *)arg)) return -EFAULT; old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long)&f); set_fs (old_fs); if (put_flock(&f, (struct flock32 *)arg)) return -EFAULT; return ret; } default: return sys_fcntl(fd, cmd, (unsigned long)arg); } } asmlinkage long sys32_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg) { switch (cmd) { case F_GETLK64: return sys_fcntl(fd, F_GETLK, arg); case F_SETLK64: return sys_fcntl(fd, F_SETLK, arg); case F_SETLKW64: return sys_fcntl(fd, F_SETLKW, arg); } return sys32_fcntl(fd, cmd, arg); } struct msgbuf32 { s32 mtype; char mtext[1]; }; struct ipc_perm32 { key_t key; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_uid_t32 cuid; __kernel_gid_t32 cgid; __kernel_mode_t32 mode; unsigned short seq; }; struct ipc64_perm32 { key_t key; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_uid_t32 cuid; __kernel_gid_t32 cgid; __kernel_mode_t32 mode; unsigned short seq; unsigned short __pad1; unsigned int __unused1; unsigned int __unused2; }; struct semid_ds32 { struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */ __kernel_time_t32 sem_otime; /* last semop time */ __kernel_time_t32 sem_ctime; /* last change time */ u32 sem_base; /* ptr to first semaphore in array */ u32 sem_pending; /* pending operations to be processed */ u32 sem_pending_last; /* last pending operation */ u32 undo; /* undo requests on this array */ unsigned short sem_nsems; /* no. of semaphores in array */ }; struct semid64_ds32 { struct ipc64_perm32 sem_perm; __kernel_time_t32 sem_otime; __kernel_time_t32 sem_ctime; unsigned int sem_nsems; unsigned int __unused1; unsigned int __unused2; }; struct msqid_ds32 { struct ipc_perm32 msg_perm; u32 msg_first; u32 msg_last; __kernel_time_t32 msg_stime; __kernel_time_t32 msg_rtime; __kernel_time_t32 msg_ctime; u32 wwait; u32 rwait; unsigned short msg_cbytes; unsigned short msg_qnum; unsigned short msg_qbytes; __kernel_ipc_pid_t32 msg_lspid; __kernel_ipc_pid_t32 msg_lrpid; }; struct msqid64_ds32 { struct ipc64_perm32 msg_perm; __kernel_time_t32 msg_stime; unsigned int __unused1; __kernel_time_t32 msg_rtime; unsigned int __unused2; __kernel_time_t32 msg_ctime; unsigned int __unused3; unsigned int msg_cbytes; unsigned int msg_qnum; unsigned int msg_qbytes; __kernel_pid_t32 msg_lspid; __kernel_pid_t32 msg_lrpid; unsigned int __unused4; unsigned int __unused5; }; struct shmid_ds32 { struct ipc_perm32 shm_perm; int shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_ipc_pid_t32 shm_cpid; __kernel_ipc_pid_t32 shm_lpid; unsigned short shm_nattch; }; struct shmid64_ds32 { struct ipc64_perm32 shm_perm; __kernel_size_t32 shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_pid_t32 shm_cpid; __kernel_pid_t32 shm_lpid; unsigned int shm_nattch; unsigned int __unused1; unsigned int __unused2; }; struct ipc_kludge32 { u32 msgp; s32 msgtyp; }; static int do_sys32_semctl(int first, int second, int third, void *uptr) { union semun fourth; u32 pad; int err, err2; struct semid64_ds s; mm_segment_t old_fs; if (!uptr) return -EINVAL; err = -EFAULT; if (get_user (pad, (u32 *)uptr)) return err; if ((third & ~IPC_64) == SETVAL) fourth.val = (int)pad; else fourth.__pad = (void *)A(pad); switch (third & ~IPC_64) { case IPC_INFO: case IPC_RMID: case IPC_SET: case SEM_INFO: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETVAL: case SETALL: err = sys_semctl (first, second, third, fourth); break; case IPC_STAT: case SEM_STAT: fourth.__pad = &s; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_semctl(first, second, third | IPC_64, fourth); set_fs(old_fs); if (third & IPC_64) { struct semid64_ds32 *usp64 = (struct semid64_ds32 *) A(pad); if (!access_ok(VERIFY_WRITE, usp64, sizeof(*usp64))) { err = -EFAULT; break; } err2 = __put_user(s.sem_perm.key, &usp64->sem_perm.key); err2 |= __put_user(s.sem_perm.uid, &usp64->sem_perm.uid); err2 |= __put_user(s.sem_perm.gid, &usp64->sem_perm.gid); err2 |= __put_user(s.sem_perm.cuid, &usp64->sem_perm.cuid); err2 |= __put_user(s.sem_perm.cgid, &usp64->sem_perm.cgid); err2 |= __put_user(s.sem_perm.mode, &usp64->sem_perm.mode); err2 |= __put_user(s.sem_perm.seq, &usp64->sem_perm.seq); err2 |= __put_user(s.sem_otime, &usp64->sem_otime); err2 |= __put_user(s.sem_ctime, &usp64->sem_ctime); err2 |= __put_user(s.sem_nsems, &usp64->sem_nsems); } else { struct semid_ds32 *usp32 = (struct semid_ds32 *) A(pad); if (!access_ok(VERIFY_WRITE, usp32, sizeof(*usp32))) { err = -EFAULT; break; } err2 = __put_user(s.sem_perm.key, &usp32->sem_perm.key); err2 |= __put_user(s.sem_perm.uid, &usp32->sem_perm.uid); err2 |= __put_user(s.sem_perm.gid, &usp32->sem_perm.gid); err2 |= __put_user(s.sem_perm.cuid, &usp32->sem_perm.cuid); err2 |= __put_user(s.sem_perm.cgid, &usp32->sem_perm.cgid); err2 |= __put_user(s.sem_perm.mode, &usp32->sem_perm.mode); err2 |= __put_user(s.sem_perm.seq, &usp32->sem_perm.seq); err2 |= __put_user(s.sem_otime, &usp32->sem_otime); err2 |= __put_user(s.sem_ctime, &usp32->sem_ctime); err2 |= __put_user(s.sem_nsems, &usp32->sem_nsems); } if (err2) err = -EFAULT; break; default: err = - EINVAL; break; } return err; } static int do_sys32_msgsnd (int first, int second, int third, void *uptr) { struct msgbuf32 *up = (struct msgbuf32 *)uptr; struct msgbuf *p; mm_segment_t old_fs; int err; if (second < 0) return -EINVAL; p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER); if (!p) return -ENOMEM; err = get_user (p->mtype, &up->mtype); if (err) goto out; err |= __copy_from_user (p->mtext, &up->mtext, second); if (err) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgsnd (first, p, second, third); set_fs (old_fs); out: kfree (p); return err; } static int do_sys32_msgrcv (int first, int second, int msgtyp, int third, int version, void *uptr) { struct msgbuf32 *up; struct msgbuf *p; mm_segment_t old_fs; int err; if (!version) { struct ipc_kludge32 *uipck = (struct ipc_kludge32 *)uptr; struct ipc_kludge32 ipck; err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (copy_from_user (&ipck, uipck, sizeof (struct ipc_kludge32))) goto out; uptr = (void *)AA(ipck.msgp); msgtyp = ipck.msgtyp; } if (second < 0) return -EINVAL; err = -ENOMEM; p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER); if (!p) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgrcv (first, p, second + 4, msgtyp, third); set_fs (old_fs); if (err < 0) goto free_then_out; up = (struct msgbuf32 *)uptr; if (put_user (p->mtype, &up->mtype) || __copy_to_user (&up->mtext, p->mtext, err)) err = -EFAULT; free_then_out: kfree (p); out: return err; } static int do_sys32_msgctl (int first, int second, void *uptr) { int err = -EINVAL, err2; struct msqid64_ds m; struct msqid_ds32 *up32 = (struct msqid_ds32 *)uptr; struct msqid64_ds32 *up64 = (struct msqid64_ds32 *)uptr; mm_segment_t old_fs; switch (second & ~IPC_64) { case IPC_INFO: case IPC_RMID: case MSG_INFO: err = sys_msgctl (first, second, (struct msqid_ds *)uptr); break; case IPC_SET: if (second & IPC_64) { if (!access_ok(VERIFY_READ, up64, sizeof(*up64))) { err = -EFAULT; break; } err = __get_user(m.msg_perm.uid, &up64->msg_perm.uid); err |= __get_user(m.msg_perm.gid, &up64->msg_perm.gid); err |= __get_user(m.msg_perm.mode, &up64->msg_perm.mode); err |= __get_user(m.msg_qbytes, &up64->msg_qbytes); } else { if (!access_ok(VERIFY_READ, up32, sizeof(*up32))) { err = -EFAULT; break; } err = __get_user(m.msg_perm.uid, &up32->msg_perm.uid); err |= __get_user(m.msg_perm.gid, &up32->msg_perm.gid); err |= __get_user(m.msg_perm.mode, &up32->msg_perm.mode); err |= __get_user(m.msg_qbytes, &up32->msg_qbytes); } if (err) break; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second | IPC_64, (struct msqid_ds *)&m); set_fs(old_fs); break; case IPC_STAT: case MSG_STAT: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_msgctl(first, second | IPC_64, (struct msqid_ds *)&m); set_fs(old_fs); if (second & IPC_64) { if (!access_ok(VERIFY_WRITE, up64, sizeof(*up64))) { err = -EFAULT; break; } err2 = __put_user(m.msg_perm.key, &up64->msg_perm.key); err2 |= __put_user(m.msg_perm.uid, &up64->msg_perm.uid); err2 |= __put_user(m.msg_perm.gid, &up64->msg_perm.gid); err2 |= __put_user(m.msg_perm.cuid, &up64->msg_perm.cuid); err2 |= __put_user(m.msg_perm.cgid, &up64->msg_perm.cgid); err2 |= __put_user(m.msg_perm.mode, &up64->msg_perm.mode); err2 |= __put_user(m.msg_perm.seq, &up64->msg_perm.seq); err2 |= __put_user(m.msg_stime, &up64->msg_stime); err2 |= __put_user(m.msg_rtime, &up64->msg_rtime); err2 |= __put_user(m.msg_ctime, &up64->msg_ctime); err2 |= __put_user(m.msg_cbytes, &up64->msg_cbytes); err2 |= __put_user(m.msg_qnum, &up64->msg_qnum); err2 |= __put_user(m.msg_qbytes, &up64->msg_qbytes); err2 |= __put_user(m.msg_lspid, &up64->msg_lspid); err2 |= __put_user(m.msg_lrpid, &up64->msg_lrpid); if (err2) err = -EFAULT; } else { if (!access_ok(VERIFY_WRITE, up32, sizeof(*up32))) { err = -EFAULT; break; } err2 = __put_user(m.msg_perm.key, &up32->msg_perm.key); err2 |= __put_user(m.msg_perm.uid, &up32->msg_perm.uid); err2 |= __put_user(m.msg_perm.gid, &up32->msg_perm.gid); err2 |= __put_user(m.msg_perm.cuid, &up32->msg_perm.cuid); err2 |= __put_user(m.msg_perm.cgid, &up32->msg_perm.cgid); err2 |= __put_user(m.msg_perm.mode, &up32->msg_perm.mode); err2 |= __put_user(m.msg_perm.seq, &up32->msg_perm.seq); err2 |= __put_user(m.msg_stime, &up32->msg_stime); err2 |= __put_user(m.msg_rtime, &up32->msg_rtime); err2 |= __put_user(m.msg_ctime, &up32->msg_ctime); err2 |= __put_user(m.msg_cbytes, &up32->msg_cbytes); err2 |= __put_user(m.msg_qnum, &up32->msg_qnum); err2 |= __put_user(m.msg_qbytes, &up32->msg_qbytes); err2 |= __put_user(m.msg_lspid, &up32->msg_lspid); err2 |= __put_user(m.msg_lrpid, &up32->msg_lrpid); if (err2) err = -EFAULT; } break; } return err; } static int do_sys32_shmat (int first, int second, int third, int version, void *uptr) { unsigned long raddr; u32 *uaddr = (u32 *)A((u32)third); int err = -EINVAL; if (version == 1) return err; err = sys_shmat (first, uptr, second, &raddr); if (err) return err; err = put_user (raddr, uaddr); return err; } struct shm_info32 { int used_ids; u32 shm_tot, shm_rss, shm_swp; u32 swap_attempts, swap_successes; }; static int do_sys32_shmctl (int first, int second, void *uptr) { struct shmid64_ds32 *up64 = (struct shmid64_ds32 *)uptr; struct shmid_ds32 *up32 = (struct shmid_ds32 *)uptr; struct shm_info32 *uip = (struct shm_info32 *)uptr; int err = -EFAULT, err2; struct shmid64_ds s64; mm_segment_t old_fs; struct shm_info si; struct shmid_ds s; switch (second & ~IPC_64) { case IPC_INFO: second = IPC_INFO; /* So that we don't have to translate it */ case IPC_RMID: case SHM_LOCK: case SHM_UNLOCK: err = sys_shmctl(first, second, (struct shmid_ds *)uptr); break; case IPC_SET: if (second & IPC_64) { err = get_user(s.shm_perm.uid, &up64->shm_perm.uid); err |= get_user(s.shm_perm.gid, &up64->shm_perm.gid); err |= get_user(s.shm_perm.mode, &up64->shm_perm.mode); } else { err = get_user(s.shm_perm.uid, &up32->shm_perm.uid); err |= get_user(s.shm_perm.gid, &up32->shm_perm.gid); err |= get_user(s.shm_perm.mode, &up32->shm_perm.mode); } if (err) break; old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second & ~IPC_64, &s); set_fs(old_fs); break; case IPC_STAT: case SHM_STAT: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second | IPC_64, (void *) &s64); set_fs(old_fs); if (err < 0) break; if (second & IPC_64) { if (!access_ok(VERIFY_WRITE, up64, sizeof(*up64))) { err = -EFAULT; break; } err2 = __put_user(s64.shm_perm.key, &up64->shm_perm.key); err2 |= __put_user(s64.shm_perm.uid, &up64->shm_perm.uid); err2 |= __put_user(s64.shm_perm.gid, &up64->shm_perm.gid); err2 |= __put_user(s64.shm_perm.cuid, &up64->shm_perm.cuid); err2 |= __put_user(s64.shm_perm.cgid, &up64->shm_perm.cgid); err2 |= __put_user(s64.shm_perm.mode, &up64->shm_perm.mode); err2 |= __put_user(s64.shm_perm.seq, &up64->shm_perm.seq); err2 |= __put_user(s64.shm_atime, &up64->shm_atime); err2 |= __put_user(s64.shm_dtime, &up64->shm_dtime); err2 |= __put_user(s64.shm_ctime, &up64->shm_ctime); err2 |= __put_user(s64.shm_segsz, &up64->shm_segsz); err2 |= __put_user(s64.shm_nattch, &up64->shm_nattch); err2 |= __put_user(s64.shm_cpid, &up64->shm_cpid); err2 |= __put_user(s64.shm_lpid, &up64->shm_lpid); } else { if (!access_ok(VERIFY_WRITE, up32, sizeof(*up32))) { err = -EFAULT; break; } err2 = __put_user(s64.shm_perm.key, &up32->shm_perm.key); err2 |= __put_user(s64.shm_perm.uid, &up32->shm_perm.uid); err2 |= __put_user(s64.shm_perm.gid, &up32->shm_perm.gid); err2 |= __put_user(s64.shm_perm.cuid, &up32->shm_perm.cuid); err2 |= __put_user(s64.shm_perm.cgid, &up32->shm_perm.cgid); err2 |= __put_user(s64.shm_perm.mode, &up32->shm_perm.mode); err2 |= __put_user(s64.shm_perm.seq, &up32->shm_perm.seq); err2 |= __put_user(s64.shm_atime, &up32->shm_atime); err2 |= __put_user(s64.shm_dtime, &up32->shm_dtime); err2 |= __put_user(s64.shm_ctime, &up32->shm_ctime); err2 |= __put_user(s64.shm_segsz, &up32->shm_segsz); err2 |= __put_user(s64.shm_nattch, &up32->shm_nattch); err2 |= __put_user(s64.shm_cpid, &up32->shm_cpid); err2 |= __put_user(s64.shm_lpid, &up32->shm_lpid); } if (err2) err = -EFAULT; break; case SHM_INFO: old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_shmctl(first, second, (void *)&si); set_fs(old_fs); if (err < 0) break; err2 = put_user(si.used_ids, &uip->used_ids); err2 |= __put_user(si.shm_tot, &uip->shm_tot); err2 |= __put_user(si.shm_rss, &uip->shm_rss); err2 |= __put_user(si.shm_swp, &uip->shm_swp); err2 |= __put_user(si.swap_attempts, &uip->swap_attempts); err2 |= __put_user (si.swap_successes, &uip->swap_successes); if (err2) err = -EFAULT; break; default: err = -EINVAL; break; } return err; } static inline void *alloc_user_space(long len) { unsigned long sp = (unsigned long) current + THREAD_SIZE - 32; return (void *) (sp - len); } static int sys32_semtimedop(int semid, struct sembuf *tsems, int nsems, const struct timespec32 *timeout32) { struct timespec32 t32; struct timespec *t64 = alloc_user_space(sizeof(*t64)); if (copy_from_user(&t32, timeout32, sizeof(t32))) return -EFAULT; if (put_user(t32.tv_sec, &t64->tv_sec) || put_user(t32.tv_nsec, &t64->tv_nsec)) return -EFAULT; return sys_semtimedop(semid, tsems, nsems, t64); } asmlinkage long sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version, err; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ err = sys_semtimedop (first, (struct sembuf *)AA(ptr), second, NULL); break; case SEMTIMEDOP: err = sys32_semtimedop(first, (struct sembuf *)AA(ptr), second, (const struct timespec32 *) AA(fifth)); break; case SEMGET: err = sys_semget (first, second, third); break; case SEMCTL: err = do_sys32_semctl (first, second, third, (void *)AA(ptr)); break; case MSGSND: err = do_sys32_msgsnd (first, second, third, (void *)AA(ptr)); break; case MSGRCV: err = do_sys32_msgrcv (first, second, fifth, third, version, (void *)AA(ptr)); break; case MSGGET: err = sys_msgget ((key_t) first, second); break; case MSGCTL: err = do_sys32_msgctl (first, second, (void *)AA(ptr)); break; case SHMAT: err = do_sys32_shmat (first, second, third, version, (void *)AA(ptr)); break; case SHMDT: err = sys_shmdt ((char *)A(ptr)); break; case SHMGET: err = sys_shmget (first, second, third); break; case SHMCTL: err = do_sys32_shmctl (first, second, (void *)AA(ptr)); break; default: err = -EINVAL; break; } return err; } struct sysctl_args32 { __kernel_caddr_t32 name; int nlen; __kernel_caddr_t32 oldval; __kernel_caddr_t32 oldlenp; __kernel_caddr_t32 newval; __kernel_size_t32 newlen; unsigned int __unused[4]; }; #ifdef CONFIG_SYSCTL asmlinkage long sys32_sysctl(struct sysctl_args32 *args) { struct sysctl_args32 tmp; int error; size_t oldlen, *oldlenp = NULL; unsigned long addr = (((long)&args->__unused[0]) + 7) & ~7; if (copy_from_user(&tmp, args, sizeof(tmp))) return -EFAULT; if (tmp.oldval && tmp.oldlenp) { /* Duh, this is ugly and might not work if sysctl_args is in read-only memory, but do_sysctl does indirectly a lot of uaccess in both directions and we'd have to basically copy the whole sysctl.c here, and glibc's __sysctl uses rw memory for the structure anyway. */ if (get_user(oldlen, (u32 *)A(tmp.oldlenp)) || put_user(oldlen, (size_t *)addr)) return -EFAULT; oldlenp = (size_t *)addr; } lock_kernel(); error = do_sysctl((int *)A(tmp.name), tmp.nlen, (void *)A(tmp.oldval), oldlenp, (void *)A(tmp.newval), tmp.newlen); unlock_kernel(); if (oldlenp) { if (!error) { if (get_user(oldlen, (size_t *)addr) || put_user(oldlen, (u32 *)A(tmp.oldlenp))) error = -EFAULT; } copy_to_user(args->__unused, tmp.__unused, sizeof(tmp.__unused)); } return error; } #else /* CONFIG_SYSCTL */ asmlinkage long sys32_sysctl(struct sysctl_args32 *args) { return -ENOSYS; } #endif /* CONFIG_SYSCTL */ asmlinkage long sys32_newuname(struct new_utsname * name) { int ret = 0; down_read(&uts_sem); if (copy_to_user(name,&system_utsname,sizeof *name)) ret = -EFAULT; up_read(&uts_sem); if (current->personality == PER_LINUX32 && !ret) if (copy_to_user(name->machine, "mips\0\0\0", 8)) ret = -EFAULT; return ret; } extern asmlinkage long sys_personality(unsigned long); asmlinkage int sys32_personality(unsigned long personality) { int ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } /* ustat compatibility */ struct ustat32 { __kernel_daddr_t32 f_tfree; __kernel_ino_t32 f_tinode; char f_fname[6]; char f_fpack[6]; }; extern asmlinkage long sys_ustat(dev_t dev, struct ustat * ubuf); asmlinkage int sys32_ustat(dev_t dev, struct ustat32 * ubuf32) { int err; struct ustat tmp; struct ustat32 tmp32; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); err = sys_ustat(dev, &tmp); set_fs (old_fs); if (err) goto out; memset(&tmp32,0,sizeof(struct ustat32)); tmp32.f_tfree = tmp.f_tfree; tmp32.f_tinode = tmp.f_tinode; err = copy_to_user(ubuf32,&tmp32,sizeof(struct ustat32)) ? -EFAULT : 0; out: return err; } /* Handle adjtimex compatability. */ struct timex32 { u32 modes; s32 offset, freq, maxerror, esterror; s32 status, constant, precision, tolerance; struct timeval32 time; s32 tick; s32 ppsfreq, jitter, shift, stabil; s32 jitcnt, calcnt, errcnt, stbcnt; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; }; extern int do_adjtimex(struct timex *); asmlinkage int sys32_adjtimex(struct timex32 *utp) { struct timex txc; int ret; memset(&txc, 0, sizeof(struct timex)); if(get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); if(put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } /* * Declare the 32-bit version of the msghdr */ struct msghdr32 { unsigned int msg_name; /* Socket name */ int msg_namelen; /* Length of name */ unsigned int msg_iov; /* Data blocks */ unsigned int msg_iovlen; /* Number of blocks */ unsigned int msg_control; /* Per protocol magic (eg BSD file descriptor passing) */ unsigned int msg_controllen; /* Length of cmsg list */ unsigned msg_flags; }; struct cmsghdr32 { __kernel_size_t32 cmsg_len; int cmsg_level; int cmsg_type; }; /* Bleech... */ #define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen)) #define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) cmsg32_nxthdr((mhdr), (cmsg), (cmsglen)) #define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) ) #define CMSG32_DATA(cmsg) ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32)))) #define CMSG32_SPACE(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len)) #define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len)) #define __CMSG32_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr32) ? \ (struct cmsghdr32 *)(ctl) : \ (struct cmsghdr32 *)NULL) #define CMSG32_FIRSTHDR(msg) __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) __inline__ struct cmsghdr32 *__cmsg32_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr32 *__cmsg, int __cmsg_len) { struct cmsghdr32 * __ptr; __ptr = (struct cmsghdr32 *)(((unsigned char *) __cmsg) + CMSG32_ALIGN(__cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return NULL; return __ptr; } __inline__ struct cmsghdr32 *cmsg32_nxthdr (struct msghdr *__msg, struct cmsghdr32 *__cmsg, int __cmsg_len) { return __cmsg32_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg, __cmsg_len); } static inline int iov_from_user32_to_kern(struct iovec *kiov, struct iovec32 *uiov32, int niov) { int tot_len = 0; while(niov > 0) { u32 len, buf; if(get_user(len, &uiov32->iov_len) || get_user(buf, &uiov32->iov_base)) { tot_len = -EFAULT; break; } tot_len += len; kiov->iov_base = (void *)AA(buf); kiov->iov_len = (__kernel_size_t) len; uiov32++; kiov++; niov--; } return tot_len; } static inline int msghdr_from_user32_to_kern(struct msghdr *kmsg, struct msghdr32 *umsg) { u32 tmp1, tmp2, tmp3; int err; err = get_user(tmp1, &umsg->msg_name); err |= __get_user(tmp2, &umsg->msg_iov); err |= __get_user(tmp3, &umsg->msg_control); if (err) return -EFAULT; kmsg->msg_name = (void *)AA(tmp1); kmsg->msg_iov = (struct iovec *)AA(tmp2); kmsg->msg_control = (void *)AA(tmp3); err = get_user(kmsg->msg_namelen, &umsg->msg_namelen); err |= get_user(kmsg->msg_iovlen, &umsg->msg_iovlen); err |= get_user(kmsg->msg_controllen, &umsg->msg_controllen); err |= get_user(kmsg->msg_flags, &umsg->msg_flags); return err; } /* I've named the args so it is easy to tell whose space the pointers are in. */ static int verify_iovec32(struct msghdr *kern_msg, struct iovec *kern_iov, char *kern_address, int mode) { int tot_len; if(kern_msg->msg_namelen) { if(mode==VERIFY_READ) { int err = move_addr_to_kernel(kern_msg->msg_name, kern_msg->msg_namelen, kern_address); if(err < 0) return err; } kern_msg->msg_name = kern_address; } else kern_msg->msg_name = NULL; if(kern_msg->msg_iovlen > UIO_FASTIOV) { kern_iov = kmalloc(kern_msg->msg_iovlen * sizeof(struct iovec), GFP_KERNEL); if(!kern_iov) return -ENOMEM; } tot_len = iov_from_user32_to_kern(kern_iov, (struct iovec32 *)kern_msg->msg_iov, kern_msg->msg_iovlen); if(tot_len >= 0) kern_msg->msg_iov = kern_iov; else if(kern_msg->msg_iovlen > UIO_FASTIOV) kfree(kern_iov); return tot_len; } static __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } /* XXX This really belongs in some header file... -DaveM */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ extern struct socket *sockfd_lookup(int fd, int *err); /* There is a lot of hair here because the alignment rules (and * thus placement) of cmsg headers and length are different for * 32-bit apps. -DaveM */ static int cmsghdr_from_user32_to_kern(struct msghdr *kmsg, unsigned char *stackbuf, int stackbuf_size) { struct cmsghdr32 *ucmsg; struct cmsghdr *kcmsg, *kcmsg_base; __kernel_size_t32 ucmlen; __kernel_size_t kcmlen, tmp; kcmlen = 0; kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf; ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if(get_user(ucmlen, &ucmsg->cmsg_len)) return -EFAULT; /* Catch bogons. */ if(CMSG32_ALIGN(ucmlen) < CMSG32_ALIGN(sizeof(struct cmsghdr32))) return -ENOBUFS; if((unsigned long)(((char *)ucmsg - (char *)kmsg->msg_control) + ucmlen) > kmsg->msg_controllen) return -EINVAL; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmlen += tmp; ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } if(kcmlen == 0) return -EINVAL; /* The kcmlen holds the 64-bit version of the control length. * It may not be modified as we do not stick it into the kmsg * until we have successfully copied over all of the data * from the user. */ if(kcmlen > stackbuf_size) kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL); if(kcmsg == NULL) return -ENOBUFS; /* Now copy them over neatly. */ memset(kcmsg, 0, kcmlen); ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { __get_user(ucmlen, &ucmsg->cmsg_len); tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmsg->cmsg_len = tmp; __get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type); /* Copy over the data. */ if(copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg), (ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))))) goto out_free_efault; /* Advance. */ kcmsg = (struct cmsghdr *)((char *)kcmsg + CMSG_ALIGN(tmp)); ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } /* Ok, looks like we made it. Hook it up and return success. */ kmsg->msg_control = kcmsg_base; kmsg->msg_controllen = kcmlen; return 0; out_free_efault: if(kcmsg_base != (struct cmsghdr *)stackbuf) kfree(kcmsg_base); return -EFAULT; } static void put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; struct cmsghdr32 cmhdr; int cmlen = CMSG32_LEN(len); if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) { kmsg->msg_flags |= MSG_CTRUNC; return; } if(kmsg->msg_controllen < cmlen) { kmsg->msg_flags |= MSG_CTRUNC; cmlen = kmsg->msg_controllen; } cmhdr.cmsg_level = level; cmhdr.cmsg_type = type; cmhdr.cmsg_len = cmlen; if(copy_to_user(cm, &cmhdr, sizeof cmhdr)) return; if(copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32))) return; cmlen = CMSG32_SPACE(len); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } static void scm_detach_fds32(struct msghdr *kmsg, struct scm_cookie *scm) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int); int fdnum = scm->fp->count; struct file **fp = scm->fp->fp; int *cmfptr; int err = 0, i; if (fdnum < fdmax) fdmax = fdnum; for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) { int new_fd; err = get_unused_fd(); if (err < 0) break; new_fd = err; err = put_user(new_fd, cmfptr); if (err) { put_unused_fd(new_fd); break; } /* Bump the usage count and install the file. */ get_file(fp[i]); fd_install(new_fd, fp[i]); } if (i > 0) { int cmlen = CMSG32_LEN(i * sizeof(int)); if (!err) err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG32_SPACE(i * sizeof(int)); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } } if (i < fdnum) kmsg->msg_flags |= MSG_CTRUNC; /* * All of the files that fit in the message have had their * usage counts incremented, so we just free the list. */ __scm_destroy(scm); } /* In these cases we (currently) can just copy to data over verbatim * because all CMSGs created by the kernel have well defined types which * have the same layout in both the 32-bit and 64-bit API. One must add * some special cased conversions here if we start sending control messages * with incompatible types. * * SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after * we do our work. The remaining cases are: * * SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean * IP_TTL int 32-bit clean * IP_TOS __u8 32-bit clean * IP_RECVOPTS variable length 32-bit clean * IP_RETOPTS variable length 32-bit clean * (these last two are clean because the types are defined * by the IPv4 protocol) * IP_RECVERR struct sock_extended_err + * struct sockaddr_in 32-bit clean * SOL_IPV6 IPV6_RECVERR struct sock_extended_err + * struct sockaddr_in6 32-bit clean * IPV6_PKTINFO struct in6_pktinfo 32-bit clean * IPV6_HOPLIMIT int 32-bit clean * IPV6_FLOWINFO u32 32-bit clean * IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean * IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean * IPV6_RTHDR ipv6 routing exthdr 32-bit clean * IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean */ static void cmsg32_recvmsg_fixup(struct msghdr *kmsg, unsigned long orig_cmsg_uptr) { unsigned char *workbuf, *wp; unsigned long bufsz, space_avail; struct cmsghdr *ucmsg; bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr; space_avail = kmsg->msg_controllen + bufsz; wp = workbuf = kmalloc(bufsz, GFP_KERNEL); if(workbuf == NULL) goto fail; /* To make this more sane we assume the kernel sends back properly * formatted control messages. Because of how the kernel will truncate * the cmsg_len for MSG_TRUNC cases, we need not check that case either. */ ucmsg = (struct cmsghdr *) orig_cmsg_uptr; while(((unsigned long)ucmsg) <= (((unsigned long)kmsg->msg_control) - sizeof(struct cmsghdr))) { struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp; int clen64, clen32; /* UCMSG is the 64-bit format CMSG entry in user-space. * KCMSG32 is within the kernel space temporary buffer * we use to convert into a 32-bit style CMSG. */ __get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len); __get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type); clen64 = kcmsg32->cmsg_len; copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg), clen64 - CMSG_ALIGN(sizeof(*ucmsg))); clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) + CMSG32_ALIGN(sizeof(struct cmsghdr32))); kcmsg32->cmsg_len = clen32; ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64)); wp = (((char *)kcmsg32) + CMSG32_ALIGN(clen32)); } /* Copy back fixed up data, and adjust pointers. */ bufsz = (wp - workbuf); copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz); kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz); kmsg->msg_controllen = space_avail - bufsz; kfree(workbuf); return; fail: /* If we leave the 64-bit format CMSG chunks in there, * the application could get confused and crash. So to * ensure greater recovery, we report no CMSGs. */ kmsg->msg_controllen += bufsz; kmsg->msg_control = (void *) orig_cmsg_uptr; } asmlinkage int sys32_sendmsg(int fd, struct msghdr32 *user_msg, unsigned user_flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iov[UIO_FASTIOV]; unsigned char ctl[sizeof(struct cmsghdr) + 20]; unsigned char *ctl_buf = ctl; struct msghdr kern_msg; int err, total_len; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; err = verify_iovec32(&kern_msg, iov, address, VERIFY_READ); if (err < 0) goto out; total_len = err; if(kern_msg.msg_controllen) { err = cmsghdr_from_user32_to_kern(&kern_msg, ctl, sizeof(ctl)); if(err) goto out_freeiov; ctl_buf = kern_msg.msg_control; } kern_msg.msg_flags = user_flags; sock = sockfd_lookup(fd, &err); if (sock != NULL) { if (sock->file->f_flags & O_NONBLOCK) kern_msg.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &kern_msg, total_len); sockfd_put(sock); } /* N.B. Use kfree here, as kern_msg.msg_controllen might change? */ if(ctl_buf != ctl) kfree(ctl_buf); out_freeiov: if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: return err; } asmlinkage int sys32_recvmsg(int fd, struct msghdr32 *user_msg, unsigned int user_flags) { struct iovec iovstack[UIO_FASTIOV]; struct msghdr kern_msg; char addr[MAX_SOCK_ADDR]; struct socket *sock; struct iovec *iov = iovstack; struct sockaddr *uaddr; int *uaddr_len; unsigned long cmsg_ptr; int err, total_len, len = 0; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; uaddr = kern_msg.msg_name; uaddr_len = &user_msg->msg_namelen; err = verify_iovec32(&kern_msg, iov, addr, VERIFY_WRITE); if (err < 0) goto out; total_len = err; cmsg_ptr = (unsigned long) kern_msg.msg_control; kern_msg.msg_flags = 0; sock = sockfd_lookup(fd, &err); if (sock != NULL) { struct scm_cookie scm; if (sock->file->f_flags & O_NONBLOCK) user_flags |= MSG_DONTWAIT; memset(&scm, 0, sizeof(scm)); err = sock->ops->recvmsg(sock, &kern_msg, total_len, user_flags, &scm); if(err >= 0) { len = err; if(!kern_msg.msg_control) { if(sock->passcred || scm.fp) kern_msg.msg_flags |= MSG_CTRUNC; if(scm.fp) __scm_destroy(&scm); } else { /* If recvmsg processing itself placed some * control messages into user space, it's is * using 64-bit CMSG processing, so we need * to fix it up before we tack on more stuff. */ if((unsigned long) kern_msg.msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(&kern_msg, cmsg_ptr); /* Wheee... */ if(sock->passcred) put_cmsg32(&kern_msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm.creds), &scm.creds); if(scm.fp != NULL) scm_detach_fds32(&kern_msg, &scm); } } sockfd_put(sock); } if(uaddr != NULL && kern_msg.msg_namelen && err >= 0) err = move_addr_to_user(addr, kern_msg.msg_namelen, uaddr, uaddr_len); if(cmsg_ptr != 0 && err >= 0) { unsigned long ucmsg_ptr = ((unsigned long)kern_msg.msg_control); __kernel_size_t32 uclen = (__kernel_size_t32) (ucmsg_ptr - cmsg_ptr); err |= __put_user(uclen, &user_msg->msg_controllen); } if(err >= 0) err = __put_user(kern_msg.msg_flags, &user_msg->msg_flags); if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: if(err < 0) return err; return len; } extern asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count); asmlinkage int sys32_sendfile(int out_fd, int in_fd, __kernel_off_t32 *offset, s32 count) { mm_segment_t old_fs = get_fs(); int ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile(out_fd, in_fd, offset ? &of : NULL, count); set_fs(old_fs); if (offset && put_user(of, offset)) return -EFAULT; return ret; } asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count); asmlinkage ssize_t sys32_readahead(int fd, u32 pad0, u64 a2, u64 a3, size_t count) { return sys_readahead(fd, merge_64(a2, a3), count); } /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(unsigned int)) static unsigned char socketcall_nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; #undef AL /* * System call vectors. * * Argument checking cleaned up. Saved 20% in size. * This function doesn't need to set the kernel lock because * it is set by the callees. */ asmlinkage long sys32_socketcall(int call, unsigned int *args32) { unsigned int a[6]; unsigned int a0,a1; int err; if(call<1||call>SYS_RECVMSG) return -EINVAL; /* copy_from_user should be SMP safe. */ if (copy_from_user(a, args32, socketcall_nargs[call])) return -EFAULT; a0=a[0]; a1=a[1]; switch (call) { case SYS_SOCKET: err = sys_socket(a0,a1,a[2]); break; case SYS_BIND: err = sys_bind(a0,(struct sockaddr *)A(a1), a[2]); break; case SYS_CONNECT: err = sys_connect(a0, (struct sockaddr *)A(a1), a[2]); break; case SYS_LISTEN: err = sys_listen(a0,a1); break; case SYS_ACCEPT: err = sys_accept(a0,(struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_GETSOCKNAME: err = sys_getsockname(a0,(struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_GETPEERNAME: err = sys_getpeername(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_SOCKETPAIR: err = sys_socketpair(a0,a1, a[2], (int *)A(a[3])); break; case SYS_SEND: err = sys_send(a0, (void *)A(a1), a[2], a[3]); break; case SYS_SENDTO: err = sys_sendto(a0,(void *)A(a1), a[2], a[3], (struct sockaddr *)A(a[4]), a[5]); break; case SYS_RECV: err = sys_recv(a0, (void *)A(a1), a[2], a[3]); break; case SYS_RECVFROM: err = sys_recvfrom(a0, (void *)A(a1), a[2], a[3], (struct sockaddr *)A(a[4]), (int *)A(a[5])); break; case SYS_SHUTDOWN: err = sys_shutdown(a0,a1); break; case SYS_SETSOCKOPT: err = sys_setsockopt(a0, a1, a[2], (char *)A(a[3]), a[4]); break; case SYS_GETSOCKOPT: err = sys_getsockopt(a0, a1, a[2], (char *)A(a[3]), (int *)A(a[4])); break; case SYS_SENDMSG: err = sys_sendmsg(a0, (struct msghdr *) A(a1), a[2]); break; case SYS_RECVMSG: err = sys_recvmsg(a0, (struct msghdr *) A(a1), a[2]); break; default: err = -EINVAL; break; } return err; } #ifdef CONFIG_MODULES /* From sparc64 */ struct kernel_sym32 { u32 value; char name[60]; }; extern asmlinkage int sys_get_kernel_syms(struct kernel_sym *table); asmlinkage int sys32_get_kernel_syms(struct kernel_sym32 *table) { int len, i; struct kernel_sym *tbl; mm_segment_t old_fs; len = sys_get_kernel_syms(NULL); if (!table) return len; tbl = kmalloc (len * sizeof (struct kernel_sym), GFP_KERNEL); if (!tbl) return -ENOMEM; old_fs = get_fs(); set_fs (KERNEL_DS); sys_get_kernel_syms(tbl); set_fs (old_fs); for (i = 0; i < len; i++, table++) { if (put_user (tbl[i].value, &table->value) || copy_to_user (table->name, tbl[i].name, 60)) break; } kfree (tbl); return i; } #else /* CONFIG_MODULES */ asmlinkage unsigned long sys32_create_module(const char *name_user, size_t size) { return -ENOSYS; } asmlinkage int sys32_init_module(const char *name_user, struct module *mod_user) { return -ENOSYS; } asmlinkage int sys32_delete_module(const char *name_user) { return -ENOSYS; } asmlinkage int sys32_query_module(const char *name_user, int which, char *buf, size_t bufsize, size_t *ret) { /* Let the program know about the new interface. Not that it'll do them much good. */ if (which == 0) return 0; return -ENOSYS; } asmlinkage long sys32_get_kernel_syms(struct kernel_sym *table) { return -ENOSYS; } #endif /* CONFIG_MODULES */
Go to most recent revision | Compare with Previous | Blame | View Log