URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [mips64/] [kernel/] [smp.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001 Broadcom Corporation */ #include <linux/config.h> #include <linux/cache.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/threads.h> #include <linux/module.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/sched.h> #include <asm/atomic.h> #include <asm/cpu.h> #include <asm/processor.h> #include <asm/system.h> #include <asm/hardirq.h> #include <asm/softirq.h> #include <asm/mmu_context.h> #include <asm/smp.h> /* The 'big kernel lock' */ spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; int smp_threads_ready; /* Not used */ atomic_t smp_commenced = ATOMIC_INIT(0); atomic_t cpus_booted = ATOMIC_INIT(0); int smp_num_cpus = 1; /* Number that came online. */ cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ int __cpu_number_map[NR_CPUS]; int __cpu_logical_map[NR_CPUS]; cycles_t cacheflush_time; void __init smp_callin(void) { #if 0 calibrate_delay(); smp_store_cpu_info(cpuid); #endif } void __init smp_commence(void) { wmb(); atomic_set(&smp_commenced, 1); } /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { core_send_ipi(cpu, SMP_RESCHEDULE_YOURSELF); } spinlock_t smp_call_lock = SPIN_LOCK_UNLOCKED; struct call_data_struct *call_data; /* * Run a function on all other CPUs. * <func> The function to run. This must be fast and non-blocking. * <info> An arbitrary pointer to pass to the function. * <retry> If true, keep retrying until ready. * <wait> If true, wait until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. * * Does not return until remote CPUs are nearly ready to execute <func> * or are or have executed. */ int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) { struct call_data_struct data; int i, cpus = smp_num_cpus - 1; int cpu = smp_processor_id(); if (!cpus) return 0; data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0); spin_lock(&smp_call_lock); call_data = &data; /* Send a message to all other CPUs and wait for them to respond */ for (i = 0; i < smp_num_cpus; i++) if (i != cpu) core_send_ipi(i, SMP_CALL_FUNCTION); /* Wait for response */ /* FIXME: lock-up detection, backtrace on lock-up */ while (atomic_read(&data.started) != cpus) barrier(); if (wait) while (atomic_read(&data.finished) != cpus) barrier(); spin_unlock(&smp_call_lock); return 0; } void smp_call_function_interrupt(void) { void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait; int cpu = smp_processor_id(); irq_enter(cpu, 0); /* XXX choose an irq number? */ /* * Notify initiating CPU that I've grabbed the data and am * about to execute the function. */ mb(); atomic_inc(&call_data->started); /* * At this point the info structure may be out of scope unless wait==1. */ (*func)(info); if (wait) { mb(); atomic_inc(&call_data->finished); } irq_exit(cpu, 0); /* XXX choose an irq number? */ } static void stop_this_cpu(void *dummy) { /* * Remove this CPU: */ clear_bit(smp_processor_id(), &cpu_online_map); /* May need to service _machine_restart IPI */ local_irq_enable(); /* XXXKW wait if available? */ for (;;); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); /* * Fix me: this prevents future IPIs, for example that would * cause a restart to happen on CPU0. */ smp_num_cpus = 1; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { smp_call_function(flush_tlb_all_ipi, 0, 1, 1); local_flush_tlb_all(); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) cpu_context(i, mm) = 0; } local_flush_tlb_mm(mm); } struct flush_tlb_data { struct mm_struct *mm; struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_range(fd->mm, fd->addr1, fd->addr2); } void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd; fd.mm = mm; fd.addr1 = start; fd.addr2 = end; smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) cpu_context(i, mm) = 0; } local_flush_tlb_range(mm, start, end); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = page; smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) cpu_context(i, vma->vm_mm) = 0; } local_flush_tlb_page(vma, page); } EXPORT_SYMBOL(smp_num_cpus); EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(cpu_data); EXPORT_SYMBOL(synchronize_irq); EXPORT_SYMBOL(kernel_flag); EXPORT_SYMBOL(__global_sti); EXPORT_SYMBOL(__global_cli); EXPORT_SYMBOL(__global_save_flags); EXPORT_SYMBOL(__global_restore_flags);